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PERTURBATION ANALYSIS FOR EIGENSTRUCTURE ASSIGNMENT OF
LINEAR MULTI-INPUT SYSTEMS∗

M. E. CAWOOD† AND C. L. COX†

Abstract. The state-feedback pole (or eigenvalue) assignment problem is a fundamental problem in control sys-
tem design. The term eigenstructure denotes the specification of eigenvalues and eigenvectors (or certain properties
of the latter). Normally, the eigenvectors are calculated as an intermediate solution. In assignment for multi-input
systems, the solution (the feedback matrix) is not unique. However, the solution is unique if the eigenvectors are set.
Perturbation bounds are given for multi-input eigenstructure assignment of eigenvalues and eigenvectors occurring
in complex-conjugate pairs. Numerical results which support the analysis are also provided.
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1. Introduction. Consider the linear, time-invariant, multi-input control system with
dynamic state equation

ẋ = Ax + Bu.(1.1)

Here, A ∈ Rn×n is the state matrix, B ∈ Rn×m is the input matrix, x ∈ Rn is the state
vector, u ∈ Rm is the input vector, and · denotes the differential operator d/dt. In many
cases, the control of such dynamical systems is accomplished through the use of linear state
feedback. That is, the input vector u is chosen to be a linear function of x, e.g.

u = −Kx,(1.2)

where K ∈ Rm×n is the feedback gain matrix. Choosing K so that the closed-loop system

ẋ = (A−BK)x(1.3)

has desired characteristics is one of the fundamental topics in linear control theory; see [1].
In particular, in pole assignment, K is determined so that A − BK has a desired set of
eigenvalues. Of primary interest in this paper is the multi-input case, i.e. when 1 < m < n.

The definition of eigenstructure assignment varies in the literature. For example, eigen-
structure assignment may refer to pole assignment along with setting the eigenvectors; see
[13]. A broader meaning is that certain properties of the eigenvector matrix are assigned.
For example, in the robust eigenstructure assignment problem, the eigenvector matrix is con-
strained to be as well conditioned as possible; see [10]. For the multi-input problem, the
nonuniqueness of the eigenvector matrix can be exploited so that design criteria, such as de-
coupling, insensitivity of eigenvalues and eigenvectors, and robustness, can be optimized; see
[1, 16]. If B is of full rank, then once a nonsingular V has been specified, K is unique; see
[10]. Note that K is a real matrix if it is assumed that A and B are real and that complex
eigenvalues and eigenvectors occur in conjugate pairs.

The general eigenstructure assignment problem can be defined in the following way.
PROBLEM 1.1. Given A and B, as in (1.1), a self-conjugate set of eigenvalues {λj}, j =

1, . . . , n, find a self-conjugate set of linearly independent eigenvectors {vj}, j = 1, . . . , n,
and K ∈ Rm×n such that

(A−BK)V = V Λ,(1.4)
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where

Λ = diag(λ1, . . . , λn),

and where

V = [v1, . . . , vn].

Necessary conditions for the existence of a solution to PROBLEM 1.1 can be found in
[10]. Necessary and sufficient conditions for the existence of a nonsingular V solution to
PROBLEM 1.1, for the case where A and B are complex and the eigenvalues are not restricted
to occur in complex conjugate pairs, are in [12].

It is assumed that the pair (A,B) is controllable, which is equivalent to the statement,
[9],

rank[A− λIn, B] = n,∀λ ∈ C.(1.5)

As a result of (1.5), and the assumption that 1 < m < n, it follows that

‖A− λjI‖ > 0, j = 1, . . . , n.(1.6)

Without loss of generality, it is assumed that B is of full rank.
Though there are many solution algorithms, there are fewer references on perturbation

analysis of the pole-assignment problem [14]. A perturbation analysis for the single-input
case is given in [2]. Perturbation analyses for both single-input and multi-input cases are
given in [14], under the assumption that the closed-loop system has no repeated eigenvalues.
With the same assumption, perturbation theory for the single-input case is developed in [11].
Note that for the single input case, A−BK is diagonalizable if and only if its eigenvalues are
distinct [10]. Characterization of the set of ill-posed problems (A,B), under the assumption
that there is no intersection between the set of eigenvalues of A and that of A − BK, is
considered in [5]. A perturbation analysis for multiple input pole placement can be found
in [12], where perturbation results for the feedback gain and the poles of the closed loop
system are provided, along with computational results comparing the actual poles with the
eigenvalues of the closed loop system formed from (A,B) and the perturbed gain matrix.

