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GENERAL HIGHLY ACCURATE ALGEBRAIC COARSENING ∗

ACHI BRANDT†

Abstract. General purely algebraic approaches for repeated coarsening of deterministic or statistical field equa-
tions are presented, including a universal way to gauge and control the quality of the coarse-level set of variables,
and generic procedures for deriving the coarse-level set of equations. They apply to the equations arising from
variational as well as non-variational discretizations of general, elliptic as well as non-elliptic, partial differential
systems, on structured or unstructured grids. They apply to many types of disordered systems, such as those arising
in composite materials, inhomogeneous ground flows, “twisted geometry” discretizations and Dirac equations in
disordered gauge fields, and also to non-PDE systems. The coarsening can be inexpensive with low accuracy, as
needed for multigrid solvers, or more expensive and highly accurate, as needed for other applications (e.g., once-for-
all derivation of macroscopic equations). Extensions to non-local and highly indefinite (wave) operators are briefly
discussed. The paper re-examines various aspects of algebraic multigrid (AMG) solvers, suggesting some new ap-
proaches for relaxation, for interpolation, and for convergence acceleration by recombining iterants. An application
to the highly-disordered Dirac equations is briefly reviewed.
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1. Introduction. Algebraic multigrid(AMG) algorithms are solvers of linear systems
of equations which are based on multigrid principles but do not explicitly use the geometry
of grids; see [20], [8], [32], [36]. The emphasis in AMG is on automatic procedures for
coarseningthe set of equations, relying exclusively on its algebraic relations. AMG is widely
employed for solving discretized partial differential equations (PDEs) on unstructured grids,
or even on structured grids when the coarse grid can no longer be structured, or when the PDE
has highly disordered coefficients. AMG can also be used (as in [20]) for certain discrete
systems not arising from differential equations.

The scope of AMG solvers has been rather limited, though. Its coarsening procedures
have been inadequate for general non-scalar, or high-order, or non-elliptic and anisotropic
PDE systems, and also for non-variational discretizations. The purpose of the present paper
is to delineate general algebraic coarsening techniques that can be employed in all those
cases. In fact, these techniques belong to a family of coarsening methods that turns out to
be very successful in a much wider range of problems, including highly nonlinear systems,
problems with discrete-state (e.g., Ising spin) or otherwise constrained variables, and with
non-deterministic relations (as in statistical mechanics), and problems with moving particles
(as in molecular dynamics): see some references in§2 below.

Two types of devices are developed here. The first is a general criterion for gauging,
and a method to control, the quality of theset of coarse-level variables, prior to deriving
the coarse-level equations: see§3. The second includes general approaches for deriving the
coarse-levelequationsonce the coarse variables are given.

Two such approaches are presented. In both of them one can control the level of coars-
ening accuracy, and the corresponding amount of computational work per coarse equation,
by choosing the size of certain stencils: The error in approximating sufficiently “smooth”
components (i.e., those slow to converge in relaxation) decreasesexponentiallywith the size
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of those stencils (see§6; the usefulness of high-accuracy coarsening is discussed in§9). The
work per coarse equation increases proportionately to somepowerof that size (remaining of
courselinear in the overall number of variables).

The first approach for deriving the coarse equations is based on the premise that although
in principle each coarse variable depends onall others, this dependence always decays ex-
ponentially with distance, due to our criterion for choosing the set of coarse variables. (For
2D discrete Poisson equations, for example, the dependence coefficient tends (after enough
coarsening levels) exactly toexp(−πr2/2), wherer is the distance measured in meshsizes
of the coarse level [33], [42].) Hence a highly accurate coarse equation can be constructed
locally. This is done by solving a certain local optimization problem: see§4. We call this
approachdirect coarsening.

The second approach is based on the traditionalGalerkin coarsening, where the interpo-
lation and restriction operators are again derived by solving local optimization problems: see
§10.

The direct approach surely yields stable and easily-relaxable coarse-level equations; with
special care in the derivation of interpolation, comparable stability may also be achieved by
the Galerkin procedure (see Appendix B).

A detailed comparison of the two approaches has not yet been done. The Galerkin ap-
proach seems to enjoy less expensive setup. In the cases where this is not the overriding issue,
and in particular in highly repetitive systems (as most natural systems tend to be, provided
they are not linearized or carelessly discretized), the direct approach is most widely applica-
ble: it can be extended to nonlinear equations (see§8) and to non-deterministic problems in
statistical mechanics and molecular mechanics.

Extensions of the coarsening methods todensematrices (discretizing non-local physical
laws) is briefly discussed in§11, as well as a generic way to treat highly-indefinite matrices
(oscillatory operators).

Additional important AMG tips are given in§12. They include various types of relax-
ation schemes to suit a variety of situations, a general rule for thelocal adaptation of the
amount of relaxation, various ways of accelerating convergence by recombining iterants, im-
proved interpolation procedures, and “grey box” AMG. The use of a generalized type of
coarsening, named “distributive coarsening” is explained in Appendix A; it is particularly
handy for AMG solvers of discretizednon-scalarPDE systems. An application of the various
techniques of this article to the solution of the highly-disordered Dirac equations is reviewed
in Appendix C.

2. The given equations.The description of coarsening schemes in this article will be
in the framework of a linear system of equations

Au = b ,(2.1)

whereA is anN × N matrix. It is important to note, however, that the described methods
can be generalized tononlinear(see§8) andnon-deterministicproblems. In fact, methods
analogous to those described here have already been developed for coarsening nonlinear and
non-deterministic systems, first in statistical physics (see [14,§13.2] and [22], [23], [24]),
then also in molecular dynamics of macromolecules [14,§14.6] and of fluids [14,§14.7].

Conceptually, the general property implicitly assumed for the system (2.1) for the coars-
ening described below to be meaningful islocalizability, i.e., it is implicitly assumed that each
unknownui could be assigned a location in a low dimensional space, such that each equation
in the system involves only neighboring unknowns. The dimensiond of the embedding space
is not really restricted to any particular value, however the cost of the coarsening scheme
will be someCN , whereC is bounded independently ofN but rises exponentially withd.
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We comment below (§11) that the localizability property, as stated here, is neither neces-
sary nor sufficient, and that still more general coarsening schemes can be devised. However,
the present description is enough for the coarsening of most discretized partial differential
systems on structured or unstructured grids, including even non-elliptic, anisotropic and non-
scalar systems with non-variational discretizations, even with disordered fields of coefficients,
as well as indeed mostnon-PDE systems, provided they are localizable.

Examples of problems withdisordered coefficientsfor which our automatic coarsening
scheme can be used include: (1) Dirac equations in critical gauge fields, whose fast multigrid
solution (used also for fast calculation and fast updates of main terms in the inverse matrix
— see [12,§§8–9], [14,§§11–12] and [31]) is essential for progress in elementary-particle
theory; (2) homogenization and fast solvers for composite materials or for flows in highly
variable media (e.g., ground flows); (3) problems whose formally structured discretization
grid represents highly skewed actual geometry (e.g., see [29], [30]); etc.

Non-PDE localizable problems for which the coarsening scheme can be, or has been,
applied include: (1) The geodetic problem (for which the original AMG algorithm was devel-
oped [20]); (2) elastic structures made of discrete components (beams, trusses, etc.); (3) clus-
tering problems (e.g., for image segmentation), where the clustering algorithm imitates the
AMG coarsening process (see [35]); (4) molecular mechanics (where, however, most useful
is thenon-deterministic version of the coarsening scheme); etc.

