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FINITE ELEMENT COMPUTATIONS ∗
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Abstract. The purpose of this paper is to describe and study several algorithms for implementing multilevel
projection methods for nonlinear least-squares finite element computations. These algorithms are variants of the
full approximation storage (FAS) scheme which is widely used in nonlinear multilevel computations. The methods
are derived in the framework of the least-squares mixed formulation of nonlinear second-order elliptic problems.
The nonlinear variational problems on each level are handled by smoothers of Gauss-Seidel type based on a space
decomposition of the finite element spaces. Finally, the different algorithms are tested and compared for a nonlinear
elliptic problem arising from an implicit time discretization of a variably saturated subsurface flow model.
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1. Introduction. In recent years, least-squares mixed finite element methods have re-
ceived much attention and have been applied to a number of problems which can be stated
as first-order systems (see e.g. the recent survey paper [3]). One of the advantages that con-
tributed to the popularity of the least-squares approach is the fact that the resulting algebraic
problems are positive definite and may be easier to attack by solution techniques like multi-
level methods. Another advantage is the accessability of a “built-in” a posteriori error estima-
tor that does not require additional computations and estimates nonlinear problems directly
without linearization.

The focus of this paper will be on the iterative solution of the nonlinear algebraic least-
squares problems arising from the first-order system least-squares approach. The methods
will be presented in the framework of the least-squares mixed finite element formulation of
nonlinear second-order elliptic problems. We study several algorithms for the implementa-
tion of nonlinear multilevel projection methods for least-squares mixed finite element dis-
cretizations. These algorithms are different variants of the full approximation storage (FAS)
scheme which is widely used in nonlinear multilevel computations. The nonlinear variational
problems on each level are handled by smoothers of Gauss-Seidel type based on a space
decomposition of the finite element spaces. Since the local evaluation of the least-squares
functional provides an easily accessible a posteriori error estimator, it is natural to use adap-
tive mesh refinement strategies in the least-squares finite element framework. We therefore
also describe an adaptive version of the multilevel projection schemes utilizing the smoothing
iteration only in those parts of the domain where it is needed.

Although the FAS scheme can be applied to the least-squares formulation of general
nonlinear first-order systems, this work is motivated from its application to variably saturated
subsurface flow. A widely used model in this context is based on two first-order differential
equations which stand for mass conservation (scalar equation) and a generalization of Darcy’s
law (vector equation) for the two process variables, namely, the hydraulic potential (scalar un-
known) and volumetric flux (vector unknown). This model is often used in combination with
a parametrization proposed by Mualem [13] and Van Genuchten [16]. Mathematically, this
is equivalent to a nonlinear parabolic initial-boundary value problem, which is possibly de-
generate, for the scalar variable (hydraulic potential). Since one is also interested in accurate
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approximations to the vector variable (flux), it is appropriate to work directly with the first-
order system as a starting point for the numerical method. After an implicit discretization of
the time derivative, we obtain the first-order system formulation of a nonlinear elliptic bound-
ary value problem. The solution of nonlinear variably saturated subsurface flow problems by
least-squares finite element methods has been studied in [15] and [14]. The resulting sys-
tems of nonlinear algebraic equations are solved by a damped Gauss-Newton method in [15]
and an inexact Gauss-Newton method with a multilevel V-cycle as inner iteration in [14]. In
the context of variably saturated subsurface flow, the use of nonlinear multilevel methods is
motivated by the fact that the nonlinearity of the problem is usually pronounced only in rela-
tively small areas of the computational domain. This lets us expect that a nonlinear multilevel
approach is more effective since it is more flexible in handling local nonlinear effects.

The following section presents the background on the least-squares mixed finite element
formulation of nonlinear second-order elliptic problems. Three different FAS-type schemes
for the implementation of nonlinear multilevel projection methods are derived in Section
3. Section 4 is concerned with the Gauss-Seidel-type smoothing iterations for the solution
of the nonlinear variational problems on each level. Implementational issues are discussed
in Section 5. In Section 6, the different algorithms are tested and compared for a nonlinear
elliptic problem arising from an implicit time discretization of a variably saturated subsurface
flow model. Finally, we draw some conclusions in Section 7.

