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A PARALLEL AMG FOR OVERLAPPING AND NON-OVERLAPPING DOMAIN
DECOMPOSITION *

GUNDOLF HAASE'

Abstract. There exist several approaches for the parallel solving of huge systems of linear equations resulting
from the finite element (f.e.) discretization @¥ order elliptic pdes. On the other hand, there exists a great demand
for Algebraic Multigrid solvers (AMG) which have as input only matrix and right hand side or, as a substitute, the
appropriate information per element. In this paper we propose a general parallel AMG algorithm using overlapping
or non-overlapping data decompositions.
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1. Introduction. Without loss of generality we want to solve a second order pde with
homogeneous Dirichlet boundary conditions in a dontain R?, d = 2, 3 such that its weak
formulation in Sobolev spacg(?) is represented by

(1.1) Find v e X(Q) :  a(u,v) = (F,v) YveX(Q)

with bilinear forma(u, v) : X x X'+ R and duality productF,v) : X* x X — R .
A discretization of the domaif results in a f.e. mesh, consisting of element$” and
nodesz! with j from index setv. The f.e. basi® = {,l!(z), j € w} has local support

(1.2) swpoll = | 3"
r:x[i]Eg(T>
and spans a f.e. spae= sparb. Eq. (1.1) changes to
(1.3) Find u e V(Q) CX :  a(u,v) = (F,v) YveV(Q) .

Now, the f.e. isomorphism

(1.4) u(z) = Y ul-oll(z) = @-u,

JEW

with ull = u(2U), guarantees the equivalence of (1.3) to the system of equations

(1.5) K-u=f

with

(1.6) K = a(pl] o)

(1.7) 71 = (F, ) Vijew .

Sections 2-3 introduce some definitions and data types used in the paper and generalize
the parallelization strategy from [2, 4, 5, 6, 7] now, for overlapping domain decompositions.
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The new theoretical results on special matrix-times-vector operations are represented in Sec. 4
and impose requirements on the pattern of the matrices used in these operations. These ab-
stract results are applied in Sec. 5 to derive a new parallel AMG algorithm, with slightly
modified standard AMG components therein, for solving (1.5) in parallel.

2. Notation and examples.

2.1. Sets of subdomains and nodedenoting the discretization in subdomairby
75,1, then we can represent the discretized domain anft gsibdomains by means of finite
elements, i.e93 = Uy, 0 and@, = Ustrer, » 5" such thail = ", Q. holds.
If Q,NQ, =0,Vq # s,s,q =[1,...,P], then this decomposition @ is called non-
overlapping element decomposition. Otherwise it is an overlapping element decomposition.
Let us denote by the binary matrix representing the correspondence
between node and subdomain, namely

1 iff zld e Q,
2.1) M, = M e
0 iff 2l ¢ T,

The set of all those subdomains, a nadébelongs to, is denoted by
(2.2) oll = {s: M, #0},
which is equivalent to the statement

(2.3) 2ile ) Q. .

We collect all nodes with the sanaeset of subdomains in the index set
(2.4) wlo) ={iew: M;s#0 Vseo,andM;; =0 Vs&o} ,

similar notations are introduced for those sets of nodes with appropriate subsets or supersets
of o:

(2.5)
(2.6)

(o) ={iew: Mijs=0 Vsd&o}
(o) ={icew: Mis #0 Vseco} .

€l g

REMARK 2.1.0bviouslyw () = § andol! # ol < w(old) nw(oll) = @ hold.
The definitions (2.5) and (2.6) imply directly

icw(o) & olco and iew(o) & oo
Using the above notation, we denote by
(2.7) ws = {i€w : M #0} (=w({s}))

the index set of subdomain, with N, := |w,| nodes therein. Here and in the following, we
denote by - | the number of elements in a set.
REMARK 2.2.Obviously, the statements

(2.8) i€ ws & s € ol & {s} C ol
(2.9) jduw, & s ¢ ol & {s} ¢ ol

are valid.
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FIGURE 2.1.Four non-overlapping subdomains with triangulation and row-wise numbering

2.2. Examples. ExaMPLE 2.1 (Non-overlapping Elements)As a first example, we
divide the square into 4 non-overlapping squares and investigate the appropréatéw (o)
sets. Let us represent all equal sets of subdomaingbyvith some fixed node Then we
have the following adjacent sets :

o'l = {1}, ol = {2}, ol = {3}, ol = {4},
ol = {1,2}, o2 ={1,3}, o ={24), oM =3 4},
o = {1,2,3,4}.

