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Abstract. An analytic singular value decomposition (ASVD) of a path of matrices E(t) is an

analytic path of factorizations E(t) = X(t)S(t)Y (t)T where X(t) and Y (t) are orthogonal and S(t)
is diagonal. The diagonal entries of S(t) are allowed to be either positive or negative and to appear
in any order. For an analytic path matrix E(t) an ASVD exists, but this ASVD is not unique.
We present two new numerical methods for the computation of unique ASVD’s. One is based on a
completely algebraic approach and the other on one step methods for ordinary differential equations
in combination with projections into the set of orthogonal matrices.
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1. Introduction. The singular value decomposition (SVD) of a constant matrix
E ∈ R

m×n, m ≥ n, is a factorization E = UΣV T , where U ∈ R
m×m and V ∈ R

n×n

are orthogonal and Σ = diag(σ1, σ2, σ3, . . . , σn) ∈ R
m×n. The SVD is an important

tool in numerous applications. It is well studied, and good numerical methods are
available [1, 4, 6, 8, 10, 12].

In this paper we discuss the analytic singular value decomposition (ASVD). For
a real analytic matrix valued function E(t) : [a, b] → R

m×n, an ASVD is a path of
factorizations,

E(t) = X(t)S(t)Y (t)T ,

where X(t) : [a, b] → R
m×m is orthogonal, S(t) : [a, b] → R

m×n is diagonal, Y (t) :
[a, b]→ R

n×n is orthogonal and X(t), S(t) and Y (t) are analytic.
In [3] Bunse–Gerstner et al. prove the existence of an ASVD and show that an

ASVD is not unique. They establish uniqueness of an ASVD, E(t) = X(t)S(t)Y (t)T ,
that minimizes the total variation (or arc length)

Vrn (X(t)) :=
∫ b

a

‖dX/dt‖F dx(1.1)

over all feasible choices X(t) and minimizes Vrn (Y (t)) subject to (1.1) being mini-
mum. (Here ‖ ‖F denotes the Frobenius norm.) It is shown in [3] that the left singular
factor X(t) of a minimum variation ASVD satisfies a set of differential equations, and
how these can be used in combination with an Euler-like discretization method for
the calculation of the minimum variation ASVD.

We will give a short overview over the results of [3], and then derive a new unique
ASVD. This ASVD is based on algebraic transformations, and for its computation we
do not have to solve differential equations.

In [14] Wright derives differential equations for the factors of the ASVD, and
solves these using explicit Runge–Kutta methods. These matrix differential equations
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for the orthogonal factors have the special structure:

U̇(t) = H(t)U(t)(1.2)

with initial conditions U(t0)TU(t0) = In, where U(t), H(t) : [a, b]→ R
n×n, t0 ∈ [a, b]

and H(t) is skew symmetric, i.e. H(t)T = −H(t) for all t ∈ [a, b]. The solution U(t)
of this type of initial value problems is an orthogonal matrix, i.e. U(t)TU(t) = In for
all t ∈ [a, b].

In [5] Dieci et al. study such equations and discuss two types of numerical methods
which preserve the orthogonality of the approximation during the integration. The
first type are the so–called automatic orthogonal integrators and in [15] Wright uses
implicit Runge–Kutta methods of this type. In the second part of this paper we
discuss methods of the second type, the projective orthogonal integrators. These
methods are based on explicit Runge–Kutta methods as a nonorthogonal integrator
and on a projection of the approximation onto the set of the orthogonal matrices.

Finally we present some numerical results and compare different methods for
computing an ASVD.

2. Notation and Preliminaries. In this section we introduce some notation
and give a short review of the results in [3].

2.1. Notation. Throughout the remainder of this paper, we make the simplify-
ing assumption that m ≥ n. The case m < n is similar, using the transpose of the
matrix.

We denote by
• R

m×n the real m× n matrices;
• Um,n the set of real m× n matrices with orthonormal columns;
• Am,n([a, b]) the set of real analytic functions on [a, b] with values in R

m×n;
• Dm,n the set of diagonal matrices in R

m×n;
• Pn the set of permutation matrices in R

n×n;
• In the n× n identity matrix;
• < A,B >= Trace(ATB) the Frobenius inner product for A,B ∈ R

m×n;
• ‖A‖ the Frobenius norm, i.e. ‖A‖ :=

√
< A,A > for A ∈ R

m×n;
• Ȧ(t) the first derivative for A(t) ∈ Am,n([a, b]);
• A(j)(t) the j–th derivative for A(t) ∈ Am,n([a, b]).

Algorithms in this paper are presented in MATLAB notation, see [10].

2.2. Existence and Uniqueness. In [3] it is shown that if E(t) ∈ Am,n([a, b]),
then there exists an ASVD, but this ASVD is not unique. If E(t) has two ASVD’s

E(t) = X(t)S(t)Y (t)T = X̂(t)Ŝ(t)Ŷ (t)T ,

then the two ASVD’s are called equivalent . If, in addition, S(t) = Ŝ(t) then they
are called parallel . Two ASVD’s are equivalent if and only if there exists a matrix
QL(t) ∈ Um,m ∩ Am,m and a matrix Q(t) ∈ Un,n ∩An,n such that

X̂(t) = X(t)QL(t),

Ŝ(t) = QL(t)TS(t)Q(t)

and

Ŷ (t) = Y (t)Q(t).
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Q(t) and QL(t) have a special structure, since both S(t) and Ŝ(t) must be di-
agonal, and we can build them as a product of three simpler equivalences. These
are permutation–equivalence (P–equivalence), sign–equivalence (D–equivalence) and
orthogonal–equivalence (Z–equivalence).