The goal of this paper is to present a perturbation analysis of PROBLEM 1.1. The primary
result is a perturbation bound for the feedback gain matrix K. An intermediate result, for
perturbations in the eigenvector matrix V , is motivated by the dependence of K on V . The
bound on perturbations in V applies to all possible eigenvector matrices. These results are
independent of the algorithm used for computation. Throughout the paper it is assumed
that a nonsingular matrix V of right eigenvectors can be found. Without loss of generality
it is assumed that V has been normalized so that each column has unit Euclidean length.
Supporting numerical results are provided.

To establish notation and to provide a foundation for the analysis of the next section,
some known results are stated here, without proof.

LEMMA 1.1. [10] Given A, B, Λ, and V , with B full rank, and V nonsingular, there
exists a real matrix K, which is the solution to equation (1.4) if and only if

UT
2 (AV − V Λ) = 0,(1.7)



ETNA
Kent State University 
etna@mcs.kent.edu

M. E. Cawood and C. L. Cox 27

where

B = UB0 := [U1, U2]

[
B0

1

0

]
(1.8)

with U = [U1, U2] orthogonal and B0
1 nonsingular. Moreover, K is found as the solution of

B0
1KV = UT

1 (AV − V Λ).(1.9)

Without loss of generality it is assumed that B0
1 is upper triangular with positive diagonal

entries.
In the next lemma the condition number κ2(B) is defined as

κ2(B) = ‖B+‖2‖B‖2.

LEMMA 1.2. [4] Suppose full rank matrix B ∈ Cn×m, m ≤ n has QR factorization
B = Q1R with Q1 ∈ Cn×m, R ∈ Cm×m. If ∆B ∈ Cn×m satisfies

κ2(B)
‖QT

1 ∆B‖2

‖B‖2
< 1,(1.10)

then there is a unique QR factorization

B + ∆B = (Q1 + ∆Q1)(R + ∆R)

with

‖∆Q1‖F ≤
√

2κ2(B)
‖∆B‖F

‖B‖2
+ O(ε2),(1.11)

and

‖∆R‖F

‖R‖2
≤
√

2κ2(B)
‖∆B‖F

‖B‖2
+ O(ε2),(1.12)

where ‖∆B‖F ≡ ε‖B‖2.
LEMMA 1.3. [15] Let S and T be k-dimensional subspaces of Cn with S, S⊥, T , T ⊥

having orthonormal bases {p1, . . . , pk}, {pk+1, . . . , pn}, {q1, . . . , qk} and
{qk+1, . . . , qn}, respectively. Defining matrices

P1 = [p1, . . . , pk], P2 = [pk+1, . . . , pn], Q1 = [q1, . . . , qk], Q2 = [qk+1, . . . , qn],

the distance between subspaces S and T , d(S, T ) satisfies

d(S, T ) = ‖Q∗
2P1‖2 = ‖Q∗

1P2‖2 = ‖P ∗
1 Q2‖2 = ‖P ∗

2 Q1‖2.(1.13)

LEMMA 1.4. [3] For F ∈ Rn×n with ‖F‖ < 1, using an operator matrix norm,

‖(I − F )−1‖ ≤ 1

1− ‖F‖ .

The Kronecker product of A ∈ Cm×n and B ∈ Cp×q is the matrix D ∈ Cmp×nq defined as

D = A⊗B =




a11B · · · a1nB
. . .

an1B · · · annB


 .
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LEMMA 1.5. [8] For A ∈ Cm×n, X ∈ Cn×p, B ∈ Cp×q and C ∈ Cm×q , the equation

AXB = C

is equivalent to

(BT ⊗A)vec(X) = vec(C),

where

vec(X) = [x11 . . . xn1 x12 . . . xn2 . . . . . . x1n . . . xnn]T .

2. Analysis. Let

Ã = A + ∆A

B̃ = B + ∆B

λ̃j = λj + δλj ,

where

‖∆B‖F ≤ ε‖B‖2

(2.1)

‖∆A− δλjI‖F ≤ ε‖A− λjI‖2, j = 1, . . . , n.