Some representative index sets are :

wiey =w({1}) = {1,2,3,8,9,10,15,16,17},

w

wel™ =w{2}) = {5,6,7,12,13,14,19,20, 21},
w(oy =w({1,2}) = {4,11,18},
w(o??) = {22,23, 24},
w (o) = {26,27,28},
w(o% = {25}

Some index sets derived by (2.5) and (2.6) :

w(ol') =w(o),

(e =m({1}) = w(eM) Uw(e™) Uw(0??) Uw(?)
— {1,4,8,11,15,18,22, 25,

w(o) =weuw{1})vw{2}) = {1,21},
oo = w(eM) Uw(c?) = {4,11,18,25},
w(o™) = (T, 19},
(o2 = w(o!?) = {25}.
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ExamPLE 2.2 (Overlapping ElementsHere, we divide the square into 4 overlapping
squares with an overlap of 2 mesh sizes.
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FIGURE 2.2.Four overlapping subdomains with triangulation and row-wise numbering

The subdomain sets'”) are represented in the same way as in Ex. 2.1 and result in the
identical sets. On the other hand, we achieve different index sets, e.g.,

w(o™y ={1,2,8,9}, w(ol™) = {6,7,13,14},
w(o™) = {36,37,43, 44}, w(o) = {41,42, 48,49},
w(oy ={3,4,5,10,11,12}, w(o?) = {15,16,22, 23,29, 30},
w(oy = {20, 21,27,28, 34, 35}, w(o11%) = {38,39,40,45, 46,47},
w(o®) = {17,18,19, 24,25, 26, 31, 32, 33}.

We achieve the following derived index sets:

w(oMy = w(el),
w(ot) = {1,5,8,12,15, 19, 22, 25,29, 33},
g(a[‘l] = {1,14},

(

2.3. The coincidence matrix. To represent the mapping of a vectoe R* in global
numbering onto a local vectar, € R in subdomairQ, (s = [1,... , P]), we introduce
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coincidence matriced, of dimensionN, x N with entries

(2.10) Viecws, VjEw .

Alid) {1 if 7 = global number ot
* 0 else
The transposél’ of these binary matriced; : R¥ — R“: maps a local vector back to the
global one.
LEMMA 2.1. By (2.7) and (2.10) we achieve for all = [1,..., P] the arithmetic
relations:

(2.11a) AT . A, — diag 1 1ffz € ws
UM e |0 iff i ¢ wg
(211b) As . AZNSXNS — dlag{l}

1EWs

3. Vector and matrix types.

3.1. Vector types. In all domain decomposition methods we have a certain subset
of nodes which belong to more than one subdomain, e.g., n22l&$ in Fig. 2.1 and
nodes21,22, 24,25, in Fig. 2.2.

We store the data of a vector componefit in each subdomaif, that component
belongs to, i.e.s € o[l . There are (at least) two opportunities to store those components
and at the end of the vector.

DEFINITION 3.1 (accumulated vectorp vectoru, (u) is called an accumulated vector
if each vector component” is stored in all subdomainQ,, s € o[ with its full value. The
local vectorsy, can be represented as
(3.2) u, = Ag-u .

S

DEFINITION 3.2 (distributed vector).A vectorr is called a distributed vector if it is
decomposed into local vectarssuch that

P
(3.2) r= ZAZ I
s=1

holds, i.e., all subdomair@,, s € ol store onlyr, and possess a portion of the full vector
valuerll which can be determined only by summing in (3.2).

The conversion of a distributed vectointo an accumulated vectas can be done by
performing the sum in (3.2) followed by restriction (3.1), i.e.,

(3.3) i}

T
|<

P

w, = A=Ay ATy,
s=1

The conversion in the other direction is not unique - we prefer an equal weighted distribution

of the accumulated vector. A matrix weighted distribution is also feasible in case of discon-

tinuous coefficients. The weights are chosen such that re-conversion (3.3) will result in the

original vector :

(3.4) vewmooo oy = (R) T,
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FIGURE 3.1. lllustration for accumulated and distributed vectors and matrices.

with R, = diag{|o11]} , i.e., R stores the number of subdomains nédelongs to.

€W

REMARK 3.1.It can be seen easily by (2.11a) that

1€EW

P
(3.5) R := diag{loll]} =Y Al A, .
s=1

3.2. Matrix types. The matrix defined by the bilinear form in (1.6) can also be stored
in two ways. With respect to an element-wise domain decomposition, we can store the f.e.
matrix either as an accumulated or distributed matrix.