Two ASVD’s, E(t) = X(t)S(t)Y (t)T = X̂(t)Ŝ(t)Ŷ (t)T , are P-equivalent if there
exists a P ∈ Pn and a permutation collaborator PL ∈ Pm such that

X̂(t) = X(t)PL,

Ŷ (t) = Y (t)P

and

Ŝ(t) = PTL S(t)P.

PL ∈ Pm is a permutation collaborator of P ∈ Pn if PL is of the form

PL =
[
P 0
0 Im−n

]
.

Two ASVD’s are D-equivalent if there exists a D ∈ Dn,n ∩ Un,n such that

Ŷ (t) = Y (t)D

and

Ŝ(t) = S(t)D.

A diagonal factor S(t) ∈ Dm,m ∩Am,m is called gregarious if S(t) has the form

S(t) =


s1(t)Im1 0 · · · 0

0 s2(t)Im2 · · · 0
...

...
. . .

...
0 0 · · · sk(t)Imk
0 0 · · · 0

 ,(2.1)

where s1(t), s2(t), . . . , sk−1(t) are distinct, nonzero, analytic functions and sk ≡ 0. An
ASVD E(t) = X(t)S(t)Y (t)T is gregarious if its diagonal factor S(t) is gregarious. A
point t1 with si(t1) 6= ±sj(t1) for all i, j ∈ {1, . . . , n}, i 6= j is called a generic point.

The third equivalence is nonconstant. Two parallel ASVD’s are Z-equivalent
if S(t) is gregarious (with structure (2.1)) and there is a Z(t) ∈ BS ∩ Un,n and a
collaborator ZL ∈ Um,m ∩ BL,S such that

X̂(t) = X(t)ZL(t)

and

Ŷ (t) = Y (t)Z(t).

Here Z(t) ∈ BS if and only if it is of the form

Z(t) =


Z1 0 · · · 0 0
0 Z2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Zk−1 0
0 0 · · · 0 Tk

 ,(2.2)
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with Zj ∈ R
mj×mj for j = 1, 2, . . . , k − 1 and Tk ∈ R

mk×mk , and ZL ∈ Um,m ∩ BL,S
is a collaborator of Z(t) if ZL(t) is of the form

ZL(t) =


Z1 0 · · · 0 0
0 Z2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Zk−1 0
0 0 · · · 0 Zk

 ,(2.3)

where the blocks Z1, Z2, . . . , Zk−1 are as in (2.2), m̂ = m−
∑k−1
j=1 mj and Zk ∈ R

m̂×m̂.
The main results of [3] are
• Every ASVD can be transformed into a gregarious ASVD by a sequence of

constant P– and D–equivalences.
• Any ordering and choice of signs can be obtained.
• A matrix E(t) ∈ Am,n has two parallel, gregarious ASVD’s if and only if the

two paths are Z–equivalent.
• The ordering and the signs of the singular values are not unique, but they

are uniquely determined by a constant initial SVD in a generic point.
• Suppose that t0 and t1 are generic points of E(t) ∈ Am,n, E(t0) = U0Σ0V

T
0

and E(t1) = U1Σ1V
T

1 are gregarious, constant SVD’s. Then there exists an
ASVD and P– and D–equivalences such that

X(t0) = U0, S(t0) = Σ0, Y (t0) = V0

and

X(t1) = U1PL1DL, S(t1) = PTL1
Σ1D1P1, Y (t1) = V1D1P1DR.

The P– and D–equivalences fix the order and signs of the singular values, and the
Z–equivalence describes the freedom of choice in the left and right singular factors for
multiple singular values. If E(t) has only simple singular values, an ASVD is uniquely
determined by the initial conditions U(t0) = U0, S(t0) = Σ0 and V (t0) = V0 for a
constant SVD, E(t0) = U0Σ0V

T
0 , at a generic point t0.

2.3. Minimum Variation ASVD. In [3] the total variation

Vrn (X(t)) :=
∫ b

a

‖dX/dt‖F dx

is used to produce a unique ASVD in the case that E(t) has multiple singular values.
Suppose that E(t) ∈ Am,n([a, b]) and t0 ∈ [a, b] is generic point. If E(t0) = UΣV T

is a given, constant SVD, then there exists a unique ASVD with t ∈ [a, b],
E(t) = X̂(t)S(t)Ŷ (t)T , such that X̂(t0) = U, Ŝ(t0) = Σ, Ŷ (t0) = V ,

Vrn
(
X̂(t)

)
= min

{
Vrn (X(t))

∣∣∣∣ E(t) = X(t)S(t)Y (t)T

is an ASVD

}
(2.4)

and

Vrn
(
Ŷ (t)

)
= min

Vrn (Y (t))

∣∣∣∣∣∣
E(t) = X̂(t)S(t)Y (t)T

is an ASVD
subject to (2.4)

 .(2.5)
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If E(t) = X(t)S(t)Y (t)T is a gregarious ASVD on [a, b] with initial conditions X(t0) =
U, S(t0) = Σ and V (t0) = V , then X̂(t) = X(t)ZL(t) where ZL(t) ∈ BL,S solves the
initial value problem

ŻL(t) = ΦL,S
(
Ẋ(t)TX(t)

)
ZL(t), ZL(t0) = Im,(2.6)

where ΦL,S denotes the projection in the Frobenius inner product < ·, · >F from
Am,m onto BL,S .

Expanding ZL(t) in a Taylor series arround t0 and using a first order difference
approximation for Ẋ(t) an Euler-like method discretization method for the solution
of (2.6) is derived in [3]. For this method one obtains the usual results for ODE’s, i.e.
O(h2) local error and O(h) global error. It is not known how to produce higher order
methods using similar procedures, but one can extrapolate X̂(t), see [3].

