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A PARALLEL AMG FOR OVERLAPPING AND NON-OVERLAPPING DOMAIN
DECOMPOSITION ∗

GUNDOLF HAASE†

Abstract. There exist several approaches for the parallel solving of huge systems of linear equations resulting
from the finite element (f.e.) discretization of2nd order elliptic pdes. On the other hand, there exists a great demand
for Algebraic Multigrid solvers (AMG) which have as input only matrix and right hand side or, as a substitute, the
appropriate information per element. In this paper we propose a general parallel AMG algorithm using overlapping
or non-overlapping data decompositions.
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1. Introduction. Without loss of generality we want to solve a second order pde with
homogeneous Dirichlet boundary conditions in a domainΩ ⊂ Rd , d = 2, 3 such that its weak
formulation in Sobolev spaceX(Ω) is represented by

Find u ∈ X(Ω) : a(u, v) = 〈F, v〉 ∀v ∈ X(Ω)(1.1)

with bilinear forma(u, v) : X× X 7→ R and duality product〈F, v〉 : X∗ × X 7→ R .
A discretization of the domainΩ results in a f.e. meshτh consisting of elementsδr and

nodesx[j] with j from index setω. The f.e. basisΦ =
{
ϕ[j](x) , j ∈ ω

}
has local support

supp ϕ[i] =
⋃

r:x[i]∈δ
(r)

δ
(r)

(1.2)

and spans a f.e. spaceV = spanΦ. Eq. (1.1) changes to

Find u ∈ V(Ω) ⊆ X : a(u, v) = 〈F, v〉 ∀v ∈ V(Ω) .(1.3)

Now, the f.e. isomorphism

u(x) =
∑
j∈ω

u[j] · ϕ[j](x) = Φ · u ,(1.4)

with u[j] = u(x[j]), guarantees the equivalence of (1.3) to the system of equations

K · u = f(1.5)

with

K [i,j] = a(ϕ[j], ϕ[i])(1.6)

f [i] =
〈
F, ϕ[i]

〉
∀i, j ∈ ω .(1.7)

Sections 2-3 introduce some definitions and data types used in the paper and generalize
the parallelization strategy from [2, 4, 5, 6, 7] now, for overlapping domain decompositions.
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The new theoretical results on special matrix-times-vector operations are represented in Sec. 4
and impose requirements on the pattern of the matrices used in these operations. These ab-
stract results are applied in Sec. 5 to derive a new parallel AMG algorithm, with slightly
modified standard AMG components therein, for solving (1.5) in parallel.

2. Notation and examples.

2.1. Sets of subdomains and nodes.Denoting the discretization in subdomains by
τs,h then we can represent the discretized domain and itsP subdomains by means of finite

elements, i.e.,Ω =
⋃

δ(r)∈τh
δ
(r)

andΩs =
⋃

δ(r)∈τs,h
δ
(r)

, such thatΩ =
⋃P

s=1 Ωs holds.
If Ωs ∩ Ωq = ∅, ∀q 6= s, s, q = [1, . . . , P ], then this decomposition ofΩ is called non-
overlapping element decomposition. Otherwise it is an overlapping element decomposition.

Let us denote byM the binary matrix representing the correspondence
between node and subdomain, namely

Mis :=

{
1 iff x[i] ∈ Ωs

0 iff x[i] 6∈ Ωs

.(2.1)

The set of all those subdomains, a nodex[i] belongs to, is denoted by

σ[i] := {s : Mis 6= 0} ,(2.2)

which is equivalent to the statement

x[i] ∈
⋂

s∈σ[i]

Ωs .(2.3)

We collect all nodes with the sameσ-set of subdomains in the index set

ω(σ) := {i ∈ ω : Mis 6= 0 ∀s ∈ σ , andMis = 0 ∀s 6∈ σ} ,(2.4)

similar notations are introduced for those sets of nodes with appropriate subsets or supersets
of σ:

ω(σ) := {i ∈ ω : Mis = 0 ∀s 6∈ σ}(2.5)

ω(σ) := {i ∈ ω : Mis 6= 0 ∀s ∈ σ} .(2.6)

REMARK 2.1. Obviously,ω(∅) = ∅ andσ[i] 6= σ[j] ⇔ ω(σ[i]) ∩ ω(σ[j]) = ∅ hold.
The definitions (2.5) and (2.6) imply directly

i ∈ ω(σ) ⇔ σ[i] ⊆ σ and i ∈ ω(σ) ⇔ σ[i] ⊇ σ .