The latter inequality is motivated by (1.6) and subsequent analysis. Separate bounds on ∆A
and δλj would lead to results which are similar to, yet more complicated than, the results in
this paper.

The goal is to analyze the difference between solution K of (1.4), and K̃, the solution of
the perturbed problem

(Ã− B̃K̃)Ṽ = Ṽ Λ̃,(2.2)

where

Λ̃ = diag(λ̃1, . . . , λ̃n),

and Ṽ satisfies a perturbed variation of (1.7). A perturbation result for V will also be derived.
The first step is to bound perturbations to B0

1 and U2 defined in (1.8).
LEMMA 2.1. Suppose that B, U1, U2, and B0

1 satisfy (1.8). Define perturbation matrices
∆U1, ∆U2, and ∆B0

1 so that [U1 + ∆U1, U2 + ∆U2] is orthogonal, (B0
1 + ∆B0

1) is upper
triangular with positive diagonal entries, of full rank, and

B + ∆B = [U1 + ∆U1, U2 + ∆U2]

[
B0

1 + ∆B0
1

0

]
.

Then

‖∆U2‖2 ≤
‖∆U1‖2

1− ‖∆U1‖2
.(2.3)
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Also, if

ε
√

2κ2(B) < 1,(2.4)

then

‖∆U2‖2 ≤
ε
√

2κ2(B)

1− ε
√

2κ2(B)
+ O(ε2),(2.5)

and

‖∆B0
1‖F ≤ ε

√
2‖B‖2κ2(B) + O(ε2).(2.6)

Proof. The equality

(U1 + ∆U1)
T
(
U2 − (U1∆UT

1 )(I + U1∆UT
1 )−1U2

)
= 0(2.7)

motivates the definition

∆U2 := −(U1∆UT
1 )(I + U1∆UT

1 )−1U2

so that using Lemma 1.4,

‖∆U2‖2 ≤ ‖U1∆UT
1 ‖2‖(I + U1∆UT

1 )−1‖2 ≤
‖∆UT

1 ‖2
1− ‖∆UT

1 ‖2
,(2.8)

and therefore (2.3) is proven. It can be shown that (1.10) follows from (2.4), with Q1 replaced
by U1, as follows:

1 > ε
√

2κ2(B) > εκ2(B) ≥ ‖∆B‖F

‖B‖2
κ2(B)

≥ ‖∆B‖2

‖B‖2
κ2(B) ≥ ‖UT

1 ∆B‖2

‖B‖2
κ2(B).

Using (1.11), it follows that

‖∆U1‖2 ≤ ‖∆U1‖F ≤
√

2κ2(B)
‖∆B‖F

‖B‖2
+ O(ε2)

=
√

2‖B+‖2‖∆B‖F + O(ε2) ≤ ε
√

2κ2(B) + O(ε2).

Combining this with (2.8) proves (2.5).
Using (1.12), it follows that

‖∆B0
1‖F

‖B0
1‖2

≤
√

2κ2(B)
‖∆B‖F

‖B‖2
+ O(ε2) ≤

√
2κ2(B)

ε‖B‖2

‖B‖2
+ O(ε2).(2.9)

and (2.6) follows.
The next two lemmas lead to a theorem for a bound on the perturbation to V .
LEMMA 2.2. Suppose V and U2 satisfy (1.7) and ∆V is defined so that the columns of

Ṽ = V + ∆V satisfy

[U2 + ∆U2]
T (Ã− λ̃jI)ṽj = 0, j = 1, . . . , n.(2.10)
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Define Mj as Mj := UT
2 (A− λjI) and let ∆Mj be defined so that (2.10) may be written

(Mj + ∆Mj)ṽj = 0.(2.11)

If ε
√

2κ2(B) < 1, then

‖∆Mj‖F ≤ ε(1 +
√

2)κ2(B)‖A− λjI‖F

1− ε
√

2κ2(B)
+ O(ε2).(2.12)

Proof. Equation (2.10) can be written in the form of (2.11) by defining ∆Mj as

∆Mj = UT
2 (∆A− δλjI) + ∆UT

2 (A− λjI) + ∆UT
2 (∆A− δλjI)(2.13)

so that, using (2.5),

‖∆Mj‖F ≤ ‖UT
2 (∆A− δλjI)‖F + ‖∆UT

2 (A− λjI)‖F + ‖∆UT
2 (∆A− δλjI)‖F

≤ ‖∆A− δλjI‖F + ‖∆UT
2 ‖2‖A− λjI‖F +O(ε2)