3. Algebraic Methods. In this section we introduce a new algebraic method
which is based on polar decompositions.

If we have two parallel, gregarious ASVD’s of a matrix E(t) ∈ Am,n([a, b]), i.e.
E(t) = X(t)S(t)Y (t)T = X̂(t)S(t)Ŷ (t)T , then the two ASVD’s are Z–equivalent and
we know that

X(t) =


X11(t) X12(t) . . . X1k(t)
X21(t) X22(t) . . . X2k(t)

...
...

. . .
...

Xk1(t) Xk2(t) . . . Xkk(t)

(3.1)

= X̂(t)ZL(t),(3.2)

and

Y (t) =


Y11(t) Y12(t) . . . Y1k(t)
Y21(t) Y22(t) . . . Y2k(t)

...
...

. . .
...

Yk1(t) Yk2(t) . . . Ykk(t)

(3.3)

= Ŷ (t)Z(t),(3.4)

where Z(t) ∈ BS∩Un,n and ZL(t) ∈ BL,S∩Um,m are collaborators of a Z–equivalence.
The matrices X(t) and Y (t) are partitioned as ZL(t) and Z(t) in (2.2) and (2.3) , so
that Xii(t), Yii(t) ∈ Ami,mi for i = 1, . . . , k − 1, Xkk(t) ∈ Amk,mk , Ykk(t) ∈ Am̃k,m̃k
and the off diagonal blocks have corresponding dimensions. If we partition X̂(t) and
Ŷ (t) in a similar way we get the block equations

Xii(t) = X̂ii(t)Zi(t); i = 1, . . . , k;(3.5)
Xji(t) = X̂ji(t)Zi(t); i, j = 1, . . . , k; i 6= j;(3.6)

and

Yii(t) = Ŷii(t)Zi(t); i = 1, . . . , k − 1;(3.7)
Yji(t) = Ŷji(t)Zi(t); i, j = 1, . . . , k − 1; i 6= j;(3.8)

Ykk(t) = Ŷkk(t)Tk(t);(3.9)
Yjk(t) = Ŷjk(t)Tk(t); j = 1, . . . , k − 1.(3.10)
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The idea of the algebraic method is to choose a decomposition of the type

A(t) = B(t)Q(t),(3.11)

where A(t), B(t) ∈ Al,l([a, b]) and Q(t) ∈ Ul,l ∩ Al,l([a, b]) for the diagonal blocks so
that X̂ii(t), i = 1, . . . , k and Ŷkk(t) are independent of the a priori ASVD.

In this paper we present a method based on the polar decomposition. Other
methods based on QR–decompositions and ASVD’s are discussed in [11].

3.1. The Analytic Polar Decomposition. The polar decomposition of a ma-
trix A ∈ R

m×n is usually defined as a decomposition of the form A = QP , where
Q ∈ R

m×n, QTQ = In, P ∈ R
n×n and where P is symmetric and positive semidef-

inite (see [8, p. 148]). In a similar way we can define a decomposition A = P̂ Q̂,
where Q̂ ∈ R

m×n, Q̂T Q̂ = In, P̂ ∈ R
m×m and where P̂ is symmetric and positive

semidefinite. For our method we require this second type of polar decomposition for
A(t) ∈ An,n([a, b]).

In an ASVD we must allow the singular values to appear in any order and to
change sign. For the analytic polar decomposition we get a similar result when P (t)
is symmetric, but not necessary positive semidefinite.

Definition 1. For a real analytic matrix valued function E(t) ∈ An,n([a, b]), an
analytic polar decomposition (APD) is a path of factorizations

A(t) = P (t)Q(t)

where

Q(t) ∈ Un,n ∩ An,n([a, b])

and

P (t) ∈ An,n([a, b]) and P (t) = P (t)T .

The close relationship between an ASVD and APD is given by the following
theorem.

Theorem 2. If A(t) ∈ An,n([a, b]), then there exists an APD on [a, b].
Proof: If A(t) ∈ An,n([a, b]), then there exists an ASVD

A(t) = X(t)S(t)Y (t)T

on [a, b]. If we set

Q(t) := X(t)Y (t)T

and

P (t) := X(t)S(t)X(t)T ,

then Q(t) ∈ Un,n ∩ An,n([a, b]), P (t) ∈ An,n([a, b]) and P (t) is symmetric. Hence

P (t)Q(t) =
(
X(t)S(t)X(t)T

) (
X(t)Y (t)T

)
= X(t)S(t)Y (t)T

= A(t)
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is an APD of A(t). 2
As mentioned before, an ASVD is not unique, and we have some freedom in the

construction of an ASVD as shown in Section 2.2. The situation for the APD is
different. For a nonsingular constant matrix A ∈ R

n×n there is a unique polar
decomposition A = PQ, where P is symmetric and positive definite (see [7, p. 614]).
The following theorem is the corresponding result for the APD.

Theorem 3. If A(t) ∈ An,n([a, b]), t0 ∈ [a, b] and A(t0) is nonsingular, then
there exists a unique APD,

A(t) = P (t)Q(t),

on [a, b], such that P (t0) is positive definite.
Proof: Let

A(t) = X̂(t)Ŝ(t)Ŷ (t)T(3.12)

be a gregarious ASVD with positive singular values in t0. We know from Section 2.2
that such an ASVD exists, and as in the proof of Theorem 2 we can define the
corresponding APD,

A(t) = P̂ (t)Q̂(t).(3.13)

Since S(t0) has positive diagonal entries, the matrix P̂ (t0) is positive definite.
Assume that there exists a second APD A(t) = P (t)Q(t) such that P (t0) is

positive definite. In [9, p. 120–122] it is shown that there exists an orthogonal matrix
X(t) ∈ An,n([a, b]) and a diagonal matrix S(t) ∈ A([a, b])n,n such that

P (t) = X(t)S(t)X(t)T .