Using the above notation, we denote by

ωs = {i ∈ ω : Mis 6= 0} ( = ω({s}) )(2.7)

the index set of subdomainΩs with Ns := |ωs| nodes therein. Here and in the following, we
denote by| · | the number of elements in a set.

REMARK 2.2. Obviously, the statements

i ∈ ωs ⇔ s ∈ σ[i] ⇔ {s} ⊆ σ[i](2.8)

j 6∈ ωs ⇔ s 6∈ σ[j] ⇔ {s} 6⊆ σ[j](2.9)

are valid.
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FIGURE 2.1.Four non-overlapping subdomains with triangulation and row-wise numbering

2.2. Examples. EXAMPLE 2.1 (Non-overlapping Elements).As a first example, we
divide the square into 4 non-overlapping squares and investigate the appropriateσ andω(σ)
sets. Let us represent all equal sets of subdomains byσ[i] with some fixed nodei. Then we
have the following adjacent sets :

σ[1] = {1}, σ[7] = {2}, σ[43] = {3}, σ[49] = {4},
σ[4] = {1, 2}, σ[22] = {1, 3}, σ[28] = {2, 4}, σ[46] = {3, 4},

σ[25] = {1, 2, 3, 4}.
Some representative index sets are :

ω(σ[1]) = ω({1}) = {1, 2, 3, 8, 9, 10, 15, 16, 17},
ω(σ[7]) = ω({2}) = {5, 6, 7, 12, 13, 14, 19, 20, 21},
ω(σ[4]) = ω({1, 2}) = {4, 11, 18},

ω(σ[22]) = {22, 23, 24},
ω(σ[28]) = {26, 27, 28},
ω(σ[25]) = {25}.

Some index sets derived by (2.5) and (2.6) :

ω(σ[1]) = ω(σ[1]),

ω(σ[1]) = ω({1}) = ω(σ[1]) ∪ ω(σ[4]) ∪ ω(σ[22]) ∪ ω(σ[25])

= {1, 4, 8, 11, 15, 18, 22, 25},
ω(σ[4]) = ω(σ[4]) ∪ ω({1}) ∪ ω({2}) = {1, 21},
ω(σ[4]) = ω(σ[4]) ∪ ω(σ[25]) = {4, 11, 18, 25},

ω(σ[25]) = {1, 49},
ω(σ[25]) = ω(σ[25]) = {25}.
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EXAMPLE 2.2 (Overlapping Elements).Here, we divide the square into 4 overlapping
squares with an overlap of 2 mesh sizes.
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FIGURE 2.2.Four overlapping subdomains with triangulation and row-wise numbering

The subdomain setsσ[i] are represented in the same way as in Ex. 2.1 and result in the
identical sets. On the other hand, we achieve different index sets, e.g.,

ω(σ[1]) = {1, 2, 8, 9}, ω(σ[7]) = {6, 7, 13, 14},
ω(σ[43]) = {36, 37, 43, 44}, ω(σ[49]) = {41, 42, 48, 49},
ω(σ[4]) = {3, 4, 5, 10, 11, 12}, ω(σ[22]) = {15, 16, 22, 23, 29, 30},

ω(σ[28]) = {20, 21, 27, 28, 34, 35}, ω(σ[46]) = {38, 39, 40, 45, 46, 47},
ω(σ[25]) = {17, 18, 19, 24, 25, 26, 31, 32, 33}.