In all these cases the coarsening scheme would yield AMG-type solvers costingO(1)
operations per unknown, with the option to adjust at will the coarsening accuracy. The choice
of accuracy, and the use and cost of highly accurate schemes, are discussed below.

3. The coarse-level variables.The first task in coarsening a given system, such as the
system of equations (2.1), is the choice of coarse-level variables. In different systems these
variables can have very different character. For example, in Ising-spin systems [41] a coarse
spin can be defined by themajority rule (i.e., it assumes the sign of the majority in a corre-
sponding block of fine-level spins). In macromolecular systems, the coarse-level “atoms” can
stand for theaverage locationof several chemically-bonded fine-level atoms [14,§14.6]. In
atomistic simulation of fluids, where the finest level is described by the location of its atoms,
coarser levels employ grid functions, where each value of a function at a grid point stands for
a quantitative property (e.g., the total mass, or the total electrostatic dipole moment) of the
set of atoms in a corresponding grid cell [14,§14.7].

For the linear equation system (2.1), we can generally assume that each coarse level
variableuc

k stands for a linear combination of fine-level variables

uc
k =

∑
µkiui ,(3.1)

with fixed weightsµki, vanishing outside a small local neighborhood. (For a generalization
of (3.1), particularly useful for PDE systems with distribution relaxation schemes, see Ap-
pendix A.) In classical AMG procedures (see [20], [8], [32], [36]), for example, the coarse
variables are identified with asubsetof the fine variables, i.e., each coarse variablek is iden-
tified with one fine-level variablei = i(k), hence

µki = δi,i(k) .(3.2)

In all these cases there exists one general and practicalcriterion for determining the
quality of the coarse variableset, independently and prior to the construction of the coarse
level equations. The criterion of course must depend on the fine-level relaxation scheme (or
Monte-Carlo scheme, in statistical field problems). For example,full coarsening schemes
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are known to be adequate for some anisotropic problems relaxed by line (or plane) relax-
ation schemes, whereassemicoarsening must be employed for such problems if pointwise
relaxation schemes are used [2], [6,§3.3].

To introduce this general criterion, for a given relaxation scheme and a given set of
coarse variables, we define the concept ofcompatible relaxation. This is a modified relaxation
scheme which keeps the coarse-level variables invariant. For example, for the classical AMG
coarsening (3.2) with the classical-AMG Gauss-Seidel relaxation, a compatible relaxation
sweep simply means a relaxation sweep that avoids relaxing any fine-level variablei which
is identified with a coarse-level one (i = i(k)); this has been calledF -relaxation in AMG
literature [20] (see more on that in§12.4). In the case of the more general coarsening (3.1),
a compatible relaxation scheme can be formed by relaxing simultaneously two (or more)
variables at a time, in a way that keeps

∑
i µkiui unchanged for allk. Generally, each step

of the compatible scheme will consist of several (O(1)) simultaneous steps of the original
scheme, in a way that preserves the values of the coarse variables. In addition, we require that
each compatible-relaxationsweepwill be complete, in the sense that its moves span the entire
space spanned by the original relaxation sweep, modulo the coarse variable invariance. (The
analogous concept ofcompatible Monte Carlo, for statistical-field problems, was introduced
in [22], [23], [24].)

A general measure for the quality of the set of coarse variables is the convergence rate
of the compatible relaxation.

A necessary condition for a coarsening scheme to yield an efficient multigrid algorithm
(e.g., with convergence per cycle independent of the numberN of unknowns) is that the
compatible-relaxation convergence factor is bounded away from 1 (independently ofN ). In
most cases of interest this is also asufficientcondition, provided of course that the coarse-
variable set is provided with sufficiently accurate coarse-gridequations(e.g., using the meth-
ods described below).

The compatible relaxation can be used as apractical tool in the process of selecting the
coarse variables. Starting with an initial setC0 of coarse variables, whose values are held
fixed at zero, a few sweeps of compatible relaxation (with vanishing right-hand side so that
the solution should converge to zero, but starting of course from a suitable non-zero first ap-
proximation) will easily detect convergence slowness if the coarse-variable set is inadequate.
Moreover, a set of variablesC1 that should be added to the coarse set is thereby exposed:C1

must be a subset of the setS1 of variables which are slow to converge (to zero). As usual in
AMG, C1 should be chosen so that each variable inS1 “strongly depends” onC1. In systems
where this notion (strong dependence) is not sufficiently well defined, one can assume any
non-vanishing dependence to be strong; this may result in a too sparse setC1, but then this
compatible-relaxation selection tool can be applied once more, now with the setC0 ∪ C1

instead ofC0. Very few such iterations will suffice. The initial setC0 can be empty. In the
case of structured grids,C0 can be chosen as the standard set of full coarsening.

Note that such a coarse-variable selection scheme is suitable for highly parallel pro-
cessing, assuming of course that the relaxation scheme is suitable for such processing. Fur-
thermore, in parallel processing based on domain decomposition, the compatible relaxation
sweeps can be confined to disjoint subdomains, setting to zero each difference (in the relaxed
equations) between variables belonging to different subdomains. Such a procedure will tend
to select more coarse variables near the subdomain boundaries, but this is exactly desirable
from the point of view of creating coarse-grid equations which do not “penetrate” deep into
neighboring subdomains.

It should finally be mentioned that instead of increasing the set of course variables one
can increase the degree of simultaneity in the relaxation: see§12.1.
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4. Derivation of coarse-level equations.Given the system of equations (2.1) (which
may be the residual equations of an original system, i.e.,b may be the vector of residuals
andu the sought correction to a given approximate solution), and the coarse-level variables
(3.1), we want to find a system ofcoarse equationsapproximately satisfied by thesecoarse
variables. We will construct one coarse equation for each coarse variable; this will promote
stability of the equations and efficiency of the simple Gauss-Seidel relaxation at the coarse
level.

The fast convergence of the compatible relaxation implies that the fine-level solution to
equation (2.1) at each point can be foundlocally, given just itscoarse neighborhood, with
very weak remnant dependence on values outside that neighborhood: the remnant dependence
must decayexponentially(or even faster) as a function of the neighborhood radius. Since the
coarse valuesuc themselves depend, via (3.1), only on the fine values around them, it follows
that each coarse valueuc

k depends solely on the other coarse values in a neighborhood around
it, except for a remnant, exponentially (or faster) decaying dependence on values outside that
neighborhood.

Hence, to derive a coarse equation for a particular coarse unknown,uc
0 say, we first

select a small neighborhoodΩc
0 of uc

0. This neighborhood is the set of coarse pointsk whose
unknownsuc

k will participate in the derived equation; in particular0 ∈ Ωc
0. The larger the set

Ωc
0, the more accurate (but also more expensive to derive and operate) is the derived equation

(see§5 below). DenotingΩc−
0 = Ω0−{0}, our aim is to find (an approximation to) the value

of uc
0 given the set of values{uc

k: k ∈ Ωc−
0 }.

We also select a corresponding fine-level neighborhoodΩ0, such thatΩ0 includes all
the fine pointsi needed to defineΩc

0 (i.e., if k ∈ Ωc
0 andµki 6= 0 theni ∈ Ω0), as well as

sufficiently many neighboring points, to ensure (or make it likely) thatΩ0 has no “holes”.
Denoting byaij the terms of the matrixA (i, j = 1, . . . , N), we defineΩ

I

0 to be the
interior of Ω0, i.e.,

Ω
I

0 = {i | i ∈ Ω0 and if aij 6= 0 then j ∈ Ω0} .