DEeFINITION 3.3 (accumulated matrix)A matrix 0t is called accumulated if its local
restrictions?i, possess the full entries of it and we can write

(3.6) M, = Ag-9M- AT .

DEFINITION 3.4 (distributed matrix) We call a matrix< distributed if we have locally
stored matrices(, such that

P
(3.7) K= Y AT K - A, .

s=1

holds, i.e., each subdomai, stores only a part of its full values.
Similar to conversion of vectors, the construction of a distributed matrix from an accumulated
one is not unique.

3.3. Construction of distributed matrices. The construction of distributed matrices for
a non-overlapping element decomposition (see Ex. 2.1) is well known. Here, we generalize
that approach for arbitrary overlapping subdomains.
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In the f.e. context, a matrix entr 1] is obtained from the sum over all bilinear forms
on the elements

(3.8) KW= ag(pll o) = 3 7 agn (7, 1)
s(MCO

with basis functionsl’ (z), i € w and the bilinear form from Sec. 1.

A decomposition of2 = J*_, 2, results

for the bilinear formu(-, -) in a weighted summation with appropriate weight§™) over
all subdomains and all their elements.

P
N 1 N
aQ(SO[J],SOH) = E E Waam (w[”,so[])

s=15(r)CQ,
(39) - Z Ags(r) (90[‘7] ) 90[ ]) : W(r) Z
5N CQ 5:6(M CQy

The comparison of (3.8) with (3.9) gives us directly the definition for the weights per element.
THEOREM 3.5 (Construction principle for distributed matricedh the multi-domain
approach withQ2 = Ule Qs, a distributed f.e. matrix

P
(3.7) K=Y ATKA, .
s=1

has to be calculated in each subdomain by

y 1 1l .
(3.10) Kl = Z W) aser (o), o) Viij € ws,

5(m)
with the weights for each element of the mesh

(3.11) w = 31

5:0(M CQy

Proof. The proof was given from Eq. (3.8) to (3.9). O
REMARK 3.2. Eq. (3.10) describes the local accumulation of weighted element matrices.
The weight¥ (") in (3.11) is the number of subdomaifls an elemens (") belongs to, i.e.,

(3.12) w =1 (] ol

xieg(r)

e The non-overlapping elements in Fig. 2.1 impi{") = 1 for all elements, so that
no weighting is necessary amng is the local accumulated f.e. matrix.
e The weights for the overlapping elements in Fig. 2.21ar2or 4.
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4. Matrix-times-vector operations.
4.1. Abstract results. It can be easily seen by Eq. (2.10), (3.1)-(3.3) and (3.7) that

P P P
(4.2) Kew=Y ATK A, m = > AR, w, = > Ay, = v
s=1 s=1 s=1

can be performed in parallel without communication and results in a distributed vestibr
v, = K, - .. A multiplication with a distributed vector instead wfrequires

conversion to an accumulated one through (3.3).

The multiplication of an accumulated matiX with a vector requires more detailed
investigations. It is not necessary that Mat?iX has to be a f.e. matrix. The following
two theorems will present conditions for admissible matrix patterns for certain classes of
multiplications.

THEOREMA4.1. The multiplication of an accumulated matrix with an accumulated vector
results in a vector of the same type

(4.2) w=N-u
and can be performed without communication in parallel, i.e.,
(4.3) o, = N, - uy Vs=[1,...,P],
if and only if
(4.4) Vijjew: ol goll — amlil =o¢
is true.

Proof. We start with definition (3.1) of an accumulated vector

n, = A Vs=1[1,...,P],

rewrite it by preliminaries (4.3), (4.2) and definition (3.6) of an accumulated matrix
Moy, = A;Mu Vs=[1,...,P]
= (AmAT 1) = (a9l Vs=1[1,...,P], Yiew,,

and investigate the results of the multiplications on both sides component-wise in global
numbering

> oAbl =y ot s =[1,..., P, View, .