2. Nonlinear Least-Squares Finite Element Formulation. We consider nonlinear
second-order elliptic boundary value problems re-written as a first-order system

R(p, u) :=
(

div u + b(p) + f
u + a(p) ∇p

)
= 0 (2.1)

in Ω ⊂ IR2 subject to boundary conditionsp = pD on ΓD ⊂ ∂Ω andn · u = n · uN on
ΓN ⊂ ∂Ω (ΓD ∪ ΓN = ∂Ω). For example, modelling variably saturated subsurface flow
leads, after an implicit discretization with respect to time, to (2.1) with

a(p) = K(θ(p)) , b(p) =
θ(p)
τ

, f = −θ(pold)
τ

(see, for example, [11, Sect. 3.3]). Here,p andpold denote the hydraulic potential at the
current and previous time-steps, respectively,K(θ(p)) is the permeability,θ(p) the water
content andτ the time-step. Existence and uniqueness of the underlying parabolic initial-
boundary value problem is discussed in [1]. In particular, for the parametrization used in
Section 6, the functionsK(θ) andθ(p) are such that the assumptions in [1] are fulfilled.

We compute approximate solutions to (2.1) using the least-squares finite element method.
To this end, let

Qh ⊂ Q := {q ∈ H1(Ω) : q = 0 onΓD} ,

Vh ⊂ V := {v ∈ H(div, Ω) : n · v = 0 onΓN}

be suitable finite-dimensional spaces and letpD ∈ H1(Ω) anduN ∈ H(div, Ω) be exten-
sions of the boundary values onΓD andΓN , respectively. The least-squares finite element
approximation is then defined as(ph, uh) = (pD + p̂h, uN + ûh) with (p̂h, ûh) ∈ Qh × Vh

such that

‖R(pD + p̂h, uN + ûh)‖2
0,Ω = min

q̂h∈Qh,v̂h∈Vh

‖R(pD + q̂h, uN + v̂h)‖2
0,Ω . (2.2)
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In the sequel, we will concentrate on standard piecewise linear continuous functions forQh

and the lowest-order Raviart-Thomas spaces forVh. The approximation properties of this
approach are discussed in [15] for the above-mentioned variably saturated subsurface flow
model and in [6] for the linear case (i.e., witha(p) constant andb(p) = cp).

By J (ph, uh) we denote the Fr´echet derivative ofR(·, ·) with respect toQh andVh at
(ph, uh). For the first-order operatorR(·, ·) of (2.1) this is given by

J (ph, uh)
(

q̂h

v̂h

)
=
(

div v̂h + b′(ph) q̂h

v̂h + a′(ph) ∇ph q̂h + a(ph) ∇q̂h

)
. (2.3)

The nonlinear least-squares problem (2.2) is equivalent to the variational problem(
R(pD + p̂h, uN + ûh),J (pD + p̂h, uN + ûh)

(
q̂h

v̂h

))
0,Ω

= 0 (2.4)

for all (q̂h, v̂h) ∈ Qh × Vh.
With respect to bases for the spacesQh andVh, (2.2) becomes a nonlinear algebraic

least-squares problem which may be solved using the Gauss-Newton method [15]. In [14], an
inexact Gauss-Newton method for nonlinear least-squares computations is studied which uses
a multilevel method for the linear least-squares problems arising in each step. An alternative
approach for least-squares finite element computations is to use a nonlinear multilevel method
which is based on successive minimization of the (nonlinear) least-squares functional with
respect to low-dimensional subspaces on different levels.

3. FAS-type Nonlinear Multilevel Projection Schemes.Multilevel methods are based
on a sequence of triangulationsT0, T1, . . . , TL which are assumed to be shape-regular but
may be the result of an adaptive refinement process. Associated with these triangulations are
sequences of subspacesQ0, Q1, . . . , QL andV0, V1, . . . , VL. Similarly to the linear case,
nonlinear multilevel methods are also based on the idea of coarse space corrections (for trea-
tises of nonlinear multilevel methods see e.g. [10, Ch. 9] or [4, Sect. V.5]). If(pl, ul) is an
approximation on levell, our aim is to work with the least-squares problem of finding the
correction(p̂l−1, ûl−1) ∈ Ql−1 × Vl−1 on levell − 1 such that

‖R(pl + p̂l−1, ul + ûl−1)‖2
0,Ω

= min
q̂l−1∈Ql−1,v̂l−1∈Vl−1

‖R(pl + q̂l−1, ul + v̂l−1)‖2
0,Ω .

(3.1)

This is exactly the multilevel projection method, as described in [12], applied to our nonlinear
least-squares formulation. As above, the minimizer(p̂l−1, ûl−1) ∈ Ql−1×Vl−1 also satisfies
the variational formulation

(R(pl + p̂l−1, ul + ûl−1),J (pl + p̂l−1, ul + ûl−1)
(

q̂l−1

v̂l−1

)
)0,Ω = 0 (3.2)

for all (q̂l−1, v̂l−1) ∈ Ql−1 × Vl−1. In the linear case, we may simply use

R(pl + p̂l−1, ul + ûl−1) = R(pl, ul) + R(p̂l−1, ûl−1)

and the fact thatJ (·, ·) does not depend at all on(pl + p̂l−1, ul + ûl−1). The correction
equation (3.2) then turns into

(R(p̂l−1, ûl−1),J
(

q̂l−1

v̂l−1

)
)0,Ω = −(R(pl, ul),J

(
q̂l−1

v̂l−1

)
)0,Ω (3.3)
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for all (q̂l−1, v̂l−1) ∈ Ql−1×Vl−1 which is a variational problem that can be set up completely
on levell−1. With this approach corrections on successively coarser levels can be computed
recursively.