In deriving the coarse equations, we first require the following two obvious constraints:∑
j

aijuj = bi for all i ∈ Ω
I

0 ,(4.1)

∑
i

µkiui = uc
k for all k ∈ Ωc−

0 .(4.2)

Under these two constraintsuc
0 still has that remnant dependence on the unconstrained values

outsideΩ
I

0; allowing those values to be unreasonably large can still affectuc
0 to any arbitrary

extent. We thus should seek to satisfy (4.1) and (4.2) while keeping the relevant values outside
Ω

I

0 as small as possible, in some norm. The exact choice of that norm is not of crucial
importance, since it affects only that remnant, exponentially small dependence. We have
chosen to minimize the following quadratic form

Q0(u) =
∑

i∈Ω
I

0 , j∈Ω0−Ω
I

0

|aij |(ui − uj)2 .(4.3)

This form has two advantages, which may be significant when the neighborhood size is
small (to save work). First,Q0 is based ondifferences. As a result, in the case that the local
rows ofA have zero sums (as would often be the case for discretized PDEs), ifuc

k =
∑

µki
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for all k ∈ Ωc−
0 then the minimization of (4.3) under the constraints (4.1) and (4.2) will yield

ui = 1 for all i ∈ Ω0, henceuc
0 =

∑
µ0i. This means that the resulting coarse-level equation

will be satisfied by aconstant(or, more precisely, by the coarse values corresponding to
a constant fine-level solution). More generally, the coarse equations will tend to be nearly
satisfied bysmoothsolutions when this tendency exists at the fine level. Another advantage
of the form (4.3) is that it tends to attach a larger weight to boundary valuesuj which are
likely to affect more the interior solution in general, anduc

0 in particular. (In fact, for non-
elliptic problems with strong directional dependence, a more precise, direction-depending
weighting may be beneficial: see Appendix B.)

Using Lagrange multipliers, the minimization of (4.3) under the constraints (4.1)–(4.2)
yields a linear system of equations (Euler equations) of the formM0ũ = b̃, whereũ is the
vector of the local unknowns, including{ui: i ∈ Ω0} and the Lagrange multipliers, and̃b
includes the data{bi: i ∈ Ω

I

0} and{uc
k: k ∈ Ωc−

0 }. What we actually need to know is not the
solutionũ = M−1

0 b̃ for any particular data set̃b; what we need is thedependenceof uc
0 on b̃,

or more precisely, the coefficients{ac
0k} and{w0i} in the relation

uc
0 =

∑
k∈Ωc−

0

ac
0kuc

k +
∑
i∈Ω

I

0

w0ibi .(4.4)

These coefficients can of course straightforwardly be calculated fromM−1
0 . Assuming for

example (3.2), oruc
0 = ui(0), the coefficients in (4.4) depend only onone rowof M−1

0 (the
row corresponding to the position ofui(0) in ũ), hence only on the correspondingcolumnof

the transposed matrix(M
T

0 )−1. That column can be calculated by just solving the equation

M
T

0 x = e0 ,(4.5)

wheree0 is the unit vector corresponding to the position ofui(0) in ũ.
The derived equation(4.4) is the desired coarse-level equation;w0k are effectively the

weights of the fine-to-coarse residual transfer. The equation can of course be divided through
by any number. Dividing it through by

∑
i w0i would make it comparable to the given fine-

grid equation; i.e., the fine and the coarse linear operators will give nearly the same value
when operating on a smooth function.

For a good coarse-level approximation, exact residual transfer is usually not needed: the
weightsw0i can be changed very much, provided the total contribution of each residual(bi)
remains the same, i.e.,

∑
0 w0i should not change. (This is not true at special parts of the

domains, e.g., near boundaries or singularities; but the effect of such parts on the overall
convergence rate can be made small by using adaptive relaxation sweeps (see§12.2). Also,
the freedom to changew0i does not hold of course for the residual transfers used in Galerkin
coarsening (cf.§10).)

With minor obvious changes, the above coarsening scheme can be used also for the
vectorialcase, i.e., when eachui stands for a vector of several variables, and eachaij is cor-
respondingly a matrix. This yields one way to coarsen discretizednon-scalar PDE systems.
Another way is of course to use the scheme above in its non-vectorial form, disregarding the
grouping of the variables into vectors. For many non-scalar PDE systems, however, the best
coarsening isdistributive(see Appendix A).

4.1. Yavneh scheme.Various other local optimization schemes for deriving the coarse
equations can be designed. The following one, proposed by Irad Yavneh, is particularly
attractive.

In this scheme one optimizes in terms of the fine-to-coarse transfer operator, i.e., the
weights{w0i}. They are chosen so that recombining the fine-level equations (4.1) with these
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weights will yield as closely as possible an equation involving only the desired stencil. That
is, having chosen (as before) the coarse stencilΩc

0 on which the equation foruc
0 should be

constructed, and defining the coefficients resulting from a recombination of (4.1) by

aw
0j =

∑
i∈Ω

I

0

w0iaij ,(4.6)

one wants to minimize those coefficientsaw
0j that do not participate inΩc

0. In particular, in
the common case of coarsening of the type (3.2), one wants to choose{w0i}i∈Ω

I

0
so as to

minimize
∑
j /∈Ω

c

0

gj |aw
0j |2(4.7)

under a linear normalization ∑
i∈Ω

I

0

ciw0i = 1(4.8)

and under the zero-sum constraint ∑
j /∈Ω

c

0

aw
0j = 0 ,(4.9)

whereΩ
c

0 =
{
i = i(k) | k ∈ Ωc

0

}
, andgj > 0 are weights which decrease (e.g., exponen-

tially) with the “distance” ofj from 0. (This distance can be loosely defined algebraically,
e.g., as the inverse of the sum of the inverses of algebraic couplings along a chain of points
leading from 0 toj.) The exact values of these weights{gj} are not really important (see ex-
ample in§6). The zero-sum constraint ensures correct treatment of constant solutions; other
similar constraints may be added.

Once the minimizing weights{w0i} have been calculated, the corresponding
values of{aw

0j}j∈Ω
c

0
form the coefficients of the desired coarse-level equation at the point

0.
In the more general case (3.1), the objective should be to minimize the component of the

vector{aw
0j} which is orthogonal to that subspace of the space{uj} which is spanned by the

vectors{∑µkiui}k. This means to choose{w0i}i∈Ω
I

0
and{wc

0k}k∈Ωc
0

so as to

minimize
∑

j

gj

(
aw
0j −

∑
k

wc
0kµkj

)2

(4.10)

under the normalization as above and the zero-sum constraint∑
j

(
aw
0j −

∑
k

wc
0kµkj

)
= 0 .(4.11)

This can be simplified to an optimization only in terms of{w0i} in the case ofdisjointcoars-
ening, i.e., if for eachi there exists at most onek for whichµki 6= 0.

The Yavneh scheme is attractive since it is simpler than the previous one and requires
to solve a smaller system of equations. Like the former scheme, it can be generalized to the
vectorial case and also to distributive coarsening (see Appendix A). Moreover, in this scheme
one can choose to further improve the coarse equation on a given stencilΩc

0 by increasing the
setΩ

I

0 (see example in§6).
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5. Cost and cost reduction.Taking for example the simple case (3.2), and assuming
that for eachk ∈ Ωc−

0 the Lagrange multiplier associated with (4.2) has already been elimi-
nated from the equations along with the Euler equation associated withui(k), the dimension

of M0 in (4.5) isν0 × ν0, whereν0 = n0 + n
I

0 while n0 andn
I

0 are the numbers of points in
Ω0 andΩ

I

0, respectively. In the Yavneh scheme the corresponding dimension is onlyn
I

0×n
I

0.
Solving a system ofν0 or even justn

I

0 equations per each coarse equation may still be
very expensive. But this cost can be drastically reduced by the following devices.