We achieve the following derived index sets:

ω(σ[1]) = ω(σ[1]),

ω(σ[1]) = {1, 5, 8, 12, 15, 19, 22, 25, 29, 33},
ω(σ[4]) = {1, 14},
ω(σ[4]) = {3, 4, 5, 10, 11, 12, 17, 18, 19, 24, 25, 26, 31, 32, 33},

ω(σ[25]) = {1, 49},
ω(σ[25]) = ω(σ[25]).

2.3. The coincidence matrix.To represent the mapping of a vectoru ∈ Rω in global
numbering onto a local vectorus ∈ Rωs in subdomainΩs (s = [1, . . . , P ]), we introduce
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coincidence matricesAs of dimensionNs ×N with entries

A[i,j]
s :=

{
1 if j = global number ofi

0 else
∀i ∈ ωs , ∀j ∈ ω .(2.10)

The transposeAT
s of these binary matricesAs : Rω 7→ R

ωs maps a local vector back to the
global one.

LEMMA 2.1. By (2.7) and (2.10) we achieve for alls = [1, . . . , P ] the arithmetic
relations:

AT
s ·As

N×N
= diag

i∈ω

{
1 iff i ∈ ωs

0 iff i 6∈ ωs

(2.11a)

As · AT
s Ns×Ns

= diag
i∈ωs

{1}(2.11b)

3. Vector and matrix types.

3.1. Vector types. In all domain decomposition methods we have a certain subset
of nodes which belong to more than one subdomain, e.g., nodes22, 25 in Fig. 2.1 and
nodes21, 22, 24, 25, in Fig. 2.2.

We store the data of a vector componentu[i] in each subdomainΩs that component
belongs to, i.e.,s ∈ σ[i] . There are (at least) two opportunities to store those components
and at the end of the vector.

DEFINITION 3.1 (accumulated vector).A vectorus (u) is called an accumulated vector
if each vector componentu[i] is stored in all subdomainsΩs, s ∈ σ[i] with its full value. The
local vectorsus can be represented as

us := As · u .(3.1)

DEFINITION 3.2 (distributed vector).A vectorr is called a distributed vector if it is
decomposed into local vectorsrs such that

r =
P∑

s=1

AT
s · rs(3.2)

holds, i.e., all subdomainsΩs, s ∈ σ[i] store onlyrs and possess a portion of the full vector
valuer[i] which can be determined only by summing in (3.2).

The conversion of a distributed vectorv into an accumulated vectorw can be done by
performing the sum in (3.2) followed by restriction (3.1), i.e.,

w ← v : ws := As ·w = As ·
P∑

s=1

AT
s · vs .(3.3)

The conversion in the other direction is not unique - we prefer an equal weighted distribution
of the accumulated vector. A matrix weighted distribution is also feasible in case of discon-
tinuous coefficients. The weights are chosen such that re-conversion (3.3) will result in the
original vector :

v ← w : vs := (Rs)−1 ·ws ,(3.4)
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FIGURE 3.1. Illustration for accumulated and distributed vectors and matrices.

with Rs = diag
i∈ωs

{|σ[i]|} , i.e.,R[i,i]
s stores the number of subdomains nodei belongs to.

REMARK 3.1. It can be seen easily by (2.11a) that

R := diag
i∈ω
{|σ[i]|} =

P∑
s=1

AT
s · As .(3.5)

3.2. Matrix types. The matrix defined by the bilinear form in (1.6) can also be stored
in two ways. With respect to an element-wise domain decomposition, we can store the f.e.
matrix either as an accumulated or distributed matrix.

DEFINITION 3.3 (accumulated matrix).A matrixM is called accumulated if its local
restrictionsMs possess the full entries of it and we can write

Ms := As ·M · AT
s .(3.6)

DEFINITION 3.4 (distributed matrix).We call a matrixK distributed if we have locally
stored matricesKs such that

K :=
P∑

s=1

AT
s · Ks · As .(3.7)

holds, i.e., each subdomainΩs stores only a part of its full values.
Similar to conversion of vectors, the construction of a distributed matrix from an accumulated
one is not unique.