Obviously, this approach can not be used for nonlinear problems. Instead, we also need a
coarse level approximation to the solution of the nonlinear problem at which the coarse level
problem may be linearized. To this end, a projection

Il−1 : Ql × Vl → Ql−1 × Vl−1

is needed as proposed in the original FAS scheme by Brandt [5]. A natural choice is to use
standard interpolation at the coarse nodes forQl−1 and averagingn·ul along coarse edges for
Vl−1. Below we present three implementations of multilevel projection methods for nonlinear
least-squares formulations which resemble the original FAS idea. In all cases, if(p̂?

l−1, û
?
l−1)

denotes an approximation to(p̂l−1, ûl−1), then the coarse grid correction for(pl, ul) is done
by

(pnew
l , unew

l ) = (pl + p̂?
l−1, ul + û?

l−1)

which is implemented using the standard interpolation operator which represents the embed-
ding of (Ql−1, Vl−1) in (Ql, Vl) with respect to the nodal basis on levell.

3.1. FAS for the Normal Equations. The original FAS scheme in [5] was introduced
in the context of nonlinear equations. As a first approach, we apply this FAS scheme to
the nonlinear variational formulation (3.2). The corresponding variational problem for the
correction on the coarse levell − 1 consists in finding(p̂l−1, ûl−1) ∈ Ql−1 × Vl−1 such that

(R(Il−1(pl, ul) + (p̂l−1, ûl−1)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

= (R(Il−1(pl, ul)) , J (Il−1(pl, ul))
(

q̂l−1

v̂l−1

)
)0,Ω

− (R(pl, ul) , J (pl, ul)
(

q̂l−1

v̂l−1

)
)0,Ω

(3.4)

holds for all (q̂l−1, v̂l−1) ∈ Ql−1 × Vl−1. This means that during the computation on the
coarse level, an approximation

Il−1(pl, ul) + (p̂?
l−1, û

?
l−1) ∈ Ql−1 × Vl−1

to the solution of the nonlinear problem is stored rather than the correction(p̂?
l−1, û

?
l−1) itself.

Note that in the linear case, (3.4) is equivalent to the standard coarse level correction problem
(3.3).

In general, the variational formulation (3.4) is no longer of the form (3.2), i.e., it does
not come from a least-squares problem. Consequently, the variational problem for the coarse
level correction does not have the form (3.4) forl < L in a recursive call of the multilevel
algorithm anymore. We may formally write (3.4) as

(R(Il−1(pl, ul) + (p̂l−1, ûl−1)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

= fl−1(q̂l−1, v̂l−1)
(3.5)

for all (q̂l−1, v̂l−1) ∈ Ql−1×Vl−1 wherefl−1 is some linear functional onQl−1×Vl−1. This
variational formulation allows the recursive application of the FAS coarse level correction
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scheme of the form (3.5) where

fL(q̂L, v̂L) = (R(pL, uL) , J (pL, uL)
(

q̂L

v̂L

)
)0,Ω

and recursively, forl = L, L − 1, . . . , 1,

fl−1(q̂l−1, v̂l−1) = (R(Il−1(pl, ul)) , J (Il−1(pl, ul))
(

q̂l−1

v̂l−1

)
)0,Ω − fl(q̂l−1, v̂l−1) .

3.2. A Least-Squares FAS-Scheme.This formulation starts from the FAS correction
equation in analogy to [5] for the first-order system,

R(Il−1(pl, ul) + (p̂l−1, ûl−1)) = R(Il−1(pl, ul)) −R(pl, ul)

which is then handled by least-squares minimization. This leads to the problem of finding
(p̂l−1, ûl−1) ∈ Ql−1 × Vl−1 such that

‖R(Il−1(pl, ul) + (p̂l−1, ûl−1)) −R(Il−1(pl, ul)) + R(pl, ul)‖2
0,Ω

= min
q̂l−1∈Ql−1,v̂l−1∈Vl−1

‖R(Il−1(pl, ul) + (q̂l−1, v̂l−1)) −R(Il−1(pl, ul)) + R(pl, ul)‖2
0,Ω .