(i) Lowering the number of equationscan obviously be achieved by lowering the coars-
ening accuracy (see§6). The accuracy of (4.4) depends mainly on the size ofΩc

0, so for a
given accuracy one should choose the smallestΩ0 containing the variables that defineΩc

0. A
possible practice, in particular, is to include many of the latter in the boundary(Ω0 − Ω

I

0).
(ii) Elimination ordering: Many of the unknowns in (4.5) can readily be eliminated.

Clever elimination ordering can quickly reduce the number of unknowns by a substantial
factor.

(iii) Low coarsening ratio: Instead of reducing the number of unknowns by a large factor
(e.g., 4) in one coarsening step, this can be done in two steps. For high-accuracy coarsening
(aiming at coarse grid equations each of which couples a certain substantial number of un-
knowns), lowering the coarsening ratio will proportionately lowerν0 andn

I

0 and hence more
than pay for the increased number of coarsening steps.

(iv) Total reduction step: The first one or two coarsening steps, especially in the case of
low coarsening ratio, can sometimes be executed fast and with full accuracy by a straightfor-
ward elimination of part (typically around one half) of the variables, as in the “total reduction”
algorithm [33]. This results in larger stencils at the coarse level, so the complexity of the sys-
tem (measured in terms of the number of non-zero terms in the matrix) is not really reduced.
Such steps can therefore be repeated only until stencils of some target size (depending on the
desired accuracy: see§6) are reached.

(v) Exploiting repetitions: Saving work is of course especially crucial at the finest levels.
On those levels one often has (or can create, by more careful discretization) a highly repetitive
system, where the same set of equations (4.5) can be formed at many different points 0. The
equations (4.5) need be solved only once for all these points. More generally, the equation
may depend on a parameter which doesnot repeat itself (as in nonlinear or linearized equa-
tions; cf.§8). A possible approach then is to solve (4.5) for several representative values of
this parameter and keep the solution in a table, from which the solution to other values of the
parameter can beinterpolated.

6. Exponential accuracy. While the work of calculating a coarse grid equation rises
proportionatelyto some power ofn0, the accuracy of that equation increases (i.e., its error
for smooth components decreases)exponentiallyin some power ofn0.

Indeed, as explained above, from the fast convergence of the compatible relaxation it
follows that once all other coarse values are given,uc

0 is uniquely determined, and its depen-
dence on any other coarse valueuc

k falls off at least exponentially with the “distance” between
them. (This distance can be definedalgebraically, as mentioned above.)

We have checked this exponential accuracy by explicitly computing a number of cases
of PDEs discretized (and coarsened) on uniform grids, so that the accuracy of the produced
coarse equations can easily be judged by comparisons with the PDEs, via Taylor expan-
sions. Of particular interest arenon-ellipticequations with characteristic directions that are
not aligned with the grid, for which the derivation of coarse equations is problematic even on
such well structured grids. Namely, in order to yield good (i.e., deeply penetrating) approx-
imations to “smooth characteristic components” (solution components that are smooth in all
directions, but are even smoother in the characteristic directions), the coarse equation must not
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only approximate the same differential equation, but also have the same cross-characteristic
numerical viscosity (or, more generally, the same cross-characteristic first differential ap-
proximation (FDA); see [5], [27], [18], [17]). Thus, we have particularly examined what
coarse-grid equations are produced by our scheme on uniform grids in the case of non-aligned
non-elliptic equations.

As an example, consider a fine-level uniform grid on which the difference equation at
each point is given by the five-point stencil

1
h

 1
3 −7 1

2

 .(6.1)

Taylor expansions show that this is an approximation to the differential operator−2∂/∂x −
∂/∂y. Keeping more terms in the Taylor expansions show that the first differential approxi-
mation (FDA) to (6.1) is

−2
∂

∂x
− ∂

∂y
+ h

(
2

∂2

∂x2
+ 1.5

∂2

∂y2

)
.(6.2)

Introducing the characteristic coordinatesη = (2x + y)/
√

5 andξ = (x − 2y)/
√

5, this
operator can be written as

−2.236067978
∂

∂η
+ h

(
1.6

∂2

∂ξ2
+ .4

∂2

∂ξ∂η
+ 1.9

∂2

∂η2

)
.(6.3)

The cross-characteristic numerical viscosity is the coefficient(1.6h) of ∂2/(∂ξ)2.
Using standard coarsening (i.e., the coarse grid lines are every other line of the fine grid,

both horizontally and vertically, and the coarse grid values are thus a subset of the fine grid
values), we examine several possible choices ofΩ0. One of them is depicted in Fig. 1. The
weightsac

0k of the coarse grid equation produced by the scheme of§4 are shown (to a limited
precision) in Table 1(A). To appreciate the accuracy of the coarse grid operators, we apply
to them Taylor expansions (dividing through by

∑
k w0k, to make them comparable to the

find-grid operator), obtaining, in terms of the characteristic coordinates, the FDA:

TABLE 1
The coarse-level stencil produced from the fine-level stencil(9): (A) for the coarsening neighbor-

hood shown inFig. 1; (B)by total reduction.

(A)

−.0247 .1613 .0078

.3604 −1 .2321

.0962 .1950 −.0281



(B)



−.0007

.0124 .0703 .0014

−.0558 .5830 −1 .0648 −.0007

.0496 .2812 .0055

−.0110



−1.911
∂

∂η
+ .059

∂

∂ξ
+ h

(
2.518

∂2

∂ξ2
+ .006

∂2

∂ξ∂η
+ .519

∂2

∂η2

)
.(6.4)
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FIG. 1. A coarsening neighborhood is shown. The points ofΩ
I

0 are shown by•, those ofΩ0 −Ω
I

0

by×, those ofΩc−
0 by a square, and the point0 is circled.

Comparing this FDA to that of the fine level we see a 15% error in approximating the differen-
tial operator, and a much larger 50% error in approximating the cross-characteristic numerical
viscosity of the fine-grid operator (the∂ξξ coefficient).

Trying next a5 × 5 setΩc
0, one would obtain, by any of the above schemes, the coarse

stencil shown in Table 1(B), which includes in fact only 13 non-zero terms. The FDA of this
stencil is

−2.2360679775
∂

∂η
+ .0000000000

∂

∂ξ

+h

(
1.6000000000

∂2

∂ξ2
+ .2333333333

∂2

∂ξ∂η
+ 2.1321428571

∂2

∂η2

)(6.5)

yielding a perfect agreement with the differential operator and with the cross-characteristic
numerical viscosity. The reason behind this perfect accuracy is thatanyfive-point operator
with constant coefficients has such a 13-point coarse operatorexactlyreproduced by it, as
realized bytotal reduction[33]. The interesting question however is what accuracy can be
obtained at the coarse level without producing a stencil larger than that given at the fine level.