3.3. Construction of distributed matrices. The construction of distributed matrices for
a non-overlapping element decomposition (see Ex. 2.1) is well known. Here, we generalize
that approach for arbitrary overlapping subdomains.
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In the f.e. context, a matrix entryK [i,j] is obtained from the sum over all bilinear forms
on the elements

K [i,j] := aΩ(ϕ[j], ϕ[i]) =
∑

δ(r)⊆Ω

aδ(r)(ϕ[j], ϕ[i]) ,(3.8)

with basis functionsϕ[i](x), i ∈ ω and the bilinear form from Sec. 1.
A decomposition ofΩ =

⋃P
s=1 Ωs results

for the bilinear forma(·, ·) in a weighted summation with appropriate weightsW (r) over
all subdomains and all their elements.

aΩ(ϕ[j], ϕ[i]) =
P∑

s=1

∑
δ(r)⊆Ωs

1
W (r)

aδ(r)(ϕ[j], ϕ[i])

=
∑

δ(r)⊆Ω

aδ(r)(ϕ[j], ϕ[i]) ·
 1

W (r)

∑
s: δ(r)⊆Ωs

1

 .(3.9)

The comparison of (3.8) with (3.9) gives us directly the definition for the weights per element.
THEOREM 3.5 (Construction principle for distributed matrices).In the multi-domain

approach withΩ =
⋃P

s=1 Ωs, a distributed f.e. matrix

K :=
P∑

s=1

AT
s KsAs .(3.7)

has to be calculated in each subdomain by

K[i,j]
s =

∑
δ(r)⊆Ωs

1
W (r)

aδ(r)(ϕ[j], ϕ[i])︸ ︷︷ ︸
K

[i,j]

δ(r)

∀i, j ∈ ωs,(3.10)

with the weights for each element of the mesh

W (r) :=
∑

s: δ(r)⊆Ωs

1 .(3.11)

Proof. The proof was given from Eq. (3.8) to (3.9).
REMARK 3.2. Eq. (3.10) describes the local accumulation of weighted element matrices.

The weightW (r) in (3.11) is the number of subdomainsΩs an elementδ(r) belongs to, i.e.,

W (r) =
∣∣∣∣ ⋂

xi∈δ
(r)

σ[i]

∣∣∣∣ .(3.12)

• The non-overlapping elements in Fig. 2.1 implyW (r) ≡ 1 for all elements, so that
no weighting is necessary andKs is the local accumulated f.e. matrix.
• The weights for the overlapping elements in Fig. 2.2 are1, 2 or 4.
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4. Matrix-times-vector operations.

4.1. Abstract results. It can be easily seen by Eq. (2.10), (3.1)-(3.3) and (3.7) that

K ·w =
P∑

s=1

AT
s KsAs ·w =

P∑
s=1

AT
s Ks ·ws =

P∑
s=1

AT
s vs = v(4.1)

can be performed in parallel without communication and results in a distributed vectorv with
vs = Ks ·ws. A multiplication with a distributed vector instead ofw requires

conversion to an accumulated one through (3.3).
The multiplication of an accumulated matrixM with a vector requires more detailed

investigations. It is not necessary that MatrixM has to be a f.e. matrix. The following
two theorems will present conditions for admissible matrix patterns for certain classes of
multiplications.

THEOREM4.1. The multiplication of an accumulated matrix with an accumulated vector
results in a vector of the same type

w = M · u(4.2)

and can be performed without communication in parallel, i.e.,

ws = Ms · us ∀s = [1, . . . , P ] ,(4.3)

if and only if

∀i, j ∈ ω : σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0(4.4)

is true.
Proof. We start with definition (3.1) of an accumulated vector

ws = Asw ∀s = [1, . . . , P ] ,

rewrite it by preliminaries (4.3), (4.2) and definition (3.6) of an accumulated matrix

Msus = AsMu ∀s = [1, . . . , P ]

⇐⇒ (
AsMAT

s · us

)[i]
= (AsM · u)[i] ∀s = [1, . . . , P ], ∀i ∈ ωs ,

and investigate the results of the multiplications on both sides component-wise in global
numbering ∑

j∈ωs

M[i,j]u[j] =
∑
j∈ω

M[i,j]u[j] ∀s = [1, . . . , P ], ∀i ∈ ωs .