(3.6)

Taking variations in (3.6), we get that(p̂l−1, ûl−1) ∈ Ql−1 × Vl−1 satisfies

(R(Il−1(pl, ul) + (p̂l−1, ûl−1)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

=(R(Il−1(pl, ul)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

− (R(pl, ul) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω ,

(3.7)

for all (q̂l−1, v̂l−1) ∈ Ql−1 × Vl−1. A comparison of (3.4) and (3.7) shows that FAS for
the nonlinear variational formula (2.4) is not equivalent to FAS applied to the minimization
problem (3.6), in general. Nevertheless, in the linear case the two formulations are both
equivalent to the standard correction problem (3.3). This is due to the fact, that only the point
of linearization inJ differs in these two approaches. This scheme can also be written in the
form (3.5) with recursively defined right-hand side

fL(q̂L, v̂L) = (R(pL, uL) , J (pL + p̂L, uL + ûL)
(

q̂L

v̂L

)
)0,Ω

fl−1(q̂l−1, v̂l−1) = (R(Il−1(pl, ul)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

− fl(q̂l−1, v̂l−1) , l = L, L − 1, . . . , 1 .

The implementational effort is bigger than for the first approach as the right-hand side
depends on the solutionIl−1(pl, ul) + (p̂l−1, ûl−1) of the coarse level problem. This means
that during the solution process on the coarse level the right-hand side for the (local) Gauss-
Newton iteration needs to be updated with the current iterateIl−1(pl, ul)+(p̂?

l−1, û
?
l−1). This

normally interdicts recursive calls of the multilevel routines, as the computations have to be
done on different levels if more than two levels are involved. It is possible, however, to keep
the recursive structure of the algorithm by interpolating the current iterate to the finest level
L and assemble the right-hand side for the Gauss-Newton iterations there.
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3.3. A Hybrid FAS Scheme. Finally, we propose a hybrid of the two approaches (3.5)
and (3.7) presented above which combines advantages from both versions. It consists in
computing(p̂l−1, ûl−1) ∈ Ql−1 × Vl−1 such that

(R(Il−1(pl, ul) + (p̂l−1, ûl−1)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

=(R(Il−1(pl, ul)) , J (Il−1(pl, ul) + (p̂l−1, ûl−1))
(

q̂l−1

v̂l−1

)
)0,Ω

− (R(pl, ul) , J (pl, ul)
(

q̂l−1

v̂l−1

)
)0,Ω ,

(3.8)

holds for all (q̂l−1, v̂l−1) ∈ Ql−1 × Vl−1. This scheme avoids the costly interpolation to
the finest level by usingJ (pl, ul) in the second term on the right hand side. On the other
hand, it is closer to the least-squares FAS scheme (3.7) than (3.5) since it updates the right-
hand side with respect to the current coarse level iterate where this is possible without much
computational cost.

4. Nonlinear Smoothing Iterations. For each of the three multilevel approaches pre-
sented in the previous section the situation on a given levell is as follows. Starting from an
initial guess(p◦l , u

◦
l ), we have to construct an approximation to the solution(p̂l, ûl) ∈ Ql×Vl

of a variational problem of the form

(R(p◦l + p̂l, u
◦
l + ûl) , J (p◦l + p̂l, u

◦
l + ûl)

(
q̂l

v̂l

)
)0,Ω = fl(q̂l, v̂l) (4.1)

for all (q̂l, v̂l) ∈ Ql×Vl. On levell, we want to employ Gauss-Seidel type relaxation methods
based on a decomposition of the underlying finite element spaces

Ql =
Nl,p∑
ν=1

Ql,ν , Vl =
Nl,u∑
ν=1

Vl,ν (4.2)

(w.l.o.g. Nl,p = Nl,u =: Nl). Of course, this decomposition only makes sense if varia-
tional problems with respect toQl,ν × Vl,ν are easy to solve, i.e., these subspaces are low-
dimensional with local support.

A fully nonlinear version of this Gauss-Seidel relaxation scheme consists in successively,
for ν = 1, . . . , Nl, updating the approximation(p̂?

l , û
?
l ) ∈ Ql×Vl by (p̂?

l +δp
(ν)
l , û?

l +δu
(ν)
l )

where(δp(ν)
l , δu

(ν)
l ) ∈ Ql,ν × Vl,ν solves the variational problem

(R(p◦l + p̂?
l + δp

(ν)
l , u◦

l + û?
l + δu

(ν)
l ) , J (p◦l + p̂?

l + δp
(ν)
l , u◦

l + û?
l + δu

(ν)
l )

(
q̂l

v̂l

)
)0,Ω

= fl(q̂l, v̂l)

for all (q̂l, v̂l) ∈ Ql,ν ×Vl,ν . However, the computational cost for solving the nonlinear varia-
tional problems associated with the subspacesQl,ν ×Vl,ν , ν = 1, . . . , Nl to great accuracy is
much too high. Therefore, these problems are replaced by the linearized variational problems