Results for such coarsenings are presented in Table 2, produced by Yavneh with his
scheme. The first group of results is for3 × 3 stencils; i.e., the fine-level stencil is the one
given by (6.1), and the coarse stencil is calculated from it on a3×3 setΩc

0. The second group
of results is for5 × 5 stencils, the fine one being given in Table 1(B), the coarse one is based
on a5 × 5 setΩc

0. In each group, results are shown for varying sizes ofΩ
I

0 (which is also
the size of the set of equations one has to solve). In each case the results show the important
FDA coefficients of the produced coarse operator, and also the value of‖e‖2 =

∑
j /∈Ω

c

j
|aw

0j |2,

measuring how close is the recombination of the fine operator to the resulting coarse operator.
In all these examples we chosegj in (4.7) to be identically 1 inΩ

I

0, and 0.001 inΩ0 − Ω
I

0,
and in (4.8)ci = δi,i(0).

The results demonstrate the exponential decrease of the error, both as a function of the
stencils’ size and as a function of the size ofΩ

I

0. (However, directionality is not yet properly
treated here; see Appendix B.)
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TABLE 2

Stencils Ω
I

0 ∂ξ ∂η h∂ξξ ‖e‖2

3 × 3 5 × 5 −1.7650923184 −0.0075441496 1.9053747271 0.0079751054
7 × 7 −2.1484328781 −0.0131764596 1.7306793477 0.0006201392
9 × 9 −2.2166402537 0.0327414291 1.6300309414 0.0000931895

11 × 11 −2.2160903796 0.0448098772 1.6016329307 0.0000056882
13 × 13 −2.2232626388 0.0193871620 1.6113853806 0.0000017780
15 × 15 −2.2325136498 0.0019497360 1.6091775322 0.0000000821
17 × 17 −2.2358768405 −0.0006948566 1.6036607007 0.0000000977
19 × 19 −2.2366847559 −0.0002560197 1.5995111307 0.0000000077
21 × 21 −2.2365770265 −0.0000074721 1.5979139388 0.0000000073
23 × 23 −2.2363868082 0.0000334611 1.5977685811 0.0000000013
25 × 25 −2.2362696702 0.0000305181 1.5980485897 0.0000000008
27 × 27 −2.2362054242 0.0000243788 1.5983834645 0.0000000002
29 × 29 −2.2361686425 0.0000200605 1.5986779134 0.0000000001

5 × 5 7 × 7 −2.3559819123 −0.0762739902 1.5537216699 0.0000389217
9 × 9 −2.2380092343 −0.0013657252 1.5994001829 0.0000000737

11 × 11 −2.2360974287 −0.0000214143 1.5999799739 0.0000000002
13 × 13 −2.2360704140 −0.0000007703 1.6000022831 0.0000000000

Fine level −2.2360679775 0.0000000000 1.6000000000

7. Gauging and controlling accuracy. Unlike the above example, in a general alge-
braic setting the accuracy of the coarse grid equation is not directly known. There is, however,
a general way to estimate it (and increase it, if needed), by observing the values of the pro-
duced weightsa0k. These weights should generally decrease exponentially with the distance
from 0 tok, and one can roughly estimate the size of the largest “missing weights”, i.e., the
weights that would be added upon increasing the coarsening neighborhoodΩ0. This size is a
rough estimate for the accuracy. Another general, more straightforward estimate is provided
by the above error norm‖e‖ (or its extension to the more general case (3.1)).

In the case of discretized PDEs, another way of estimating the accuracy of the coarse
operator is of course to compare its action on smooth components to the action of the fine-
level operator.

If the estimated accuracy is not sufficient (e.g., for the purposes discussed in§9), one
can of course proceed to boost it. This can be done either by increasing the neighborhood
Ω0 or by adding more points to the coarse level. The former is preferable if and only if
the convergence of the compatible relaxation is already fast (exhibiting a convergence factor
below 0.7, say).

8. Nonlinear equations. A general way of coarsening (or indeed solving) nonlinear
equations is by (iterative) linearization, which is often done already at the stage ofdiscretizing
the nonlinear PDE (as common in finite-element schemes). In many cases this would be the
most effective approach; but not always.

Most nonlinear PDE systems, e.g., in fluid dynamics, areautonomous. That is, the same
nonlinear system governs at all points, and (away from boundaries) it is independent of any
external information. This property makes it possible to create highlyrepetitivenonlinear
discretization, having, e.g., the same nonlinear equation (or the same vector of equations) at
each grid point (or at least at each grid point of a given “kind”, with only a small number of
kinds). The coarsening in such a case can be very inexpensive, since the coarse grid equation
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can be derived once for all points (or once per eachkind of coarse grid points, with relatively
few such kinds). However, the autonomy of the equations, or the repetitive nature of their
discretization, is of course lost upon linearization. (It is also lost if the grid is arbitrarily
unstructured. To retain a high degree of repetitiveness, semi-structured grids are advisable,
like those described in [2], [6] and [1].) Thus, direct coarsening of the nonlinear equations is
called for, so as to produceautonomous coarse equations.

Moreover, nonlinear coarsening permits the use of nonlinear versions of the multigrid
solver, such as FAS [2], thereby avoiding linearization iterations and making it possible to
see and manipulate the full solution on coarse levels [6]. More specifically and more im-
portant, this may allow once-for-all coarsening, i.e., derivation of macroscopic equations, or
homogenization.

The least expensive nonlinear algebraic coarsening is theterm-by-term coarsening. It
requires the user of this algebraic system to supply more information about his problem (cf.
§12.5): He should specify the physical species to which each discrete variable and each dis-
crete equation belongs, and describe each discrete equation as a sum of functions (e.g., prod-
ucts) of terms, each term being a discrete linear operator applied to one physical species. To
each of these operators one can then apply the coarsening scheme of§4 above, normalizing
the resulting linear coarse-level operator by dividing it through by the corresponding value of∑

k w0k. This will constitute one term of the coarse equation. The overall coarse equation is
the sum of functions (e.g., products) of these terms — sum and functions corresponding to
those that form the fine level equation.

This term-by-term coarsening is suitable for nonlinearelliptic systems. For anon-elliptic
system, however, as mentioned before, it is important to approximate not only the differen-
tial operator, but also some FDA terms (such as the cross-characteristic numerical viscosity),
hence each coarsened term should include the full non-ellipticfactor of the principal deter-
minant(cf. [15]).

For example, in 2D fluid dynamics, a usual factor of the principal determinant is the
advection operatoru∂x + v∂y, whose coefficients(u, v) are part of the unknown functions
(hence the nonlinearity). If one coarsens separately each of the six involved linear terms
(u, v, w, ∂x, ∂y, ∂z), the combined coarse operator will have a numerical viscosity which is
very different from the fine-level one. To change this, the full advection operator should be
coarsened as one term. To avoid linearization, one can coarsen itm times, say, form different
values ofu/v (e.g., form equidistant values of the angle arc tg(u/v)), yielding a table ofm
coarse operators. For the actual value ofu0/v0 found at a coarse point one then uses an
operator resulting from interpolating tou0/v0 from that table (cf. Item (v) in§5).

9. Usefulness of higher accuracy.For the purpose of multi-level (multigrid)cycles, a
moderate coarsening accuracy would usually suffice. For example, a coarse grid equation
with at most 10% error for all “smooth” components (i.e., those slow to converge in relax-
ation) can yield a multilevel cycle with a convergence factor close to 0.1. By performing
successively any number of such cycles, any desired accuracy can rapidly be obtained. This
will usually be more cost effective than deriving higher accuracy coarsening.

On unstructured grids and for other disordered algebraic systems (see lists of examples
in §2), and even on structured grids in the case of non-elliptic systems, even that moderate
accuracy may be difficult to obtain by standard approaches, so the use of the above new
coarsening techniques (or those in§10) can be very useful.