Since P (t0) is positive definite, the diagonal matrix S(t0) has positive entries. If we
set

Y (t) = Q(t)TX(t),

then Y (t) ∈ An,n([a, b]), and since

A(t) = P (t)Q(t)
=

(
X(t)S(t)X(t)T

) (
X(t)Y (t)T

)
= X(t)S(t)Y (t)T ,

we get a second ASVD of A(t).
The ASVD (3.12) is gregarious, and from [3, Corollary 6] it follows that

Ŷ (t) = Y (t) (DPZ(t)) ,(3.14)

X̂(t) = X(t) (PLZL(t))(3.15)

and

Ŝ(t) = PTL S(t)DP,(3.16)
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where D ∈ Dn,n is a constant diagonal matrix with ±1’s on the diagonal. P, PL ∈
Pn,n are permutation collaborators, and Z, ZL ∈ An,n([a, b]) ∩ Un,n are the collabo-
rators of a Z–equivalence.

Since P (t0) and P̂ (t0) are positive definite, S(t0) and Ŝ(t0) are nonsingular, and
from (2.2) and (2.3) it follows that Z(t) = ZL(t). Using (3.14) and (3.15) for Q̂ as
in (3.13), we get

Q̂(t) = X̂(t)Ŷ (t)T

= X(t) (PLZL(t))
(
Z(t)TPTD

)
Y (t)T

= X(t)DY (t)T .

Finally, we find for P̂ (t) that

P̂ (t) = X(t)S(t)DX(t)T .(3.17)

Since P (t0) is positive definite, i.e. S(t0) has positive diagonal entries, it follows that
D = In, and thus

P̂ (t) = P (t) and Q̂(t) = Q(t). 2(3.18)

Corollary 3.1. If A(t) ∈ An,n([a, b]), t0 ∈ [a, b], A(t0) is nonsingular and
A(t0) = PQ is a given constant polar decomposition, then there exists a unique APD,
A(t) = P (t)Q(t), that interpolates the constant polar decomposition at t0, i.e. P (t0) =
P and Q(t0) = Q.

The following theorem is the main result of this section. It shows how we can use
the unique APD of Theorem 3 to get a unique ASVD.

Theorem 4. Let E(t) ∈ Am,n([a, b]) and let E(t0) = UΣV T be a gregari-
ous constant SVD at a generic point t0 ∈ [a, b], where the blocks Uii, i = 1, . . . , k
and Vkk are symmetric and positive definite. Then there exists a unique ASVD,
E(t) = X(t)S(t)Y (t)T , such that X(t0) = U , S(t0) = Σ, Y (t0) = V and the matrices
Xii(t) i = 1, . . . , k and Ykk(t) are symmetric.
Proof: Let E(t) = X(t)S(t)Y (t)T be an arbitrary ASVD that interpolates the gre-
garious, constant SVD, E(t0) = UΣV T . Let X(t) and Y (t) be in the form (3.1)
and (3.3). Since the diagonal blocks of X(t) and Y (t) are analytic, there exist APD’s
Xii(t) = Qi(t)X̂ii(t), i = 1, . . . , k and Ykk(t) = Q̂(t)Ŷkk(t), where Qi(t0), i = 1, . . . , k
and Q̂k(t0) are identity matrices. If we set ZL(t) := diag(Q1(t), . . . , Qk(t)) and
Z(t) := diag(Q1(t), . . . , Qk−1(t), Q̂(t)), then we get the ASVD,

E(t) = X̂(t)S(t)Ŷ (t),(3.19)

where X̂(t) = X(t)ZL(t) and Ŷ (t) = Y (t)Z(t). These two ASVD’s are now Z-
equivalent, the ASVD (3.19) interpolates the constant SVD, E(t0) = UΣV T , and the
diagonal blocks X̂ii(t), i = 1, . . . , k and Ŷkk(t) are symmetric.

To show that the ASVD (3.19) is unique, assume that there exists a second ASVD,

E(t) = X̃(t)S(t)Ỹ (t),(3.20)

which interpolates in t0 and has symmetric diagonal blocks. Since t0 is a generic point,
the two ASVD’s (3.19) and (3.20) are Z–equivalent, and we denote the collaborators
of this Z–equivalence by Z̃ and Z̃L. As in Section 3 we then get the block equations
X̃ii(t) = X̂ii(t)Z̃i(t), i = 1, . . . , k and Ỹkk(t) = Ŷkk(t)T̃k(t). All these equations are of
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the form Ã(t) = Â(t)Q(t) where Q(t) is orthogonal, Ã(t) and Â(t) are symmetric and
Ã(t0) = Â(t0), since both ASVD’s (3.19) and (3.20) interpolate the constant SVD at
t0. Furthermore, since the diagonal blocks of the constant SVD, E(t0) = UΣV T , are
positive definite, Ã(t0) and Â(t0) are positive definite, and from Theorem 3 we then
get that Ã(t) = Â(t) on [a, b]. This means that Z̃ and Z̃L are identity matrices, and
thus the ASVD is unique. 2

In Theorem 4 we need the nonsingularity of all diagonal blocks Uii, i = 1, . . . , k,
and Vkk. For gregarious ASVD’s it is possible that one of this blocks is singular for all
points t ∈ [a, b] or only at the initial point t0. In [3] the gregarious ASVD’s are used to
simplify the proofs of the theorems. In [11] a weakly gregarious ASVD is introduced
that allows the singular values to appear in any order and multiple singular values
have still the same sign. Then one obtains a new type of Z–equivalence, and the
results of [3] are still valid for this weakly gregarious ASVD. In many cases it is then
possible to find a weakly gregarious, constant SVD that satisfies the conditions of a
version of Theorem 4, where gregarious is replaced by weakly gregarious.