(R(p◦l + p̂?
l , u

◦
l + û?

l ) + J (p◦l + p̂?
l , u

◦
l + û?

l )

(
δp

(ν)
l

δu
(ν)
l

)
,

J (p◦l + p̂?
l , u

◦
l + û?

l )
(

q̂l

v̂l

)
)0,Ω = fl(q̂l, v̂l)
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for all (ql, vl) ∈ Ql,ν × Vl,ν . In the context of least-squares problems this constitutes one
Gauss-Newton step for each of the local nonlinear problems. In contrast, applying Newton’s
method directly to these nonlinear variational problems would require the Fr´echet derivative
of J (·, ·) with respect toQl,ν × Vl,ν which is costly and complicated (cf. [8, Sec. 10.1]).
This relaxation scheme still requires that the JacobianJ (p◦l + p̂?

l , u
◦
l + û?

l ) and the right-hand
side be updated after each relaxation step. In order to avoid the computational cost associated
with this, we collect “non-overlapping” local subspaces into clusters

N
(1)
l⋃

ν=1

Ql,ν ,

N
(2)
l⋃

ν=N
(1)
l

+1

Ql,ν , · · · ,

N
(k)
l⋃

ν=N
(k−1)
l

+1

Ql,ν

(N (k)
l = Nl). Thesek clusters are constructed such that a modification of the approximation

in any of the local subspacesQl,ν × Vl,ν has no effect on the subproblems associated with
the other local subspaces in this cluster. In other words, the basis functions belonging to
the subspaces of each cluster have non-overlapping support. Consequently, updates to the
Jacobian and the right-hand side need to be done only after a cluster has been completely
traversed. With the specific space decomposition described in the next section, the number of
Gauss-Newton linearizations is reduced to at most six.

The stiffness matrices for these linear variational problems may be assembled in the usual
way by testing against (e.g. the canonical) basis functions ofQl andVl. This enables us to
formulate the corresponding linearized variational formulations for the nonlinear problem on
each level, and we may therefore use the FAS multilevel scheme. In order to make use of this
scheme, we need a hierarchical decomposition ofQL, VL:

QL =
NL,0+...+NL,l∑

ν=1

Ql,ν , VL =
NL,0+...+NL,l∑

ν=1

Vl,ν (4.3)

with NL,l , l = 0, . . . , L. A decomposition like this is easily gained during the refinement
process, and the transfer between levels is given canonically by the sequence of spaces
Ql , Vl. The nonlinear relaxation method is embedded into a multilevel scheme like FAS
by applying the projection method to the nonlinear least-squares correction formulation like
(4.1). We specifically use the decomposition (4.3) where relaxation sweeps are only done
on components which exclusively lie in the current space. Formulating the FAS correction
equations according to (3.5),(3.7), (3.8), we end up with three variants of FAS multilevel
projection methods.

5. Implementational Issues.We assumed (2.1) to be uniquely solvable where the so-
lution

(p, u) = (pD + p̂, uN + û) , (p̂, û) ∈ Q × V

is at the same time the unique minimizer of the associated least-squares functional with zeros
as its minimal value. However, the discrete solution

(ph, uh) = (pD + p̂h, uN + ûh) , (p̂h, ûh) ∈ Qh × Vh

of the variational formulation (2.4) will not result in a vanishing least-squares functional, in
general, since the minimization of the least-squares functional is only done with respect to
subspaces of finite dimension. In the course of the Gauss-Newton iteration, the least-squares
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functional contains components of both the discretization and the algebraic error. A reason-
able stopping criterion for the Gauss-Newton method should cause the method to terminate as
soon as the total error reaches the size of the discretization error as depicted in figure 5.1. The
stagnation in reduction of the least-squares functional may serve as an indicator for reduction
of the least-squares functional to the order of the size of the discretization error.

−1 0 1 2 3 4 5
0

0.5

1

1.5

2
current error
discret. error

FIG. 5.1.Discrete error reduction

The computational experiments in the next section will use a criterion which compares
the reduction of two consecutive iterations. If the product of these reduction ratios is belowεs

the iteration will be continued. We use anεs of 0.999 in our experiments. Another approach
would be to use the reduction in the norm of the linearized right-hand side of the Gauss-
Newton-step as a stopping criterion. The adaptive relaxation as described in the previous
section had been implemented by using a colouring algorithm to determine non-overlapping
domains in order to apply simultaneous smoothing steps on those domains during the projec-
tion relaxation method. It turned out that it is sufficient to use at most six independent sets of
domains per level.