The statement of the last line is true if and only if the following is true

∀s = [1, . . . , P ], ∀i ∈ ωs : j 6∈ ωs =⇒ M[i,j] = 0
(2.8),(2.9)⇐⇒ ∀s = [1, . . . , P ] : {s} ∈ σ[i] ∧ {s} 6∈ σ[j] =⇒ M[i,j] = 0

⇐⇒ σ[i] 6⊆ σ[j] =⇒ M[i,j] = 0

Theorem 4.1 says that operation (4.2) can be performed locally (4.3) without communication
only for special matricesM. Condition (4.4) on the matrix pattern can be easily verified, e.g.
in Fig. 2.1, the matrix entriesM[25,24] = M[4,5] have to be zero but notM[24,25], M[5,4].
Note, thatM[18,26] as well asM[26,18] have to be zero because there is no subset relation at
all betweenσ[18] = {1, 2} andσ[26] = {2, 4}.
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THEOREM 4.2. The multiplication of an accumulated matrix with a distributed vector
results in a vector of the same type

r = M · v(4.5)

and can be performed without communication in parallel, i.e.,

rs = Ms · vs ∀s = [1, . . . , P ] ,(4.6)

if and only if

∀i, j ∈ ω : σ[i] 6⊇ σ[j] =⇒ M[i,j] = 0(4.7)

is true.
Proof. We start with definition (3.2) of a distributed vector

P∑
s=1

AT
s rs = r ,

reformulate it by preliminaries (4.6), (4.5) and apply definitions for accumulated matrix and
distributed vector onMs andv

P∑
s=1

AT
s AsMsA

T
s · vs

(3.6)=
P∑

s=1

AT
s Ms · vs = M · v (3.2)= M ·

P∑
s=1

AT
s vs .

Applying (2.11a) in a component-wise investigation using global numbering results in P∑
s=1

∑
j∈ωs

M[i,j] · v[j]
s , i ∈ ωs

0 , i 6∈ ωs

 =
(∑

j∈ω

M[i,j] ·
P∑

s=1
v
[j]
s , i ∈ ω

)
,

which is equivalent to∑j∈ω

∑
s∈σ[j]

M[i,j] · v[j]
s , i ∈ ωs

0 , i 6∈ ωs

 =
(∑

j∈ω

P∑
s=1
M[i,j] · v[j]

s , i ∈ ω

)
.

The statement of the last line is true if and only if

s ∈ σ[j] ∧ i 6∈ ωs =⇒M[i,j] = 0
{s} ⊆ σ[j] ∧ {s} 6⊆ σ[i] =⇒M[i,j] = 0

σ[j] 6⊆ σ[i] =⇒M[i,j] = 0

Condition (4.7) on the matrix pattern can be easily verified, e.g. in Fig. 2.1, the matrix entries
M[24,25], M[5,4]. have to be zero but notM[25,24] andM[4,5]. Again,M[18,26] as well as
M[26,18] have to be zero.

REMARK 4.1. Intermediate steps in the proofs of theorems 4.1 and 4.2 lead directly to
equivalent formulations for (4.4)

MAT
s As = M ∀s = [1, . . . , P ](4.8)
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and for (4.7)

AT
s AsM =M ∀s = [1, . . . , P ] .(4.9)

Obviously, we can conclude that if a matrixM fulfills (4.4) thenMT fulfills also (4.7).
Eq. (4.8) and (4.9) have been derived for non-overlapping element domain decompositions
by Groh [1] as a condition to apply (4.2) and (4.5) in parallel.