Moreover, in many other cases, the still higher degrees of coarsening accuracy obtainable
through those techniques (by investing more work) are really needed.
Examples:

(i) Problems with a large number of AZMs (see§12.3).
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(ii) Once-for-all coarsening, for the purpose, e.g., of deriving the macroscopic equations
of the given system.

(iii) Cases in which one needs to solve many problems like (2.1), where large parts ofb
or A do not change from problem to problem, so re-computing at fine levels of those parts
can be avoided by having accurately coarsened them before. One important such case is the
calculation of many desired terms (e.g., the main diagonal) ofA−1. Moreover, in important
cases (e.g., quantum field calculations), those terms ofA−1 need be repeatedly updated upon
each change inA occuring during certain Monte-Carlo simulations (see [12,§§8–9]).

(iv) A computing environment which makes it preferable to use as few multigrid cycles
as possible, such as massive parallel processing with poor inter-processor communications,
or a computer with a very high-speed cache memory.

10. Galerkin coarsening. An efficient (and popular) way to obtain a coarse-level sys-
temAcuc = bc is through the Galerkin form

Ac = RAP, bc = Rb,(10.1)

whereP is a coarse-to-fine interpolation operator (prolongation) andR is a fine-to-coarse
restriction (or residual-transfer) operator. For simple cases (e.g., discretizedscalarPDE) and
to a certain accuracy,P andR can be derived by the traditional AMG method (described in
§12.4). More generally,P andR can be derived by a procedure analogous to that of§4. The
main advantage (over the direct derivation ofAc as in§4) is that for a given accuracy these
operators require many less coarse points (i.e., much smaller coarsening neighborhoodΩc

0)
than the full coarse operatorAc, hence a much smaller set of equations need to be solved
at each step. Also, the set of equations can be simplified, as pointed out below. On the
other hand, the stability of the coarse-level equation produced by the Galerkin procedure is
questionable: see Appendix B.

To find the interpolationP to a fine variableu0, we select a small neighborhoodΩc
0

of coarse pointsfrom which the interpolation tou0 should be made, and also a fine-level
neighborhoodΩ0 “around”Ωc

0 (in the same way as in§4), its interior being again denoted by
Ω

I

0. Given valuesuc
k at the coarse points, i.e., given∑

i

µkiui = uc
k for all k ∈ Ωc

0,(10.2)

(note the difference from (4.2), whereΩc−
0 appeared instead ofΩc

0), we again minimize (4.3),
now under the constraints (4.1) and (10.2). (An important modification of (4.3) for our pur-
pose here is discussed in Appendix B.) This yields a set of equations which determines,
among others, the value ofu0 and its linear dependence on the data, written (upon omitting
the dependence on{bi}) as

u0 =
∑

k∈Ωc
0

p0kuc
k ,(10.3)

which is the desired interpolation. As in§4 above, the coefficientsp0k can be obtained by
solving justoncea transposed system of equations.

A variant ofYavneh scheme(§4.1) can also be adopted for findingP . The restrictionR
can be derived by the same procedures, applied toA

T

instead ofA.
A simplified (though less accurate) procedure can be applied in the special (but very

common) case (3.2), for which (10.2) is reduced to

ui(k) = uc
k , k ∈ Ωc

0.(10.4)
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We can then choose to replace the constraints (4.1) and the minimization of (4.3) by the subset
of constraints ∑

j

aiju
i
j = bi , i ∈ Ω

I

0 − Ωc
0 ∩ Ω

I

0 ,(10.5)

whereui
j = uj if j ∈ Ω

I

0 ∪ Ωc
0 andui

j = ui otherwise. The set of equations (10.4)–(10.5)
now determines, among others, the value ofu0 and its linear dependence on data (10.3), and
the interpolation coefficientsp0k can again be found by solving just once a transposed set.

In thevariational case (whereA is symmetric and definite, or nearly definite) this sim-
plified procedure coincides with theminimization interpolation, introduced independently by
several authors: see [38], [39], [13,§9], [12, §10] and [12,§11.4]; actually, John Ruge has
used such interpolation schemes in his AMG codes several years earlier.

The simplified procedure requires the solution of a set ofn
I

0 equations while the full
procedure requires solvingn0 + n

I

0 equations (cf.§5). The latter is however expected to be
more accurate, since the former does not use the given equations(

∑
j aijuj = bi) at the

coarse interior points(j ∈ Ωc
0 ∩Ω

I

0). Detailed comparisons of the two procedures, and of the
entire Galerkin approach vs. that of§4, have not yet been conducted.

11. Extension to non-local and oscillatory operators.Most (perhaps all) non-local
operators in physical problems have certain smoothness properties in terms of the coordinates
x = (x1, x2, . . . , xd) of the underlyingd-dimensional physical space (or space+ times; thus
usually1 ≤ d ≤ 4). If carefully discretized (see, e.g., [26] and [25]), the discrete equations
can inherit these properties. Thus, ifG(x, y) is the weight of a discrete unknown located at
y = (y1, y2, . . . , yd) in the discrete equation located atx, the kernelG(x, y), as function
of the continuous variablesx andy, will normally be either “smooth” or “asymptotically
smooth” or suitably “asymptotically smoothly oscillatory” (for the exact meaning of these
concepts, see [10]).

A smooth-kernel part of the fine-level equations can directly (and without linearizations)
be represented on the coarse level by “anterpolation” (see§3 of [10]). An asymptotically
smooth kernel can be written as a sum of a smooth kernel and a local kernel (see§4 of [10],
and also [26], [25]); its smooth-kernel part is coarsened by anterpolation, while its local part
(together with other local terms) is coarsened by the methods of Secs. 4 or 10.

Those methods are inadequate, however, for oscillatory kernels or even for local equa-
tions with oscillatory solutions, such as the highly indefinite Helmholtz equation∆u+k2u =
f , and other wave equations. For such problems, approaches should be developed similar to
those in [19]. This is far from trivial in the case of unstructured grids or disordered equations.

In [19] the coarse level is described as
∑

m Am(x, y) exp(ikm
1 x+ikm

2 y), whereAm(x, y)
are smooth functions (thus representable on the coarse level) and{
(km

1 , km
2 )
}

m
are points on the “principal circle”k2

1 + k2
2 = k2, so each of these exponential

functions solves thehomogeneousHelmholtz equation. The coarser the level, the larger the
number of terms that should be used in the sum (i.e., the better the needed resolution of the
principal circle by the points

{
(km

1 , km
2 )
}

m
— this since on a coarser grid eachAm(x, y)

is a smoother function, hence it can represent only a smaller neighborhood on the principal
circle).

In the purely algebraic or disordered case, the exponential functions should be replaced
by numerical functions obtained by relaxation of the homogeneous equation, separated from
each other by local orthogonalizations. Each term in the sum should then be similarly sepa-
rated into more terms on the next coarser level. And so on.

12. Additional important AMG tips.
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12.1. Relaxation schemes.Classical AMG uses always the Gauss-Seidel (GS) relax-
ation scheme. For general systems, such as those arising in discretizing non-scalar PDE
systems, GS is not always adequate. A relaxation scheme that can always be used is the
Kacmarz scheme [37]. In cases that GSis applicable, it is usually much more effective than
Kacmarz. (The work of applying a Kacmarz sweep is roughly twice that of a GS, and for the
smoothing obtained by one GS sweep three Kacmarz sweeps are in some cases needed.)