JEWs JEW
The statement of the last line is true if and only if the following is true
Vs=[1,...,P], Vi€uws: jEws — omltil =0
(2.8),(2.9) _ ) [4] 4] [ig] —
& Vs =1[1,...,P] : {s}ed"N{s}&o = M =0
= ol g oll  — il =g

O

Theorem 4.1 says that operation (4.2) can be performed locally (4.3) without communication
only for special matrice®1. Condition (4.4) on the matrix pattern can be easily verified, e.g.

in Fig. 2.1, the matrix entrien?>24 = 9143 have to be zero but nep!?42°), o541,

Note, thatn'*2%) as well asnt?%'¥) have to be zero because there is no subset relation at
all betweens'8l = {1,2} ando!?6l = {2,4}.
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THEOREM 4.2. The multiplication of an accumulated matrix with a distributed vector
results in a vector of the same type

(4.5) r=M-v

and can be performed without communication in parallel, i.e.,

(4.6) g =Me-vy,  Vs=[,...,P],

if and only if

4.7) Vi,jEw : ol 2 ol — gl =
is true.

Proof. We start with definition (3.2) of a distributed vector

P

T, _
E Agry=r,
s=1

reformulate it by preliminaries (4.6), (4.5) and apply definitions for accumulated matrix and
distributed vector oM)i, andv

P P P
S ATAMAT v, BN AT, oy, =m-y B oY ATy,
s=1

s=1 s=1

Applying (2.11a) in a component-wise investigation using global numbering results in

P
>z mi e w, :(zzm”’ﬂ-fv?] : ie‘*’) !
s=1

s=1j€ws !
. cw
0 , 1w J

which is equivalent to

9:)?[1]] . V‘[SJ] , Z 6 ws P o X
%1851] = (z Sl U e w)
O s Z ¢ ws jEw s=1

The statement of the last line is true if and only if

seall nigw, = M =0
ol 4 ol — omlidl —

0
Condition (4.7) on the matrix pattern can be easily verified, e.g. in Fig. 2.1, the matrix entries
;2420 gl have to be zero but nemt!?>24 andmil*?l. Again, 11829 as well as
7M125:18] have to be zero.

REMARK 4.1. Intermediate steps in the proofs of theorems 4.1 and 4.2 lead directly to
equivalent formulations for (4.4)

(4.8) mATA, =m Vs=[1,...,P]
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and for (4.7)
(4.9) ATAM =M Vs=[1,...,P] .

Obviously, we can conclude that if a matfX fulfills (4.4) thend” fulfills also (4.7).
Eqg. (4.8) and (4.9) have been derived for non-overlapping element domain decompositions
by Groh [1] as a condition to apply (4.2) and (4.5) in parallel.
REMARK 4.2. The sets of subdomains induce a block structure of the unknowns in that
way that all nodes with the sameset, e.goy, build one block (see subsection 4.2 for an
example). Now, it follows directly from theorems 4.1 and 4.2 that an accumulated Matrix
can be applied to (4.2) ang.5) iff 20t possesses a block diagonal structure induced by the
described block structure of nodes. We can write

(4.10) 9 = blockdiag {M,}  with 0, = {zm[i’ﬂ} o
i,jEw(ok

REMARK 4.3. If 92t fulfills (4.10) and altdt, ' do exist then also the invergg " fulfills
the proper block condition and can be applied in parallel on (4.2) and (4.5).
The idea of the following theorem originates from the observation that the result of (4.2) can
be used as input for operation (4.1), that this result has exactly the right vector type to serve
as input for (4.5) and that all those operations can be performed fully in parallel. matrices
THEOREM 4.3. If the accumulated matrig fulfills pattern condition (4.4) then the
matrix multiplicationsp” - K - 3 result in a distributed matrix/ which can be calculated
locally in parallel by simply computingf = ST -Ks - By, e,

P P
411 K= S aTkla, = S AT (BT p) A = FTKp
s=1 s=1

Proof. We substitute< in the right expression of (4.11)
by its definition (3.7)

P P
PR P=PT > ATK AP = > PrATK AP
s=1 s=1
and apply the equivalent pattern conditions (4.8) and (4.9) for all subdomains
P
=> ATARPTATKAPATA,

s=1

Using definition (3.6) fof3, yields finally

b

) P AT( z.KS.qgs)As = > ATkIA, .
-1 [ —— s=1

=KH

S
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4.2. Application of theorems 4.1 and 4.2We will apply the results of theorems 4.1
and 4.2 onour Ex. 2.1-2.2.

There are 9 different sets of subdomains in Ex. 2.1. These sets will be arranged with
respect to the number of subdomains therein :

oy = 0'[25]7

4 22 28 46
OFE; :J[ ]a OE, :J[ ]7 OFEs :0[ ]7 OE, :J[ ]a

1 7 43 49
0’]120'”, 0’]220'[]7 U[SZU[ ], 0’]420'[ ] .