REMARK 4.2. The sets of subdomains induce a block structure of the unknowns in that
way that all nodes with the sameσ-set, e.g.σk, build one block (see subsection 4.2 for an

example). Now, it follows directly from theorems 4.1 and 4.2 that an accumulated matrixM

can be applied to (4.2) and(4.5) iffM possesses a block diagonal structure induced by the
described block structure of nodes. We can write

M = blockdiag {Mk} with Mk =
{
M[i,j]

}
i,j∈ω(σk)

.(4.10)

REMARK 4.3. IfM fulfills (4.10) and allM−1
k do exist then also the inverseM−1 fulfills

the proper block condition and can be applied in parallel on (4.2) and (4.5).
The idea of the following theorem originates from the observation that the result of (4.2) can
be used as input for operation (4.1), that this result has exactly the right vector type to serve
as input for (4.5) and that all those operations can be performed fully in parallel. matrices

THEOREM 4.3. If the accumulated matrixP fulfills pattern condition (4.4) then the
matrix multiplicationsPT · K ·P result in a distributed matrixKH which can be calculated
locally in parallel by simply computingKH

s = PT
s · Ks ·Ps, i.e.,

KH =
P∑

s=1

AT
s KH

s As =
P∑

s=1

AT
s

(
PT

s · Ks ·Ps

)
As = PT · K ·P .(4.11)

Proof. We substituteK in the right expression of (4.11)
by its definition (3.7)

PT · K ·P = PT ·
P∑

s=1

AT
s KsAs ·P =

P∑
s=1

PT AT
s KsAsP

and apply the equivalent pattern conditions (4.8) and (4.9) for all subdomains

=
P∑

s=1

AT
s AsP

T AT
s KsAsPAT

s As .

Using definition (3.6) forPs yields finally

=
P∑

s=1

AT
s

(
PT

s · Ks ·Ps

)
︸ ︷︷ ︸

=:KH
s

As =
P∑

s=1

AT
s KH

s As .
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4.2. Application of theorems 4.1 and 4.2.We will apply the results of theorems 4.1
and 4.2 on our Ex. 2.1 - 2.2.

There are 9 different sets of subdomains in Ex. 2.1. These sets will be arranged with
respect to the number of subdomains therein :

σV = σ[25],

σE1 = σ[4], σE2 = σ[22], σE3 = σ[28], σE4 = σ[46],

σI1 = σ[1], σI2 = σ[7], σI3 = σ[43], σI4 = σ[49] .

The subscriptV indicates vertex nodes, subscriptsE andI denote
edge and interior nodes of the subdomains. The block structure above implies an ap-

propriate block structure in vectors and matrices. The admissible matrix pattern wrt. (4.4)
is

M =



MV

ME1V ME1

ME2V 0 ME2

ME3V 0 0 ME3 0
ME4V 0 0 0 ME4

MI1V MI1E1 MI1E2 0 0 MI1

MI2V MI2E1 0 MI2E3 0 0 MI2

MI3V 0 MI3E2 0 MI3E4 0 0 MI3

MI4V 0 0 MI4E3 MI4E4 0 0 0 MI4


.

(4.12)

This matrix can be also expressed in the form

M =

 MV 0 0
MEV ME 0
MIV MIE MI

 ,(4.13)

requiring the appropriate block structures of the submatrices from (4.12). Especially, we
have to require thatMV , ME andMI are block diagonal matrices (Fig. 2.1:M[18,26]

E =

M
[26,18]
E

!= 0 !),
from which follows by remark 4.3 that we can apply also the inverse of them.
The previous investigations are completely valid for Ex. 2.2! The only difference consists

in the different sets of nodes grouped within the blocks.

5. A parallel AMG.

5.1. Parallel MG. With the data structures and methods introduced in the previous sec-
tions

we can formulate a parallel MG algorithm; see also [5]. The components in Alg.1 have
to be chosen such that the following requirements are fulfilled.