In many cases where GScannotbe applied, one can still employ aBox GS(BGS) scheme,
with effectiveness substantially above that of Kacmarz. The BGS is defined by small local
boxes, described geometrically or algebraically. Each step of BGS consists of satisfying all
the equations in a box by changing all the variables in that box. Neighboring boxes can
overlap. If the boxes are large, their overlap should be comparable to their size.

For discretized PDE systems,distributive relaxation schemes can often be designed at
the differential level (see Appendix A).

A useful tool in multigrid isblock relaxation, i.e., relaxing simultaneously several dis-
crete equations. This may serve as an alternative for increasing the number of coarse vari-
ables, and may indeed be guided by the same device: compatible relaxation. When the latter
detects slowness, small strongly-coupled subsets ofS1 (see§3) can each be marked for si-
multaneous relaxation of its associated equations. That will change the relaxation scheme
and will increase the convergence rate of the correspondingly changedcompatiblerelaxation.
This approach may be competitive for well-defined small subsets ofS1, but will be less effi-
cient than the alternative (adding variables to the coarse level) when the size of the subset is
required to increase (upon detecting slowness even with thechangedcompatible relaxation).

12.2. Adaptive relaxation. A general and important rule for multigrid efficiency, not
always adequately respected, is the following.

Adaptive Relaxation Rule: Keep adding relaxation passes at any local neighborhood
where thenormalizedresiduals are much larger in magnitude than their larger-scale average
magnitude. (The normalized residuals are the residuals of the normalized discrete equations.
The system (2.1) is normalized when the`2 norm of each column and each row ofA equals,
at least approximately, to 1.)

Relaxation adaptation (whose importance for multigrid was already emphasized in Ap-
pendix A.9 of [2]) is useful in eliminating multigrid slowness caused by various local singu-
larities, such as boundaries (especially with re-entrant corners; cf. [1]), strong shocks, source
singularities, etc. Due to the limited regions where residuals are affected by such singularities,
one can afford adding theremanyrelaxation passes (if needed). The theoretical usefulness of
these extra passes is shown in [11], and discussed in more details in [9].

The adaptive relaxation concept is fully suitable for a purely algebraic setting. A good
general practice is to check whether it is needed, by occasionally comparing the global max-
imum and the global average of the magnitude of the normalized residuals. If the maximum
is much (e.g., 10 times) larger than the average, call adaptive relaxation.

12.3. Recombination of iterants. The lower the coarse-grid equation accuracy, the
larger the number of solution components that are so ill approximated that they diverge or
converge too slowly in the multi-level solver. this is particularly true for almost-zero modes
(AZMs), i.e., eigenvectors ofA with unusually close to zero eigenvalues. Such modes often
reflect some ill defined global moves, such as rigid-body motions of the entire system in prob-
lems of elasticity, or a gliding motion of two rigid bodies along their contact surface. Such
AZMs also plague various disordered problems, such as Dirac equations on critical gauge
fields.

For problems withmanyAZMs, a general cure, as mentioned above, is to increase the
coarsening accuracy. A small numberm of AZMs (such as those associated with global rigid
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body motions) may, however, persist in their ill convergence even at higher accuracies. A
general way then to eliminate them is by recombiningm+1 iterants (each being, for example,
the approximate solution obtained after another multi-level cycle) so as to minimize the`2
residual norm; see, e.g., [21].

An efficient (and popular) way to organize such iterant recombinations is to regard the
multigrid cycle as a preconditioner in a conjugate-gradient or GMRES procedure. However,
note that in addition such recombinations may be very useful atcoarse-level sub-cycles. Such
coarse-level recombinations should converge those AZMs that are well approximated on the
first coarse level, but not on still coarser levels. Also, using the FAS scheme, coarse-level
recombinations can replace fine-level recombinations, saving dramatically on the amount of
storage needed to store previous iterants. See examples in [40].

For special types of problems the number of ill-converging AZMs will remain large even
at higher coarsening accuracy. In particular this will occur for discretized PDEs which have
many AZMs already in thedifferential systems, such as wave equations with wavelengths
small compared with the domain size, or Dirac equations in a quenched hot Gauge field with
correlation lengths small compared with, again, the domain size (cf. Appendix C). In such
cases it is not enough to recombine iterantsglobally (i.e., with each iterant being multiplied
by a constant); it is necessary to recombine also on other,intermediatescales of variation
(i.e., with each iterant being multiplied by afunctiondefined on an intermediate coarse level).
Ultimately, such procedures will meet the one described at the end of§11.

12.4. Interpolation. A general efficient way to interpolate is to usecompatible relax-
ation (see§3; the use ofF -relaxation in interpolation was studied in [28] and [36]). One
can initialize it by any other interpolation scheme, if one exists, but even with a “trivial”
start, the work of this interpolation would be modest, due to the fast convergence of the
compatible relaxation. A good trivial start can be obtained just by introducing as many zero
differences between (strongly) coupled fine grid points as permitted by the compatibility con-
straints (3.1), in a simple greedy manner. (In the case of FAS multigrid scheme, where the
coarse level stands not for corrections but for the full solution, instead of “zero differences”
read “previous differences”, i.e., the differences existing on the fine grid prior to the coarse
grid correction.)

One can of course prepare the interpolation weights once for all in advance, especially in
the cases where this is needed anyway for deriving the coarse grid equations (as in§10). In
many cases, instead of the accurate interpolation described in§10, one can of course use the
traditional AMG interpolation by iterated projection of coefficients[20], [32], [36], defined
as follows. Assuming the case (3.2) above, the interpolation has the general form

ui =
∑

k

wikuc
k ,
∑

wik = 1 , wi(`),k = δ`k ,(12.1)

and it is designed to be the approximate solution to the homogeneous systemAu = 0, whose
i-th equation can be written in the form

ui =
∑

j

âijuj where âij = −aij/aii.(12.2)

(For indefinite systems, using thei-th equation for writingui may be inappropriate; instead
one can interpolate in terms of theghost variablesused in the relaxation process, hence
employ in (12.2){ãij} instead of{aij} — see Appendix A). In view of (12.2), givenany
interpolation{wik} an improved interpolation{w′

ik} can be defined by

w′
ik =

∑
j

âijwjk , (i ∈ F )(12.3)
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whereF is the set of fine-level variables which arenot identified with a coarse-level variable
(i 6= i(`) for all `). Starting with the specific interpolation

wik = a
(m)
ik /

∑
`/∈F

a
(m)
i` , (i ∈ F, k /∈ F ) ,(12.4)

wherea
(m)
ij =

∑
` a

(m−1)
i` a`j for m > 1 anda

(1)
ij = aij (usually1 ≤ m ≤ 3), the traditional

AMG interpolationimprovesit several times, each time using (12.3), thentruncatesthe result
(replaces every smallwik by zero) andrenormalizes(replaces each remainingwik bywik/wi,
so that the new{wik} satisfies

∑
k wik = 1). (For indefinite systems one can also use

ãij =
∑

` a`ia`j instead ofa(m)
ij in (12.4).)

Even if the interpolation (of whatever sort) is already good enough in the sense that it
yields fastasymptoticmultigrid convergence, it may be beneficial to add a number of compat-
ible relaxation sweeps after thefirst interpolation to any particular level, and perhaps even a
(smaller) number of such sweeps after thesecond. This is similar to the advised higher-order
FMG interpolation (see, e.g., [6,§7.1]).