≤ ε‖A− λjI‖F +
ε
√

2κ2(B)

1− ε
√

2κ2(B)
‖A− λjI‖F +O(ε2),

and the result follows noting that κ2(B) ≥ 1.
Let M̃j = Mj + ∆Mj . Introduce matrices Wj , Vj , Rj and corresponding perturbed

forms W̃j , Ṽj , and R̃j so that M∗
j = [Wj , Vj ]Rj , and M̃j

∗
= [W̃j , Ṽj ]R̃j , where [Wj , Vj ]

and [W̃j , Ṽj ] ∈ Cn×n are unitary, and Rj and R̃j ∈ Cn×(n−m) are full-rank and upper
triangular with positive diagonal elements.

To simplify notation, define the quantity

cF2(Mj) = ‖A− λjI‖F ‖M+
j ‖2.(2.14)

Note that

cF2(Mj) ≥ κ2(Mj) ≥ 1.

Then the following lemma holds.
LEMMA 2.3. Let Ṽj = Vj + ∆Vj . If

ε(2 + 2
√

2)κ2(B)cF2(Mj) < 1,(2.15)

then

‖∆Vj‖2 ≤
ε(2 +

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
+ O(ε2).(2.16)

Proof. From (1.11) and (2.12), and with W̃j = Wj + ∆Wj ,

‖∆Wj‖2 ≤ ‖∆Wj‖F ≤
√

2κ2(Mj)
‖∆Mj‖F

‖Mj‖2
+ O(ε2)

=
√

2‖M+
j ‖2‖∆Mj‖F + O(ε2)

≤
ε
√

2‖M+
j ‖2(1 +

√
2)κ2(B)‖A− λjI‖F

1− ε
√

2κ2(B)
+ O(ε2)

=
ε(2 +

√
2)cF2(Mj)κ2(B)

1− ε
√

2κ2(B)
+ O(ε2).
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Using (2.3) with M∗
j in place of B, Vj in place of U2 and Wj in place of U1,

‖∆Vj‖2 ≤
‖∆Wj‖2

1− ‖∆Wj‖2

≤
ε(2+

√
2)κ2(B)cF2(Mj)

1−ε
√

2κ2(B)

1− ε(2+
√

2)κ2(B)cF2(Mj)

1−ε
√

2κ2(B)

+ O(ε2),

and the result follows.
By definition, Vj is a matrix of orthonormal columns such that MjVj = 0, and Ṽj is a

matrix of orthonormal columns such that M̃j Ṽj = 0. The following theorem uses Lemma
2.3 to derive an upper bound on ‖∆V ‖F .

THEOREM 2.4. Suppose (2.15) holds for j = 1, . . . , n. Then

‖∆V ‖F ≤ ε(2 +
√

2)κ2(B)

√√√√
n∑

j=1

(cF2(Mj))2 + O(ε2).(2.17)

Proof. Let Vj = range(Vj) and Ṽj = range(Ṽj). Note that Vj and Ṽj are subspaces of
Cn, and by (1.13), d(Vj , Ṽj) = ‖Ṽ ∗

j Wj‖2.
It follows that

d(Vj , Ṽj) = ‖Ṽ ∗
j Wj‖2 = ‖(Vj + ∆Vj)

∗Wj‖2 = ‖∆V ∗
j Wj‖2 ≤ ‖∆V ∗

j ‖2

≤ ε(2 +
√

2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
+ O(ε2).

For vj ∈ Vj , there exists a ṽj ∈ Ṽj such that

‖vj − ṽj‖2 ≤
ε(2 +

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
+ O(ε2).

Therefore, there exists

Ṽ = [ṽ1, . . . , ṽn]

= [v1, . . . , vn] + [δv1, . . . , δvn]

= V + ∆V,

with ∆V satisfying

‖∆V ‖2
F =

n∑

j=1

‖δvj‖22 ≤
n∑

j=1

(
ε(2 +

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
+ O(ε2)

)2

.