3.2. A numerical Method.. Our algebraic method computes an approxima-
tion, A(t) = X(t)S(t)Y (t)T , of the unique algebraic ASVD of Theorem 4 at points
ti, i = 0, . . . , N . We implemented constant and variable stepsize codes for comput-
ing this algebraic ASVD. In the variable stepsize code we choose the stepsize so that
the code avoids nongeneric points (except a simple singular value equal to zero) and
points tj where one of the diagonal blocks Xii(tj) or Ykk(tj) defined in Section 3
corresponding to a multiple singular values becomes singular.

In the constant stepsize case we have to distinguish two cases. Nongeneric points
where only one singular value becomes zero do not cause any difficulties. In this case
we can compute a high accuracy approximation of the unique algebraic ASVD. Since
we use standard constant SVD’s at points ti in the process of computing the ASVD via
the algebraic approach, we have difficulties obtaining high accuracy approximations at
points where two singular value paths intersect at a nongeneric point. The standard
SVD treats the two singular values at this point as a multiple singular values, and
it is difficult to resolve the paths correctly so as to stay on the algebraic ASVD. To
accomplish this we solve an orthogonal Procustes problem [8], i.e. we compute an
SVD in ti that is closest to the SVD in ti−1 = ti − h in the Frobenius norm. This
SVD is then an O(h) approximation to the SVD that lies on the algebraic ASVD.

For simplicity we describe our algorithm for a gregarious ASVD and a sequence
of nongeneric points ti, i = 0, . . . , N .

In an initial step, using standard methods, we calculate a constant SVD, E(t0) =
Û0Σ̂0V̂

T
0 . Then we compute polar decompositions of the diagonal blocks correspond-

ing to multiple singular values, and in this way obtain an SVD,

E(t0) = U0Σ0V
T

0 ,

where the diagonal blocks satisfies the conditions of Theorem 4.
For each nongeneric point ti+1, i = 0, . . . , N − 1, we then repeat the following

procedure:
1. We use standard methods to get an SVD E(ti+1) = Û1Σ̂1V̂1 at a generic

point ti+1 = ti + hi close to ti (note that in the case that the original ti was
nongeneric, we have to add extra points).

2. We then use Theorem 7 from [3] to adjust the SVD in ti+1 so that the new
SVD E(ti+1) = U1Σ1V

T
1 lies on an ASVD that interpolates E(ti) = U0Σ0V

T
0 .

This procedure is performed by the following matlab routine:
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ALGORITHM 1.

Input: A constant SVD E(ti) = U0Σ0V
T

0 and a constant matrix
E(ti+1) ∈ R

m×n at generic points ti and ti+1.
Output: A constant SVD E(ti+1) = U1Σ1V

T
1 , that lies on an interpolating

ASVD.
%%%%% 1. step: Calculate SVD E(t_i+1) = U_h S_h V^T_h
[uh,sh,vh] = svd(e1)
%%%%% 2. step: Calculate permutation matrices P_Lh and P_h
u = u0’*uh;
for i = 1:n

[dummy,jbig] = max(abs(u(i,1:n)));
if i ~= jbig,

u(:,[i jbig]) = u(:,[jbig i]);

uh(:,[i jbig]) = uh(:,[jbig i]);
sh(:,[i jbig]) = sh(:,[jbig i]);
sh([i jbig],:) = sh([jbig i],:);
vh(:,[i jbig]) = vh(:,[jbig i]);

end
end;
%%%%% 3. step: Calculate the diagonal matrices
for i = 1:n

v(i) = v0(:,i)’*vh(:,i);
end;
s1 = sh * diag(sign(v));
v1 = vh * diag(sign(v));
s1 = diag(sign(diag(u))) * s1;
u1 = uh * diag(sign(diag(u)));

3. We compute polar decompositions of the diagonal blocks of U1 and possibly
the last diagonal block of V1. If one of these diagonal blocks is singular and
the dimension of this block is larger then one, we cannot determine a unique
polar decomposition for this matrix, and instead we solve again an orthogonal
Procustes problem. In this case we get only an O(h) approximation to the
ASVD in this part of the singular factors.

For one time step of the computation of the algebraic ASVD we then have the
following algorithm:

ALGORITHM 2.

Input: A constant gregarious SVD, E(ti) = U0Σ0V
T

0 , at a generic point ti,
where the diagonal blocks of U0 and the k–th diagonal block of V0 are sym-
metric and nonsingular and a constant matrix E(ti+1) ∈ R

m×n at a generic
point ti+1.

Output: An approximation, E(ti+1) = U1Σ1V
T

1 , of the constant SVD that lies
on the algebraic ASVD of Theorem 4 and interpolates E(ti) = U0Σ0V

T
0 .

1. Use Algorithm 1 with input, E(ti) = U0Σ0V
T

0 and E(ti+1). This calculates
the constant SVD, E(ti+1) = UΣV T .

2. Determine the multiplicities of the singular values of Σ.
3. Partition U and V into blocks as X(t) and Y (t) in (3.1) and (3.3).
4. For j = 1, . . . , k compute Ujj = PjQ

T
j . If Pj is singular, then choose Qj so

that Qj solves a special orthogonal Procustes problem.
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5. If there are zero singular values, then compute Vkk = P̃kQ̃
T
k . If P̃k is singular,

then choose Q̃k so that Q̃k solves a special orthogonal Procustes problem.
6. Set Q = diag(Q1, Q2, . . . , Qk), Q̃ = diag(Q1, Q2, . . . , Qk−1, Q̃k).
7. Set U1 ← UQ, Σ1 ← Σ and V1 ← V Q̃.