• The interpolation of the correctionw := PwH needs an accumulated interpolation
matrix with anadmissible matrix pattern; see theorem 4.1. IfP possesses such a
pattern then alsoPT can be applied in the defect restriction.
If all refined elements belong to the same subdomain as their appropriate coarse
element, then the pattern condition on the interpolation is fulfilled automatically.
• We assume that we have a parallel smoother; e.g. see [2].
• The coarse matrixKH has to be again a distributed matrix to ensure the continuation

of the recursive algorithm.
• The matrixKH has to preserve the null space ofK.
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Algorithm 1 Parallel multigridPMG(K, u, f, `)
if ` == 1 then

solve
P∑

s=1
AT

s KAs · u = f

else
ũ← SMOOTH(K, u, f, ν)
d← f − K · u
dH ← PT · d
wH ← 0
PMG(KH ,wH , dH , `− 1)
w← P ·wH

û← ũ+w
u← SMOOTH(K, û, f, ν)

end if

5.2. Sequential AMG. Each AMG algorithm consists of the following parts:
1. Coarsening, i.e.,ω = ωC ∪ ωF .
2. Determining the interpolation weightsP = {αij}i∈ω, j∈ωC

.
Typically,αi,j = δij , ∀i, j ∈ ωC holds.

3. Calculate the coarse matrix

KH = PT ·K · P .(5.1)

4. Apply some multigrid procedure using the components determined in 1.-3.

5.2.1. Sequential coarsening.We can use any coarsening strategy for our investiga-
tions. Therefore, we present only the simple coarsening instead of the classical approach [8].
We only have to adapt the sequential algorithm such that it works on an arbitrary given set of
nodes, i.e., a subset of all nodes.

Algorithm 2 Simple coarsening COARSE(K, ω, ωC , ωF )
ωt ← ω
while ωt 6= ∅ do

pick somei ∈ ωt (strong connections inK|ω)
ωC ← ωC ∪ {i}
determine neighbors ofi −→ Ui

ωF ← ωF ∪ (Ui ∩ ωt)
ωt ← ωt \ ({i} ∪ Ui ∩ ωt)

end while

5.2.2. Determination of interpolation weights. Here, we restrict the calculation of
interpolation weightsαij

on a given index set. Again, we can use an arbitrary routine with adaption for subsets of
nodes.
A correct chosen matrix dependent interpolation is equivalent to the energy minimization
technique for determining the interpolation weights. In case of the Laplacian, the condition∑
j∈ω

αi,j = 1 , ∀i ∈ ω, guarantees that the null space of that operator can be represented on

coarser grids.
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Algorithm 3 Calculation of interpolation weights WEIGHTS(K, ωC , ωF , α)
for all i ∈ ωF do

determine neighbors ofi −→ Ui

for all j ∈ Ui ∩ ωC do
calculateαij

end for
end for

5.2.3. Calculation of coarse matrix.The classical Galerkin approach(
KH

)[ij]
=
∑
k∈ω

∑
l∈ω

αki ·K [kl] · αlj ∀i, j ∈ ωC(5.2)

leads directly to a standard routine for calculating the coarse grid matrix. Here, no adaption
is necessary.

Algorithm 4 Calculation of coarse matrix GALERKIN(KH , K, ωC , ωF , α)

Require: KH = 0 before first call
for all k ∈ ωF ∪ ωC do

determine fine and coarse neighbors ofk −→ F k, Ck

for all l ∈ F k ∪ Ck ∪ {k} do
T ← Ck ∪ Cl ∪ ({l} ∩ ωC)
for all i ∈ T do

for all j ∈ T do(
KH

)[ij] ← (
KH

)[ij] + αki · (K)[kl] · αlj

end for
end for

end for
end for

This Alg. 4 can by dramatically accelerated by use of matrix structures.

5.3. The parallel coarsening.The control of the admissible pattern for interpolation
and restriction (4.4,4.7) will be realized by appropriate subsets of nodes as input parameters
for Alg. 2–4. Controlling these subsets is the main task of Alg. 5.