A closer look to the implementation of the different variants of FAS methods reveals that
the computational effort in assembling the right-hand side of the linear system arising in each
Gauss-Newton-iteration differs. A comparison of the number of flops for each method will
therefore also be included in the numerical results in the next section.

We still have to find a suitable space decomposition according to (4.2). As we have to
deal with subspaces of H(div, Ω), we have to handle the div-free components in this space.
These components have a deteriorating effect on the condition numbers of the matrices of the
linearized system and therefore cause poor convergence. A decomposition described in [2]
suggests a block decomposition which may be indicated using the vertices of the triangula-
tion. For each vertex, the decomposition ofQh×Vh then consists of the associated nodal basis
function inQh and of those basis functions inVh which are associated with edges starting at
this vertex. This decomposition may be regarded as a domain decomposition which fulfills a
finite overlap condition. We divide the vertices into independent subsets such that we have no
overlap within each of them in order to be able to compute simultaneously on all domains in
each subset. This targets on solving the linear problems using a block Gauss-Seidel scheme.
Moreover, in view of the adaptive setting in the previous section, we only include a subspace
on levell if it differs from the subspace associated with the same vertex on the next coarser
level l − 1.

6. Computational Experiments. In this section, we present numerical results with
the different adaptive FAS-type multilevel algorithms described above for a nonlinear least-
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squares problem arising from the time discretization of a variably saturated subsurface flow
problem. Given a domainΩ ⊂ IR2, the mass conservation equation, expressed in terms of the
pressure variablep, reads

∂t θ(p) − div(K(θ(p))∇p) = 0. (6.1)

Introducing the flux variableu using the Darcy-Buckingham law

u + K(θ(p))∇p = 0, (6.2)

which is assumed to be valid in the porous media context, we end up with a time-dependent
system of first-order equations.θ andK are water content and permeability as described
in Section 2. We use an implicit Euler discretization with steplengthτ to approximate the
derivative in time∂tθ:

θ(p) − θ(pold)
τ

+ div u = 0

u + K(θ(p))∇p = 0
(6.3)

As an example for suitable tests, we use a water table recharge problem as described in [17]
which models infiltration into initially dry sand. The computational domain is a box of 3 m
length and 2 m depth as sketched in Figure 6.1.

0 50
Γ1 Γ2

Γ3

Γ4 Γ5

300
0

-170

-200

FIG. 6.1.Test example of a two-dimensional water table recharge problem

At time t = 0 we assume a constant hydraulic potential at -1.7 m (which is the position
of the groundwater table). Fort > 0 we have constant infiltration of 0.148 m/h through the
boundary segmentΓ1. Zero flux boundary conditions are prescribed at the boundary segments
Γ2, Γ3 andΓ4, while the hydraulic potential is held constant at -1.7 m at the right boundary
Γ5.

We use the model by van Genuchten [16] with the parameters listed in [7] for the func-
tions K(p) andθ(p). For some types of soil (e.g. sand), this parametrization leads to un-
boundedK ′(p) in the saturated limit which causes problems for the Newton iteration. Fol-
lowing a suggestion in [9, Chap. 6], we replaceK(p) by a cubic spline interpolant in a
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neighborhood of the saturated limit (for0 ≤ z − p ≤ 10−2 wherez is the height). We also
found it useful to limit the permeability from below by10−3Ks.

Our interest is in the performance of the different nonlinear multilevel solvers. For fixed
τ = 0.1, we pick the step from 2.9 hours to 3 hours from the simulation and concentrate
on the solution of the corresponding nonlinear elliptic problem (6.3) at this time step. All
multilevel methods will be compared to a single grid method, where only the Gauss-Seidel
block relaxation is done as described before for a space decomposition according to all points
belonging to the finest grid. That is, the single-grid method does not use any kind of multigrid
correction. In order to make use of the least-squares functional as an error estimator, we first
observe that the least-squares functional may be computed by

||R(pD + p̂h, uN + ûh)||20,Ω =
∑

T∈Th

||R(pD + p̂h, uN + ûh)||20,T =:
∑

T∈Th

ηT ,

whereT ∈ Th is one single element in the triangulationTh. As the total error in the least-
squares functional therefore consists of local contributionsηT , we decide to refine those tri-
angles with

ηT ≥ εe

#T
,

where#T equals the number of triangles in the triangulation, in order to gain an overall
accuracy ofεe.

In our experiments we used five levels of adaptive refinement within a full multigrid
scheme to provide suitable initial iterates for the next finer grid. Therefore, all calculations
start with a “single-grid” computation on levell = 0. Table 6.1 shows the number of de-
grees of freedom (foruh and forph) and the minimum of the least-squares functional on the
different levels.