Remarks on Steps 4 and 5: We compute the polar decompositions with help of
another SVD. This allows us to estimate the numerical rank of the blocks and to
choose the correct polar decomposition.

If the dimension of a block is one, then the matrix Qj is ±1, and we choose the
correct sign. Note that this is always possible, even if Pj = 0.

If the dimension of a block is larger than one and Pj (or P̃k) is singular we solve
the orthogonal Procustes problem, see [8],

minimize ||Ūjj − UjjQj||F subject to QTj Q = Imj ,

where Ūjj is the diagonal block of U0 which corresponds to Ujj .

4. Differential Equations for the ASVD. If E(t) ∈ Am,n([a, b]) and E(t) =
X(t)S(t)Y (t) is an ASVD, then the factors satisfy the following set of differential
equations:

diag
(
Ṡ(t)

)
= diag (Q(t)) ,(4.1)

Ẋ(t) = X(t)Z(t),(4.2)
Ẏ (t) = Y (t)W (t),(4.3)

where Q(t) = X(t)T Ė(t)Y (t) and Z(t) = X(t)T Ẋ(t), W (t) = Y (t)T Ẏ (t)
are skew symmetric. We get the initial values from the constant SVD,
E(t0) = X(t0)S(t0)Y (t0)T . This set of equations was derived by Wright in [14]. Let
S(t) := diag(σ1, . . . , σn), Z(t) := [zij(t)], W (t) := [wij(t)] and Q(t) := [qij(t)].

If n = m and j > k we have the equations

σk(t)zj,k(t) + σj(t)wk,j(t) = qj,k(t)(4.4)

and

σj(t)zj,k(t) + σk(t)wk,j(t) = −qk,j(t).(4.5)

corresponding to the j, k position. Unless σk(t)2 6= σj(t)2 we can solve these equations
and get

zj,k(t) =
σk(t)qj,k(t) + σj(t)qk,j(t)

σk(t)2 − σj(t)2
(4.6)

and

wk,j(t) =
σj(t)qj,k(t) + σk(t)qk,j(t)

σj(t)2 − σk(t)2
.(4.7)

If m > n we have the additional equations

σk(t)zj,k(t) = qj,k(t), j = n+ 1, . . . ,m; k = 1, . . . , n,(4.8)

and we can solve these equations for zj,k if σk(t) 6= 0. This leaves the components
zj,k, j = n+ 1, . . . ,m; k = n + 1, . . . , j − 1 undetermined. Note that σk(t) = 0 does
not cause any problems for n = m.
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Equations (4.2) and (4.3) have a special structure, since

U̇(t) = U(t)H(t), U(t0)TU(t0) = In,(4.9)

where H(t), U(t) ∈ Al,l([a, b]), l ∈ {n,m} and where H(t) is skew symmetric. The
solution U(t) of the initial value problem (4.9) is orthogonal, i.e. U(t)TU(t) = Il for
all t ∈ [a, b].

Differential equations of this type are studied in [5]. It is shown there that two
types of methods preserve the orthogonality of U(t) during the integration. These are
the so called automatic and projective–orthogonal integrators. Another integrator,
which also preserves the orthogonality was recently introduced in [2].

Here we use projective–orthogonal integrators for solving the differential equations
(4.1)–(4.3). If Ui is a given orthogonal approximation of U(ti) we use an explicit
Runge–Kutta method to compute a nonorthogonal approximation Ûi+1 of U(ti+1)
for ti+1 = ti + h. Then we compute a QR decomposition Ûi+1 = Ui+1Ri+1, where
Ri+1 has positive diagonal elements, and we use Ui+1 as orthogonal approximation
to U(ti+1). If the stepsize h is small enough, Ûi+1 is nonsingular, since it is an O(hp)
approximation to the orthogonal matrix U(ti+1) (p is the order of the Runge–Kutta
method). Therefore Ûi+1 has a small condition number if h is small, and we can use
the modified Gram–Schmidt algorithm, see [8], to compute Ui+1.

If m > n or if E(t) has multiple singular values, then not all entries of Z(t) and
W (t) are determined by (4.1)–(4.3). A simple strategy is to set all these values in
Z(t) to zero and to compute the corresponding values of W (t) from equation (4.4).
Another problem appears if the squares of two singular values intersect at a point ti,
since we cannot determine the corresponding values of Z(t) and W (t) from equation
(4.4) and (4.5). If two singular values are close in modulus we use the old values
for the corresponding values of Z(t), and we compute the values of W (t) again from
equation (4.4). Finally if m > n and a singular value is close to zero we use the old
values for the undetermined entries in Z(t).

Combining all these cases, we initialize the matrices Z(t) and W (t) at t0 by setting
them to zero and we compute Q(t), Z(t) and W (t) with the following algorithm. In
this algorithm we use a cut–off tolerance ctol to test whether two singular values are
approximately equal in modulus or one singular value is close to zero.

ALGORITHM 3.

Input: A constant SVD, E(ti) = U0S0V
T

0 , of E(t) at a point ti, the matrices
Z0 and W0 at ti−1, the first derivative edash of E(t) at ti, and a cut–off
tolerance ctol.