Therefore,

‖∆V ‖F ≤ ε(2 +
√

2)κ2(B)

√√√√
n∑

j=1

(
cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)

)2

+ O(ε2),(2.18)

and the result follows.
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LEMMA 2.5. Suppose (2.15) holds for j = 1, . . . , n. Then, there exists a solution K̃ to
the perturbed problem (2.2) which satisfies the equation

(Φ + ∆Φ)vec(K̃) = s + δs,(2.19)

where

Φ = V T ⊗B0
1 ,

s = vec
(
UT

1 [AV − V Λ]
)
,

‖∆Φ‖2 ≤ ε(2 + 2
√

2)‖V ‖2‖B‖2κ2(B)

√√√√
n∑

j=1

(cF2(Mj))2 + O(ε2),(2.20)

and

‖δs‖2 ≤ ε(3 + 2
√

2)κ2(B)

√√√√
n∑

j=1

[‖A− λjI‖2cF2(Mj)]2 + O(ε2).(2.21)

Proof. From Lemmas 1.1 and 1.5, K satisfies

Φ vec(K) = s.(2.22)

Suppose K̃ solves the perturbed problem

(V + ∆V )T ⊗ (B0
1 + ∆B0

1)vec(K̃) = vec
(
(U1 + ∆U1)

T [(A + ∆A)(V + ∆V )

−(V + ∆V )(Λ + ∆Λ)]) .

Expanding both sides of this equation and comparing with (2.19) motivates the definitions

∆Φ := (∆V )T ⊗B0
1 + V T ⊗ (∆B0

1)T + (∆V )T ⊗ (∆B0
1)T(2.23)

and

δsj := UT
1 [A− λjI]δvj + UT

1 [∆A− δλjI]vj + ∆UT
1 [A− λjI]vj +O(ε2).(2.24)

Recall that the columns of V are normalized so that ‖vj‖2 = 1, j = 1, · · · , n. From (2.6),
(2.17) and the inequality

‖V ‖2 ≥
‖V ‖F√

n
= 1,

it follows that

‖∆Φ‖2 ≤ ‖V T ⊗∆B0
1‖2 + ‖∆V ⊗B0

1‖2 +O(ε2)

≤ ε
√

2‖V ‖2‖B‖2κ2(B) + ε(2 +
√

2)‖B‖2κ2(B)

√√√√
n∑

j=1

(cF2(Mj))2 + O(ε2)

≤ ε(2 + 2
√

2)‖V ‖2‖B‖2κ2(B)

√√√√
n∑

j=1

(cF2(Mj))2 + O(ε2),
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and the result (2.20) follows.
Then also

‖δsj‖2 = ‖UT
1 [A− λjI]δvj + UT

1 [∆A− δλjI]vj + ∆UT
1 [A− λjI]vj‖2 +O(ε2)

≤ ε‖A− λjI‖2

(
(2 +

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
+ 1 +

√
2κ2(B)

)

≤ ‖A− λjI‖2
ε(3 + 2

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)
.

Therefore,

‖δs‖2
2 ≤ ε2

n∑

j=1


‖A− λjI‖2

2

(
(3 + 2

√
2)κ2(B)cF2(Mj)

1− ε(2 + 2
√

2)κ2(B)cF2(Mj)

)2

 ,(2.25)

and the result (2.21) follows.
THEOREM 2.6. Assume that

ε(2 + 2
√

2)κ2(B)‖Φ−1‖2‖V ‖2‖B‖2

√√√√
n∑

j=1

(cF2(Mj))
2 < 1,

so that inequality (2.4) is satisfied and

‖Φ−1‖2‖∆Φ‖2 < 1.

Then there exists a solution K̃ to the perturbed problem (2.2) which satisfies

‖K − K̃‖F ≤ ε‖Φ−1‖2κ2(B)


(3 + 2

√
2)

√√√√
n∑

j=1

[‖A− λjI‖2cF2(Mj)]2(2.26)

+(2 + 2
√

2)‖V ‖2‖B‖2‖K‖F

√√√√
n∑

j=1

(cF2(Mj))2


+O(ε2).

Proof. Combining (2.19) and (2.22) results in the equation

Φ(vec(K)− vec(K̃)) = −δs + ∆Φvec(K) + ∆Φ(vec(K̃)− vec(K)).