TABLE 6.1
Degrees of freedom and least-squares functional on different levels after 3 hours

dimVh dimQh ‖R(pD + p̂h, uN + ûh)‖2
0,Ω

l = 0 343 127 2.14 ∗ 10−4

l = 1 645 231 8.79 ∗ 10−5

l = 2 1246 435 3.79 ∗ 10−5

l = 3 2494 854 1.38 ∗ 10−5

l = 4 3996 1358 5.57 ∗ 10−6

l = 5 6128 2072 2.81 ∗ 10−6

Figure 6.2 shows the adaptively refined triangulation for this time where the infiltration
front can easily be recognized on the left of the domain. In the rest of the domain no re-
finement happens as the soil is dry in this area and flux is negligible there. We first turn our
attention to the number of relaxation sweeps needed for convergence of the single grid algo-
rithm and the three multilevel variants (FAS for the normal equations≈ ML-1, hybrid FAS
≈ ML-2, least-squares FAS≈ ML-3).

While the number of single grid iterations obviously grows as the mesh is refined, the
three multilevel methods seem to have a bounded number of sweeps. Recalling that the stop-
ping criterion for the Gauss-Newton iteration was based on the stagnation in the reduction in
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FIG. 6.2.Adaptively refined triangulation

TABLE 6.2
Number of relaxation sweeps for the different solving methods

single-grid ML-1 ML-2 ML-3
l = 0 16 - - -
l = 1 9 6 6 6
l = 2 13 6 6 6
l = 3 31 10 10 10
l = 4 61 13 13 13
l = 5 62 12 12 12

the least-squares functional, we observe that while this reduction is disturbed for the single-
grid case, we have a fast reduction to the discretization error for the multilevel algorithms.
We may conclude that the single-grid convergence is obstructed by coarse-grid parts of the
remaining error, while these parts are well represented and well resolved on the coarser grids.
A first weak point of the applied stopping criterion is revealed by looking at the achieved min-
imal least-squares functional of each method (in percent of achieved single grid functional)
shown in Table 6.3.

TABLE 6.3
Percentage of achieved single-grid functional

single-grid ML-1 ML-2 ML-3
l = 1 100 99.89 99.89 99.91
l = 2 100 100.21 100.21 100.2
l = 3 100 99.71 99.71 99.72
l = 4 100 98.83 98.83 98.82
l = 5 100 97.89 97.89 97.87

Ignoring the results forl = 2 for the moment, we observe that the iteration for the
single-grid algorithm is stopped before the discretization error is reached. This means that
there exist coarse-grid parts of the error, which are not smoothed out during the projective
relaxation or at best damped at a rate greater thanεs = 0.999. On the other hand, these
components should be slashed by multilevel methods and of course the ML-x-algorithms
result in a smaller functional here using less relaxation sweeps (see Table 6.2). Another
conclusion is that the stagnation in reduction of the functional does not necessarily lead to a
small algebraical error, which may explain level-2 results, and so this stopping criterion needs
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to be modified. Taking Table 6.3 into account, we now compare the number of relaxation
sweeps that the multilevel algorithms required in order to end up with a functional of the
same size as the one that the single-grid algorithm produced.

TABLE 6.4
Number of relaxation sweeps to reach single-grid ls-functional

single-grid ML-x
l = 1 9 4
l = 3 31 6
l = 4 61 6
l = 5 62 4

With Table 6.4, we are ready to compare the amount of work done by the computer. As
we already mentioned above, the computational cost widely differs for the four solving al-
gorithms, so that a comparison of the reduction in the functional to the amount of work in
flops is indispensable. Let us shortly recall that reduction in the least-squares functional only
means reduction of the algebraic error, not reduction of the discretization error (as given in
Table 6.1), but the transfer to a finer grid of the same solution will result in a larger starting
least-squares functional as this discretization provides a more accurate measure of the true
error. This is due to the fact that the functions for saturation and permeability are linearly in-
terpolated to different resolutions on different levels. The three graphs in Figure 6.3 show the
reduction of the least-squares functional versus the computational cost (multilevel methods
dashed).

The jumps in the graphs represent the stronger measure for the least-squares functional
on the next finer grid. So we concentrate on the achieved reduction in the functional (y-axis)
compared to the computational work (x-axis). According to the considerations in Section 3,
we observe the high cost of the ML-3 algorithm against the cheap ML-1 algorithm, where
only one point of linearization has to be updated for the right-hand side of the Gauss-Newton
system. Obviously, the computational cost is smaller in the multilevel algorithms ML-1 and
ML-2, whereas the ML-3 algorithm has a hard stand against the cost of the many single-grid
relaxations. Nevertheless, if we have the last table in mind, the ML-3 ansatz is still compet-
itive. However, the first time that the ML-1 algorithm does pay off is on the third level and
therefore this one looks much more effective. On the other hand, the ML-2 algorithm does
not give significant advantage for the additional cost. If we restricted the number of iterations
to the numbers in the last table, all multilevel methods show a satisfying behaviour and only
differ in the computational cost per iteration. Nevertheless we should keep in mind that the
stopping criterion not only (indirectly) depends on the remaining error but also on the actual
error reduction. So we need another criterion to compare the performance of the multilevel
algorithms. In Section 5 we mentioned that another stopping criterion could be given us-
ing the Euclidean norm of the right-hand side of the Gauss-Newton system. Consequently,
we should now compare this “residual quantity” during the iterative process of our solving
methods.