Output: Approximations for the values of Q0, Z0 and W0 at ti.
%%%%% Compute q0
q0 = u0’ * edash * v0;
%%%%% Compute w0 and z0:
for j=1:n
for k=j+1:n
if abs(abs(s0(k,k))-abs(s0(j,j))) <= ctol
if abs(s0(k,k)) > ctol
z0(j,k) = q0(j,k)/s0(k,k) - w0(k,j);
z0(k,j) = -z0(j,k);

end;
else

sqq = (s0(j,j)+s0(k,k))*(s0(j,j)-s0(k,k));
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z0(j,k) = -(s0(k,k)*q0(j,k)+s0(j,j)*q0(k,j))/sqq;
z0(k,j) = -z0(j,k);
w0(k,j) = (s0(j,j)*q0(j,k)+s0(k,k)*q0(k,j))/sqq;
w0(j,k) = -w0(k,j);

end;
end;

end;
%%%%% If m > n, then compute the rest of z0
for k=1:n,
if abs(s0(k,k)) > ctol,
for j=n+1:m,

z0(j,k) = q0(j,k)/s0(k,k);
z0(k,j) = -z0(j,k);

end;
end;

end;
We implemented fix and variable stepsize codes using Algorithm 3. These codes

compute approximations in nongeneric points with higher accuracy than the Euler–
like method of [3] or the algebraic method described in Section 3. Like other similar
methods they also can start only at a nongeneric point, provided the initial value
SVD lies on an ASVD.

These codes tend to get unstable if there are many nongeneric points in the
integration interval.

5. Numerical Results. We tested and compared different methods for com-
puting an ASVD using variable stepsize codes.

For the minimal variation ASVD code we use stepsize control for ODE’s and keep
the difference between the output orthogonal factors X(ti+1) and Y (ti+1) and the
input orthogonal factors X(ti) and Y (ti) in the Frobenius norm smaller then the ad–
hoc constant 1/2, i.e. ||M(ti)−M(ti+1)||F < 0.5 where M = X,Y . The ODE stepsize
control is the usual strategy (see for example [13]). We compute an approximation
for X(ti+1) and Y (ti+1) with stepsizes h and h/2 and estimate the error. From this
estimation we obtain a new stepsize and if the ratio of the old and new stepsize is
smaller than 3, we accept the step. If not, we compute new approximations with the
new stepsize.

For the algebraic method we adjust the stepsize so that the difference between
the output and input orthogonal factors is again smaller then 1/2, i.e. ||M(ti) −
M(ti+1)||F < 0.5, and we increase the stepsize in the next step if 0.125 < ||M(ti) −
M(ti+1)||F where M = X,Y .

The variable stepsize codes for the method that solves ODE’s (4.1) – (4.3) uses
only the stepsize control for ODE’s from [13].

All codes are implemented in MATLAB [10] and the examples were run on a
SPARCstation 2. The unit roundoff of this machine is approximately 10−16. In the
following tables fnval indicates the number of function evaluations and kflops the
number of floating point operations (times 1024). Furthermore S, X and E denote
the Frobenius norm error of the singular values, the left singular factor X(t) and the
recomputed matrix E(t), respectively.

5.1. Example 1. The first example is Example 2 from [14]:

E(t) = U(t)S(t)U(t),
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where

U(t) =


c1 s1 0 0
−s1 c1 0 0

0 0 1 0
0 0 0 1




0 1 0 0
0 c2 s2 0
0 −s2 c2 0
0 0 0 1




0 1 0 0
0 0 1 0
0 0 c3 s3

0 0 −s3 c3


with c1 = cos(t), s1 = sin(t), c2 = cos(t + 1), s2 = sin(t + 1), c3 = cos(t + 2),
s3 = sin(t+ 2) and

S(t) = diag(0.5 + t, 2− t, 1− t, t).

The integration interval is [0, 2] with nongeneric points at t = 0, 0.25, 0.5, 0.75, 1.5
and 2. At the nongeneric points t = 0 and t = 2 simple singular values get zero, and
as we described in Section 3.2 and 4 the numerical methods have no problems with
this type of nongeneric points. Since t0 = 0 is a nongeneric starting point, we use
E(t0) = U(t0)S(t0)U(t0) as initial SVD.

Frobenius norm errors: Example 1
Ctol = 1.0e-3, RKtol = 1.0e-6

Method fnval kflops S X E
Polar decomposition 31 80 9.95e-16 4.24e-14 2.44e-15

Euler-like 78 281 7.61e-15 2.66e-14 1.69e-14
Orthogonal–projector 348 949 8.80e-06 1.24e-04 1.87e-05
Classical 4-step RK 480 1238 1.86e-04 1.46e-03 3.99e-04

Table 5.1

Table 5.1 shows the results of the algebraic method using a polar decomposi-
tion, the Euler–like method from [3], the orthogonal–projector based on the classical
4–step Runge–Kutta method. The algebraic method and the Euler-like method com-
pute high accuracy approximations for S(t), X(t) and the recomputed E(t). Note
that these errors are almost as small as the errors that would occur by rounding the
exact solution to finite precision. The Euler-like method uses a larger stepsize, but
since the stepsize control is more expensive it needs more function evaluations and
flops than the algebraic method. The methods which solve the ODE’s (4.1)–(4.3)
compute approximations with lower accuracy and are more expensive than the other
two methods. For the combination of Runge-Kutta and cut-off tolerance we used in
this example, the projective method is more efficient. It uses fewer function evalua-
tions and flops than the classical Runge–Kutta method. Furthermore, the solution of
the projective integrator has a higher accuracy.

The methods based on higher order ODE methods for (4.1)–(4.3) are sensitive
to the choice of the tolerance parameter. To demonstrate this we have included the
following two tables.

Table 5.2 shows the results of the classical 4–step Runge–Kutta method for dif-
ferent values of the cut–off tolerance, Ctol, and the Runge–Kutta tolerance, RKtol.
Here and in the following XTX denotes the product X(t)TX(t).