12.5. Gray AMG. Instead of the purely black-box AMG, which requires from its users
no information other than the system of equations (the matrixA and the right-hand sideb), a
simpler and more advanced “gray-box” AMG can be constructed by requiring from its users
additional information which is easy to supply, such as the geometrical location and the phys-
ical species of each unknown and each equation (cf. [8]). These can be very useful for cheaper
and more effective execution of various AMG tasks, such as: decomposition of the domain
for parallel processing; first crude selection of the coarse-level variables (next improved by
the method of§3 above); defining the coarsening neighborhoodsΩ0 (see§4); organizing the
boxes for BGS relaxation (§12.1); initializing the compatible-relaxation interpolation (see
§12.4); etc. The gray box is of course essential for the nonlinear algebraic coarsening (as
described in§8).

Sometimes it is even easy for the user to supply several entire coarselevels— their
variables and equations — in addition to the target (finest) level. Indeed, in his discretization
routine the target meshsize is often simply a parameter, and the routine can be applied several
times with larger values of that parameter to create several coarser levels. This of course can
drastically reduce the AMG setup cost, and permit the direct use of a nonlinear (FAS) solver.

Appendix A. Distributive coarsening. Very successful multigrid smoothers have been
based ondistributiverelaxation schemes, where each relaxation step consists ofdistributing
changes to several variables, according to some pre-assigned pattern. (For early simple ex-
amples, see [3], [16].) A general way to describe and design such schemes is in terms of
ghost variables[4, §4.1], [6,§3.4]. In particular, the distributive Gauss Seidel (DGS) scheme,
described in such terms, yields a generic method to design relaxation for general discretized
PDE systems [7], [15]: The design of the distribution operator is usually done at thedifferen-
tial level, then translated to the discrete system.

For the discrete system (2.1), the ghost variables constitute a vectorv such thatu = Mv,
where the (sparse)distribution matrixM has been designed (e.g., by discretizing the dif-
ferential distribution operator) so that the resulting discrete systemAMv = b is easier to
relax. For example,̃A = AM is often a diagonally dominant, or at least a definite, matrix,
so that the system̃Av = b can be relaxed by the simple Gauss-Seidel scheme. (More gen-
erally, weightedrelaxation schemes can be suitable forÃ; see [6], [7], [15]). In practice,
the variablesv do not explicitly appear in the calculations (hence their ghostly name): each
changeδv in v implies a pattern of changesδu distributedto the genuine variablesu through
the relationδu = Mδv; this is exactly the pattern one needs to efficiently relax the original
system.
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A special distribution matrix that can always safely be used isM = A
T

, yielding the
distributive relaxation of Kacmarz (see [37]). It can be used when nothing better is known,
even though it is often substantially slower than other (distributive) schemes.

For all the cases where distributive relaxation is used, the definition (3.1) of the coarse-
level variables can assume the more general form

uc
k =

∑
i

µ̃kivi ,

wherevi are the ghost variables. We call thisdistributive coarsening. As a special but the
most usual case, analogously to (3.2), the coarse variables can be identified with asubsetof
the ghost variables.

A compatibledistributive relaxation, a version of the distributive relaxation that keeps
the (distributive) coarse variables invariant, can easily be designed, and used to control the
selection of these variables (cf.§3).

Notice that the distributive coarse-level variables, and the equations derived for them
(e.g., by the method of§4) are different in nature from those of the fine level. In particular, in
their turn they will generallynot need distributive relaxation or distributive coarsening.

We have tested such a distributive coarsening for the highly disordered Dirac equations
on critical or hot gauge fields (see Appendix C).

Appendix B. Directionality and coarse-level stability. The bare local discrete approx-
imations to advection equations lack directionality. A simple example is the approximation[
u(x + h) − u(x)

]
/h to du/dx: whether the information travels from left to right or from

right to left depends on whether we interpret this discrete equation as an equation foru(x) or
for u(x + h). More generally, in any dimension, the sign of the stream-wise numerical vis-
cosity associated with a given discrete advection equation, which is the sign that determines
the direction of the information flow, depends on the point around which we Taylor-expand
that discrete equation. In numerical schemes this is often determined by the placement of the
boundary (or the boundary conditions), which in turn implies an exact geometrical position
that can be associated with each discrete equation.

Since the directionality is missing in the local rows ofA, it can be introduced into the
coarse-levelAc, in the Galerkin form (10.1), only through the intergrid transform operatorsP
andR. If these operators lack direction preference (as do the most common interpolation op-
erators), thenAc may turn out unstable, or more generally, upon further coarsening stepsAc

may grow increasingly unstable (in the sense that‖Acuc‖ may become smaller and smaller
for some vectorsuc which are each highly oscillatory on the scale of its grid, unnaturally
oscillatingin the advection direction).

To avoid such instabilities,P andR should have the suitable directionality. This is quite
naturally obtained with the traditional AMG interpolation (see§12.4), since the form (12.2) of
thei-th discrete equation assigns its location toui, and this assignment would usually imply
the intended directionality. With the more accurate and general derivation of interpolation
described in§10, such directionality can be introduced via the definition of the objective
functionalQ0: instead of|aij | in (4.3), use a weightingqij that is much higher for pointsj
upstream from 0 (the pointto which an interpolation value is being constructed), and much
lower forj downstream. For example,qij can be the value ofu0 upon solving equation (4.1)

with the boundary conditionsu` = δ`j , (` ∈ Ω0 − Ω
I

0); but there is no need or value to such
a precise (and expensive) choice of the weights.

The problem of instability does not arise in the coarsening described in§4 (since a defi-
nite location is assigned to each coarse-level equation), but it does arise in that of§4.1. Here
it can be eliminated by introducing direction dependence to the size of the weights{gj}.
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Appendix C. Application to Dirac equations. In collaboration with M. Rozantsev, we
have applied algebraic coarsening methods to theU(1) Dirac equations in 2D. This linear,
first-order PDE system, discretized on a uniform grid with periodic boundary conditions (us-
ing the Euclidean staggered formulation described in [34]), is particularly challenging be-
cause it has highly disordered coefficients: They represent a quenched gauge field produced
stochastically, its div is random while its curl is small at low temperatures and random at high
temperatures; above a certain critical temperature the solution values have finite correlation
lengths, which tend to zero as the temperature increases.

The AMG solver that we have developed employs Kacmarz relaxation and distributive
coarsening with the Kacmarz distributions (see Appendix A), which is usually a very good
distribution for first-order PDE systems such as this. The coarse-level set of variables is first
selectedgeometrically(taking every fourth fine-level ghost variable, in a certain fixed 2D
pattern). Then this set is enhanced using the compatible (distributive) relaxation tool (see
§3), thereby adding another 10%–20% of the ghost variables to the coarse level. The coarse-
level equations have been derived using the method of§4, for two choices ofΩc

0: a 3 × 3
and a5 × 5 coarse-grid stencil, each including also all those extra coarse variables added
(following the compatible relaxation test) at the correspondingΩ

I

0 region. The coarse-to-fine
interpolation of corrections has been done by several passes of compatible relaxation (see
§12.4). Recombination of iterants (§12.3) has also been employed.

The different tests we ran, on a32 × 32 grid, proved thatall and each oneof the above
devices is necessary for fast convergence in the more difficult cases. Very good asymptotic
convergence rates have been obtained (e.g., a convergence factor of 0.2 to 0.3 per two-level
cycle) with the5 × 5 coarse stencil even forhot (practically random) gauge fields, provided
some 15% extra points were added to the coarse level and upto 8 iterants were recombined.
For critical gauge fields only a couple of iterants needed to be recombined. The detailed
results are reported in [31].
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