It follows that

‖K − K̃‖F ≤ ‖Φ−1‖2‖δs‖2 + ‖Φ−1‖2‖∆Φ‖2‖K‖F + ‖Φ−1‖2‖∆Φ‖2‖K − K̃‖F ,

so that

‖K − K̃‖F ≤ 1

1− ‖Φ−1‖2‖∆Φ‖2
(‖Φ−1‖2‖δs‖2 + ‖Φ−1‖2‖∆Φ‖2‖K‖F ).

Therefore, from Lemma 2.5,

‖K − K̃‖F ≤


ε(3 + 2

√
2)‖Φ−1‖2κ2(B)

√√√√
n∑

j=1

[‖A− λjI‖2cF2(Mj)]2
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+ε(2 + 2
√

2)κ2(B)‖Φ−1‖2‖V ‖2‖B‖2‖K‖F

√√√√
n∑

j=1

(cF2(Mj))2


÷


1− ε(2 + 2

√
2)κ2(B)‖Φ−1‖2‖V ‖2‖B‖2

√√√√
n∑

j=1

(cF2(Mj))
2


+O(ε2),

and the result follows.
A difference between (2.26) and the analogous result in [12] is that ‖K‖F appears on

the right hand side of (2.26) whereas the right hand side of the result in [12] contains ‖K̃‖2.
Further comparisons between these two results appear in the numerical results found in §4.

3. Computational Effort. The matrix V in Theorems 2.4 and 2.6 is assumed to be
nonsingular and to satisfy (1.7). The bulk of the effort in computing V is the construction of
Vj for each distinct λj . Using real arithmetic and Householder reflections, O(n3) operations
are needed to calculate each Vj . Assuming n distinct eigenvalues, therefore, the computation
of V1, . . . , Vn requires O(n4) operations, and this effort is irrespective of the method used to
construct V once the eigenspaces have been identified. Given V1, . . . , Vn, the algorithm in
[10], for example, constructs V using O(n3) + O(n2m).

The bounds (2.17) and (2.26) involve the calculation of two-norms, and therefore singular
values, of n different matrices. The operation count appearing subsequently assumes that the
Golub-Reinsch SVD algorithm is used to compute the singular values of a given matrix [6].
For the bound (2.17), calculating κ2(B) and the norms ‖M+

j ‖2, j = 1, 2, . . . , n, requires
approximately (4nm2 − 4m3/3) and (4n2m2 − 4m4/3) flops, respectively. The calculation
of ‖A−λjI‖F , j = 1, . . . , n requires 5n2− 4n + 2 flops. Therefore, neglecting lower-order
terms, approximately (4n2m2 − 4m4/3) flops are required to compute the bound (2.17).

For the bound (2.26), since ‖Φ−1‖2 = ‖B+‖2‖V −1‖2, ‖Φ−1‖2 may be computed
more efficiently using the product ‖B+‖2‖V −1‖2. Calculating ‖B+‖2 and κ2(B) requires
(4nm2−4m3) flops and calculating ‖V −1‖2 requires 8n3/3 flops. To calculate ‖A−λjI‖2,
8/3n3 flops are required for each λj . Therefore, 8n4/3 flops are required to calculate
‖A − λjI‖2, j = 1, . . . , n. Additionally, (4n2m2 − 4m4/3) flops are required to com-
pute ‖M+

j ‖2, j = 1, 2, . . . , n. Moreover, (2nm − 1) flops are required to calculate ‖K‖F .
Therefore, neglecting lower order terms, approximately 8n4/3 + 4n2m2 − 4m4/3 are re-
quired to calculate the bound (2.26). By way of comparison, since the bound in [12] requires
the calculation of σn([A−λjI B]) for j = 1, 2, . . . , n, approximately 8n4/3+4n3m floating
point operations are necessary. Therefore, the effort required to compute the bound (2.26) is
comparable to that in [12].

4. Numerical Results. In order to compare analytical results with computational re-
sults, for each example an ensemble of randomly-generated perturbations, satisfying (2.1),
was calculated. Out of each ensemble, the data which resulted in the largest perturbation in
the result (denoted with a superscript ‘1’) and the data which resulted in the smallest pertur-
bation in the result (denoted with a superscript ‘2’) are presented. In Examples 4.1 and 4.3,
computed results are compared with (2.17). For these two examples, given a random pertur-
bation, each matrix V 1 was computed so that ‖Ṽ 1 − V 1‖F was maximized, where Ṽ 1 was
nearest to V 1 in a least norm sense [15]. That is, for j = 1, . . . , n, vj and ṽj were computed
so that

‖ṽj − vj‖2 = max
vj∈Vj

‖vj‖2=1

min
ṽj∈Ṽj

‖ṽj − vj‖2.
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This calculation is consistent with the definition of the distance between subspaces in [15]
and was performed using the singular value decomposition [15]. In a similar manner, V 2 and
Ṽ 2 were calculated so that ‖Ṽ 2 − V 2‖F was minimized.