The subscripV” indicates vertex nodes, subscrigisand/ denote

edge and interior nodes of the subdomains. The block structure above implies an ap-
propriate block structure in vectors and matrices. The admissible matrix pattern wrt. (4.4)
is

(4.12)
My
Me,v - Mg,
Me,v 0 Me,
M,y O 0 M, 0
Mm = | Mg,v 0 0 0 M,
Mrv Mne, MNne 0 0 My,
Mr,vy  Mpe, 0 My, m, 0 0 My,
m[3v 0 9)?13E2 0 93?13E4 0 0 9)?13
mh\/ 0 0 W[4E3 W]4E4 0 0 0 §m14
This matrix can be also expressed in the form
My 0 0
(4.13) M= | Mgy Mg 0 )

My Mg My

requiring the appropriate block structures of the submatrices from (4.12). Especially, we
have to require thaity, M andt; are block diagonal matrices (Fig. 2.am1%%% =
M1 Loy,

from which follows by remark 4.3 that we can apply also the inverse of them.

The previous investigations are completely valid for Ex. 2.2! The only difference consists
in the different sets of nodes grouped within the blocks.

5. Aparallel AMG.

5.1. Parallel MG. With the data structures and methods introduced in the previous sec-
tions
we can formulate a parallel MG algorithm; see also [5]. The components in Alg.1 have
to be chosen such that the following requirements are fulfilled.
¢ The interpolation of the correctian := LB’ needs an accumulated interpolation
matrix with anadmissible matrix patternsee theorem 4.1. i3 possesses such a
pattern then alsg@s” can be applied in the defect restriction.
If all refined elements belong to the same subdomain as their appropriate coarse
element, then the pattern condition on the interpolation is fulfilled automatically.
e \We assume that we have a parallel smoother; e.g. see [2].
e The coarse matrix / has to be again a distributed matrix to ensure the continuation
of the recursive algorithm.
e The matrix<? has to preserve the null spacetaf
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Algorithm 1 Parallel multigridPmMG(K, u, f, )
if £==1then

P
solve Y> ATKA, -u = £

s=1

else
u«— SMOOTH(K,u,f, v)

PMG(KvaHvdHag - 1)

w— P

Ue—u+rm

u — SMOOTH(K, 1, f, v)
end if

5.2. Sequential AMG. Each AMG algorithm consists of the following parts:
1. Coarsening, i.ew = we U wp.
2. Determining the interpolation weights= {a;; }

1€Ew, jJEWC "
Typically, ;. ; = 6, Vi, j € we holds. e
3. Calculate the coarse matrix
(5.1) KH = pT . K.p .

4. Apply some multigrid procedure using the components determined in 1.-3.

5.2.1. Sequential coarsening\We can use any coarsening strategy for our investiga-
tions. Therefore, we present only the simple coarsening instead of the classical approach [8].
We only have to adapt the sequential algorithm such that it works on an arbitrary given set of
nodes, i.e., a subset of all nodes.

Algorithm 2 Simple coarsening GARSHK, w, wc, wr)
Wt < W
while w; # 0 do
pick some; € w; (strong connections ir| )
we — we U {Z}
determine neighbors of— U;
wp — wp U (U; Nwy)
end while

5.2.2. Determination of interpolation weights. Here, we restrict the calculation of
interpolation weightsy;;

on a given index set. Again, we can use an arbitrary routine with adaption for subsets of
nodes.
A correct chosen matrix dependent interpolation is equivalent to the energy minimization
technique for determining the interpolation weights. In case of the Laplacian, the condition
> a;; =1, Vi € w, guarantees that the null space of that operator can be represented on
jEw
?:oarser grids.
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Algorithm 3 Calculation of interpolation weights WGHTS(K, w¢, wr, )
forall i € wr do
determine neighbors of— U;
forall j € U; Nwe do
calculaten;;
end for
end for

5.2.3. Calculation of coarse matrix. The classical Galerkin approach
(52) (KH)[”] = Z ZO&M . K[kl] e Vl,] € we
kEw lew

leads directly to a standard routine for calculating the coarse grid matrix. Here, no adaption
iS hecessary.