The graphs in Figure 6.4 show a comparison of the three variants in terms of residual
norm vs. number of iterations.

The full multigrid scheme seems to provide good estimates for the next levels as the
starting norm of the right-hand side is reduced on each level. Again the multilevel methods
show a very good performance, whereas the single-grid convergence slows down during the
iteration. This confirms the former speculation that remaining coarse grid components of the
error, here summed up in form of the norm of the right-hand side of the correction system, are
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FIG. 6.3.Functional vs. cost

the explanation for retarding effects in convergence. Using a stopping criterion based on this
reduction with a fixed maximal errorεr of about10−4, we found that the multilevel methods
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FIG. 6.4.Residual norm vs. iterations

still presented a good convergence performance, while the single-grid algorithm resulted in
unaffordably many relaxation sweeps. The graphs in Figure 6.5 show that the nonlinear
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coarse-level correction really has a major effect in convergence.
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FIG. 6.5.Convergence rate
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FIG. 6.6.Comparison of residuals

TABLE 6.5
Number of relaxation sweeps, second stopping criterion

single-grid ML-1 ML-2 ML-3
l = 0 6 - - -
l = 1 23 19 19 19
l = 2 55 15 15 15
l = 3 122 16 16 16
l = 4 >200 18 18 17
l = 5 >200 19 19 19

Although the single-grid convergence factors tend to 1, the multilevel variants show
pretty good rates which seem - as is typical for multilevel methods - to be bounded away
from 1 independently of the mesh size. Discrepancies between the ML-x variants first ap-
pear on the last two levels, so the convergence rates for these levels are given in this picture.
We observe only slight differences between the ML-1 and ML-2 method, whereas the ML-3
variant shows the best rates. Figure 6.6, however, which additionally takes into account the
computational cost, shows that the ML-1 algorithm is the cheapest algorithm to achieve small
“residuals” (l = 0 left out for simplicity). We can obviously draw the conclusion from this
figure that on all levels the ML-1 algorithm is the cheapest way to reduce the “residual”. For
the next results, we use the reduction of the linearized right-hand side as a stopping criterion
with a minimal tolerance ofεr = 0.00001. To limit the computation time, we bound the max-
imum number of iterations by 200. In Table 6.5 we have a look on the number of relaxation
sweeps until this new stopping criterion is fulfilled. These results confirm the favourable
performance of the multilevel methods in contrast to the number of single-grid relaxations
which about doubles from level to level. We finally compare the computational costs of the
single-grid and the ML-1 method in Figure 6.7.

Two conclusions can be drawn from Figures 6.7 and 6.3. First, the second stopping
criterion also provides the reduction of the least-squares functional nearly to the size of the
discretization error. Second, using this criterion the computational costs for applying nonlin-
ear coarse-grid corrections already pay out on the second level and the improvement becomes
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FIG. 6.7.Computational costs, ML-1 algorithm, second stopping criterion

obvious on the third level.

7. Concluding Remarks. The main result of this paper is the applicability of nonlinear
multilevel methods for systems arising from least-squares reformulations of partial differen-
tial equations by achieving typical multilevel behaviour of the convergence history (level
independence, well bounded away form one). As pointed out in Section 3 the different
approaches of using the FAS-scheme on the normal equations of the arising linear Gauss-
Newton system and the ansatz to apply least-squares on the FAS equations for the first-order
system only differ in a varying point of linearization in calculating the right-hand side of
the variational formulation. So the good and nearly equal performance of either method —
in terms of iterations — results in a need for the comparison of the computational cost. It
turns out that the update of the linearization point does not improve the convergence rates
by much. The first stopping criterion — using the reduction of the discretized least-squares
functional — is detected to be not suitable for single-grid computations. Therefore a second
stopping criterion is introduced which takes into account the reduction of the norm of the
right-hand side of the Gauss-Newton correction system. Using this criterion, the good con-
vergence results for the nonlinear multilevel methods can be confirmed and the obstacles for
single-grid-convergence quantified. Using this criterion it will also be easier to compare the
results in this article to the results from [14].
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