Table 5.3 shows the results for the orthogonal–projector method based on the
4–step Runge–Kutta method as nonorthogonal projector. In this case the error for
X(t)TX(t) is always about 10−15.
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Frobenius norm errors: Example 1
4 step RK method

Ctol RKtol fnval kflops S X E XTX
1e-1 1e-4 252 649 1.12e-02 3.33e-02 3.03e-02 6.30e-05
1e-1 1e-6 1692 4357 3.79e-03 2.11e-02 9.56e-03 1.04e-06
1e-1 1e-8 4092 10536 3.32e-03 2.02e-02 8.08e-03 4.22e-08
1e-3 1e-4 264 681 4.78e-03 3.63e-03 1.14e-02 5.41e-03
1e-3 1e-6 480 1238 1.86e-04 1.46e-03 3.99e-04 1.46e-04
1e-3 1e-8 936 2414 3.52e-07 8.30e-06 8.64e-07 2.76e-07
1e-5 1e-4 828 2135 1.43e+00 2.00e+00 4.19e-02 1.52e-02
1e-5 1e-6 1200 3095 1.41e+00 2.00e+00 7.37e-04 2.83e-04
1e-5 1e-8 936 2414 3.52e-07 8.31e-06 8.64e-07 2.76e-07
1e-5 1e-10 2448 6313 2.37e-09 1.12e-05 7.84e-09 3.08e-09

Table 5.2

Frobenius norm errors: Example 1
Orthogonal–projector based on 4 step RK method

Ctol RKtol Fnval kflops S X E XTX
1e-1 1e-4 252 687 1.12e-03 3.33e-02 3.03e-02 9.81e-16
1e-1 1e-6 1404 3823 2.98e-03 2.00e-02 7.00e-02 1.33e-15
1e-1 1e-8 4200 11436 3.32e-03 2.02e-02 8.08e-03 1.63e-15
1e-3 1e-4 252 687 4.45e-05 8.77e-04 6.89e-05 1.29e-15
1e-3 1e-6 348 949 8.80e-06 1.24e-05 1.87e-05 1.28e-15
1e-3 1e-8 1020 2781 1.32e-07 8.15e-06 2.02e-07 1.68e-15
1e-5 1e-4 264 720 2.49e-05 2.04e-04 3.40e-05 1.34e-15
1e-5 1e-6 348 949 8.80e-06 1.24e-05 1.87e-05 1.28e-15
1e-5 1e-8 996 2716 1.36e-07 2.20e-05 2.07e-07 1.53e-15
1e-5 1e-10 2304 6283 3.63e-09 7.21e-07 5.20e-09 1.63 -15

Table 5.3

These results indicate that the orthogonal–projector method may be more robust
than the usual explicit Runge–Kutta method. For Ctol = 10−5 and RKtol = 10−4

and 10−6 the classical 4–step Runge–Kutta method fails, whereas the orthogonal–
projective method computes a good approximation within the given tolerances. The
projective method allows in most cases larger stepsizes and the number of floating
point operations is smaller or of the same order as for the nonprojective method.

5.2. Example 2. This is Example 5, Section 3.5 from [3]:

E(t) = X(t)S(t)Y (t)T

where Y (t) = I4, S(t) = diag(−t,−t, t2, t2), X(t) = exp(tK) and K ∈ R
4×4 is the

skew symmetric matrix

K =


0 1 0 0
−1 0 2 0
0 −2 0 3
0 0 −3 0

 .
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The integration interval is [−2, 2] with nongeneric points at t = −1, 0 and 1.

Frobenius norm errors: Example 2
Ctol = 1.0e-5, RKtol = 1.0e-6

Method Fnval kflops S E
Polar decomposition 93 336 2.00e-14 6.29e-15

Euler-like 1119 4399 3.30e-13 6.30e-13
Orthogonal–projector 18804 88949 3.12e-07 4.12e-07
Classical 4-step RK 26472 123939 4.00e+00 1.55e-03

Table 5.4

Table 5.4 shows the results for the algebraic method using a polar decomposition,
the Euler–like method from [3], the orthogonal–projector based on the classical 4–step
Runge–Kutta method.

The matrix in this example has multiple singular values and the methods track
different ASVD’s. Again, the algebraic and the Euler–like method calculate high
accuracy approximations for S(t) and the recomputed E(t), but this time the Euler-
like method uses more function evaluations, due to a smaller stepsize, and it requires
13 times the work of the algebraic method. For the methods which solves (4.1) –
(4.3) the situation is worse. Even with the given small tolerances the classical 4–step
Runge–Kutta method fails to compute an accurate approximation. The orthogonal–
projector calculates an approximation of the order 10−7, but uses many more function
evaluations and flops than the algebraic or Euler–like method.

6. Conclusion. In this paper we presented two new methods for computing an
ASVD. The algebraic method uses the structure of an ASVD and adjusts in each step
a constant SVD using polar decompositions. The projective orthogonal integrators
solve the ODE’s proposed by Wright. They are based on an explicit Runge–Kutta
method and project the Runge–Kutta approximation onto the set of the orthogonal
matrices. We compared these methods with the Euler–like method from Bunse–
Gerstner et al. and explicit ODE methods.

Our numerical experiments indicate that the algebraic method uses fewer floating
point operations than the other methods, especially those methods which solve ODE’s.
The algebraic method allows us to choose bigger stepsizes. Both, the algebraic and
Euler–like method calculate high accuracy approximations at generic points, but at
nongeneric points they calculate only O(h) approximations. Therefore our variable
stepsize codes avoid nongeneric points.

The explicit Runge–Kutta and orthogonal projective methods can in principle
also compute approximations with higher accuracy at nongeneric points, but we have
to perturb the differential equations near nongeneric points. The consequence is that
these methods sometimes fail to compute accurate approximations. Our results show
that the orthogonal–projector methods may be more robust and allow bigger stepsizes,
which compensates for the additional work. In [15] recently implicit methods were
used which seem to give better accuracy even at nongeneric points.
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