In Examples 4.2 and 4.4, computed results are compared with (2.26). For these two
examples, the algorithm in [10] was used to compute V in order to minimize κ2(V ). Other
methods for computing V can be found in [16]. Given V and perturbations Ã, B̃, and Λ̃, of
A, B, and Λ, respectively, Ṽ was calculated using the singular value decomposition so that
‖Ṽ − V ‖F was minimized. Once Ṽ was computed, K̃ was calculated as the solution to the
linear system (2.19) so that (Ã − B̃K̃)Ṽ = Ṽ Λ̃. The norm of the difference between K

and K̃, that is, ‖K̃ − K‖F , is compared to both the upper bound given by (2.26) and the
upper bound derived for the multi-input pole placement problem in [12]. Since the bound
in [12] is a generalization of the bound derived in [14], these numerical results also serve to
compare the upper bound (2.26) with the result in [14]. It should be noted that although the
upper bound in [12] is for ‖K̃ −K‖2, the inequality ‖ · ‖F ≤

√
rank(K) ‖ · ‖2 allows this

upper bound to be used for ‖K̃ − K‖F [7]. All computations were performed on an Intel
Celeron-based PC running Windows 98 using MATLAB version 5.3.

Example 4.1. Consider the system (A,B) where

A =




0 0 0
0 0 0
1 0 0


 , B =




1 0
0 1
0 0


 ,

along with the eigenvalue matrix Λ = diag(−1,−1,−1.5). For the maximum perturbation,
the computed matrix of eigenvectors is

V 1 =




0.49463199537210 −0.59937029244746 −0.70725907677428
0.71461764483424 −0.53057563557225 −0.52675102469606

−0.49463199537210 0.59937029244746 0.47150605118285


 .

Define perturbations satisfying (2.1) as

∆A1 = ε



−0.21564477662453 0.28295205139480 0.49270485964721
−0.05357721271427 −0.06769241288139 −0.20677488775496
−0.50459970263128 −0.53800232918814 0.19079147624726


 ,

∆B1 = ε



−0.36959236540992 −0.01929590375419
−0.24961697602371 0.34258048096381

0.72676019179571 0.39392734671949


 ,

∆Λ1 = ε diag(0.13009539513388,−0.68669398496239,−0.69870789437494).

For the minimum perturbation, the computed matrix of right eigenvectors is

V 2 =




0.70634080108141 −0.60492174830267 −0.81949401635109
0.04653327256211 0.51782174236013 0.17307167530692

−0.70634080108141 0.60492174830267 0.54632934423406


 .

Define perturbations satisfying (2.1) as

∆A2 = ε




0.55315682618267 0.02154667012989 0.13275833578443
−0.22424698870527 0.20277685783903 0.61139214347771
−0.04972271936733 −0.12336744276203 −0.43935304375176


 ,



ETNA
Kent State University 
etna@mcs.kent.edu

36 Perturbation analysis for eigenstructure assignment of linear multi-input systems

∆B2 = ε




0.26919917686954 0.03609568137167
−0.24717566122336 0.52105598100158

0.06601086832521 −0.76764335949926


 ,

∆Λ2 = ε diag(−0.36126442754700, 0.22876621756179, 0.11072784164490)

In order to compare resulting perturbations of V with the upper bound in (2.17), define ∆V

as

∆V = ε(2 +
√

2)κ2(B)

√√√√
n∑

j=1

(cF2(Mj))2.

Table 4.1 displays results for a range of ε-values. Note that the estimate given by (2.17) is of
the same order of magnitude as the computed value of ‖Ṽ 1 − V 1‖F .