Algorithm 5 Parallel coarsening SIGMACOARSE(K, σ, ω, ωC , ωF , α)

if ω == ∅ then
return

else
ωt ← ω(σ)
COARSE(K, ωt, ωC , ωF )
WEIGHTS(K, ωC ∩ ω(σ), ωF ∩ ωt, α)
ω ← ω \ ωt

for all σ̂ ⊂ σ such that6 ∃τ ⊂ σ : σ̂ ⊂ τ do
SIGMACOARSE(K, σ̂, ω, ωC , ωF , α)

end for
end if
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The initial call of the coarsening is SIGMACOARSE({1, . . . , P}, ωh, ∅, ∅) on all proces-
sors. This means in Ex. 2.1 on page 43 that for this first callωt = {25}, so that the only
vertex node25 will be automatically a coarse node. The biggest subsetsσ̂ of {1, . . . , P}
with non-emptyω(σ̂) are{1, 2}, {1, 3}, {2, 4}, {3, 4} which continue the coarsening on the
four interface edges. These steps are followed by coarsening in the interior of subdomains.
As a result, e.g, interpolation from vertex node to edge node or interior node may happen but
not vice versa.

• The statementω := ω \ ωt blocks redundant calculations by reducing the set of
available nodes.
• The recursive algorithm comes to an end ifσ consists of only one element.
• The special parameters in the call

WEIGHTS(K, ωC ∩ ω(σ), ωF ∩ ωt, α)
guarantee an admissible matrix pattern inP, because

ωC ∩ ω(σ) =
{
j ∈ ωC : σ[j] ⊇ σ

}
ωF ∩ ω(σ) =

{
i ∈ ωF : σ[i] = σ

} }
=⇒ σ[i] ⊆ σ[j] ,(5.3)

i.e., by (4.4) that only thoseαij are calculated in WEIGHTS which fulfill the pattern
condition on the interpolationP.
• The usage of blocking coarsening requires some semaphore structure to synchronize

the work in the branches, i.e., which processor performs the coarsening on a set of
intersection nodes. After one processor does the coarsening, it will send a bit array
to all interested processors describing which nodes of the subset belong the coarse
grid. The following calculation of interpolation weights should be done redundantly.
On the other hand, a non-blocking coarsening requires identical results in the coars-
ening of all processorss ∈ σ[i] sharing a block of nodes represented byi. Here, we
need an identical numbering of the nodes inω(σ[i]) on all processors. Additionally
the coarsening strategy has to be strongly deterministic in that case.

5.4. Parallel coarse grid matrix. The pattern condition (4.4) for the interpolation ma-
trix P = {αij}i∈ω, j∈ωC

is fulfilled by construction in Alg. 5. Therefore, we can apply

Theorem 4.3 with the fine grid matrixK so that the coarse matrixKH can be calculated fully
in parallel, i.e., we can call Alg. 4 locally on each processors with matricesKH

s andKs as
appropriate output and input parameters.

5.5. The parallel AMG algorithm. The parallel AMG algorithm on page 55 simply
collects the subroutines of previous sections. The routinePMG-A is the parallel multigrid
algorithm with trivial changes.
The coarsening part of Alg. 6 terminates automatically when all setsω(σ[i]) contain only one
element.

6. Conclusions.The main advantage of the proposed parallel AMG algorithms consists
in the combination of standard AMG components and standard DD approaches. Therefore, it
can be easily implemented in given f.e. packages by combining both parts.

The parallel AMG algorithm is not consistent with respect to the number of processors.
i.e., the resulting coarse grids change with the number of processors used. This is no disad-
vantage in our opinion, because we needed a simple general approach and not one which will
change with the hardware.

A distribution of elements on the processors should additionally take into account
strongly anisotropic coefficients or similar problems in that (macro-/DD-) coarsening.
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Algorithm 6 Parallel AMG PARAMG(K, u, f, ω)
for all s = 1, . . . , P do

K1
s ← Ks

ω1
s ← ωs

`← 1
repeat

Ms ← As

(
P∑

q=1
AT

q K`
qAq

)
AT

s

ωC,s ← ∅ , ωF,s ← ∅
SIGMACOARSE(Ms, {1, . . . , P}, ω`

s, ωC,s, ωF,s, α
`+1)

K`+1
s ← 0

GALERKIN(K`
s, K

`+1
s , ωC,s, ωF,s, α

`+1)
`← ` + 1
ω`

s ← ωC,s

until termination
end for
PMG-A(K, u, f, 1)
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