Algorithm 4 Calculation of coarse matrix &ERKIN(K | K, wo, wr, «)

Require: K = 0 before first call
forall £ € wp Uwe do
determine fine and coarse neighborsof— F*, C*
forall I € F* U C* U {k} do
T—CrtuCU({l}Nwe)
forall i € T'do
forall j € T'do
(KH)[ZJ] - (KH)[ZJ] + Qg - (K)W] - ayj
end for
end for
end for
end for

This Alg. 4 can by dramatically accelerated by use of matrix structures.

5.3. The parallel coarsening.The control of the admissible pattern for interpolation
and restriction (4.4,4.7) will be realized by appropriate subsets of nodes as input parameters
for Alg. 2—4. Controlling these subsets is the main task of Alg. 5.

Algorithm 5 Parallel coarseningiB8MACOARSH K, 0, w, wc, wr, @)
if w == () then
return
else
wp — w(o)
COARSHK, wy, wo, wWr)
WEIGHTS(K,wc NW(0),wr Nwy, @)
we—w\w
forall 6 C o suchthatAr C o : 6 C 7 do
SIGMACOARSH K, 6, w,we, wg, @)
end for
end if
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The initial call of the coarsening iSsSMACOARSE({1, ... , P},w" 0, () on all proces-
sors. This means in Ex. 2.1 on page 43 that for this firstwak= {25}, so that the only
vertex node25 will be automatically a coarse node. The biggest subsai§ {1,... , P}
with non-emptyw(¢) are{1,2}, {1, 3}, {2,4}, {3, 4} which continue the coarsening on the
four interface edges. These steps are followed by coarsening in the interior of subdomains.
As a result, e.g, interpolation from vertex node to edge node or interior node may happen but
not vice versa.

e The statement := w \ w; blocks redundant calculations by reducing the set of
available nodes.

e The recursive algorithm comes to an end i€onsists of only one element.

e The special parameters in the call
WEIGHTS(K,wc NW(0),wr Nwy, @)
guarantee an admissible matrix patterfidnbecause

we Nw(o) {jewc: ol D0}
wrNw(o) = {icwp: ol =0}

(5.3) } s ol il

i.e., by (4.4) that only those;; are calculated in WIGHTs which fulfill the pattern
condition on the interpolatiofs.

e The usage of blocking coarsening requires some semaphore structure to synchronize
the work in the branches, i.e., which processor performs the coarsening on a set of
intersection nodes. After one processor does the coarsening, it will send a bit array
to all interested processors describing which nodes of the subset belong the coarse
grid. The following calculation of interpolation weights should be done redundantly.
On the other hand, a non-blocking coarsening requires identical results in the coars-
ening of all processors € ¢l sharing a block of nodes represented bifere, we
need an identical numbering of the nodesiifw!?) on all processors. Additionally
the coarsening strategy has to be strongly deterministic in that case.

5.4. Parallel coarse grid matrix. The pattern condition (4.4) for the interpolation ma-
trix P = {ai;}, e, jewe is fulfilled by construction in Alg. 5. Therefore, we can apply

Theorem 4.3 with the fine grid matrix so that the coarse matri” can be calculated fully
in parallel, i.e., we can call Alg. 4 locally on each processarith matricest andK, as
appropriate output and input parameters.

5.5. The parallel AMG algorithm. The parallel AMG algorithm on page 55 simply
collects the subroutines of previous sections. The routine-A is the parallel multigrid
algorithm with trivial changes.

The coarsening part of Alg. 6 terminates automatically when alksgt8!) contain only one
element.

6. Conclusions. The main advantage of the proposed parallel AMG algorithms consists
in the combination of standard AMG components and standard DD approaches. Therefore, it
can be easily implemented in given f.e. packages by combining both parts.

The parallel AMG algorithm is not consistent with respect to the number of processors.
i.e., the resulting coarse grids change with the number of processors used. This is no disad-
vantage in our opinion, because we needed a simple general approach and not one which will
change with the hardware.

A distribution of elements on the processors should additionally take into account
strongly anisotropic coefficients or similar problems in that (macro-/DD-) coarsening.
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Algorithm 6 Parallel AMG RRAMG(K, u, f,w)

forall s=1,...,Pdo
Kl — K,
w§<—ws
f—1

repeat

P
M, — A, [ 2 ATK A, | AT
q=1

que—W, sz*_w
SIGMACOARSE(M,, {1, ... ,P},wﬁ,wc,s,wp,ma”l)
K§+1 — 0
GALERKIN (K4, KE e g, wir s, af 1)
(—0+1
Wy We,s
until termination
end for

PMG'A(Kv u, £7 ]-)
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