TABLE 4.1
Results for ∆V , Example 4.1

ε 1.0e-02 1.0e-04 1.0e-06 1.0e-08 1.0e-10 1.0e-12
∆V 8.6e-02 8.6e-04 8.6e-06 8.6e-08 8.6e-10 8.6e-12

‖Ṽ 1 − V 1‖F 2.0e-02 2.0e-04 2.0e-06 2.0e-08 2.0e-10 1.9e-12
‖Ṽ 2 − V 2‖F 6.8e-15 2.4e-07 2.5e-09 2.5e-11 2.5e-13 3.5e-15

Example 4.2. With A and B as above, let

K =

[
0 0 −1
0 1 0

]
, V =




1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2


 , Λ = diag(−1,−1, 1)

Define perturbations satisfying (2.1) as

∆A1 = ε



−0.02646755126766 −0.37133013122124 −0.32329657116399
−0.28959827450764 −0.18364471536169 −0.12370435133218

0.03853719691009 0.32394645383195 0.39695213859877


 ,

∆B1 = ε



−0.11023089696840 0.40216789149869
−0.34024244779514 −0.23571317194120

0.58689170212728 −0.55708405440022


 ,

∆Λ1 = ε diag(−0.56095601039052, 0.01233336655997,−0.71310822652332),

∆A2 = ε



−0.36549298982614 0.32574118686489 −0.14209090090193

0.12273704460413 −0.34080917254253 −0.00605430177760
−0.28847482180794 0.40285602889843 0.05792323150546


 ,

∆B2 = ε




0.30944065088079 −0.30483942789852
0.11549631486344 0.61838896225908
0.64435570671299 0.01951467987861


 ,
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and

∆Λ2 = ε diag(0.12907761526293,−0.59260614193590, 0.06863445367600).

In order to compare resulting perturbations of K with the upper bound in (2.26), define
(∆K)CC as

(∆K)CC = ε‖Φ−1‖2κ2(B)


(3 + 2

√
2)

√√√√
n∑

j=1

[‖A− λjI‖2cF2(Mj)]2(4.1)

+(2 + 2
√

2)‖V ‖2‖B‖2‖K‖F

√√√√
n∑

j=1

(cF2(Mj))2


 .

Note that this bound serves for both perturbations. Furthermore, define (∆K1)MX and
(∆K2)MX as upper bounds for ‖K̃1 − K‖F and ‖K̃2 − K‖F , respectively, in [12]. Ta-
ble 4.2 displays results for a range of ε-values.

TABLE 4.2
Results for (∆K)CC , Example 4.2

ε 1.0e-02 1.0e-04 1.0e-06 1.0e-08 1.0e-10 1.0e-12
(∆K)CC 2.82e-01 2.82e-03 2.82e-05 2.82e-07 2.82e-09 2.82e-11

(∆K1)MX 1.14e-01 1.13e-03 1.13e-05 1.13e-07 1.13e-09 1.13e-11
‖K̃1 −K‖F 2.84e-02 2.84e-04 2.84e-06 2.84e-08 2.84e-10 2.84e-12
(∆K2)MX 1.01e-01 1.01e-03 1.01e-05 1.01e-07 1.01e-09 1.01e-11
‖K̃2 −K‖F 4.94e-03 4.96e-05 4.96e-07 4.96e-09 4.96e-11 4.96e-13

In this example, note that both the upper bound given by (2.26) and the upper bound
given in [12] are within one order of magnitude of ‖K̃1 −K‖F .

Example 4.3. [1] Consider the system (A,B) where

A =




−20.0000 0 0 0 0 0 0
0 −25.0000 0 0 0 0 0
0 0 0 0 1.0000 0 0

−0.7440 −0.0320 0 −0.1540 −0.0042 1.5400 0
0.3370 −1.1200 0 0.2490 −1.0000 −5.2000 0
0.0200 0 0.0386 −0.9960 −0.0003 −0.1170 0

0 0 0 0.5000 0 0 −0.5000




,

B =

[
20 0 0 0 0 0 0
0 25 0 0 0 0 0

]T

along with the eigenvalues

{−2.0000± 1.5000i,−1.5000± 1.5000i,−20.0000,−25.0000,−0.5000}.
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For the maximum perturbation result, the computed eigenvectors are



0.6007± 0.2800i
0.6249± 0.0651i
0.0831∓ 0.0961i
0.1295± 0.1542i

−0.0220± 0.3167i
−0.0023± 0.0788i

0.0041∓ 0.0473i







0.5112± 0.4112i
0.6098± 0.0750i
0.1434∓ 0.0041i
0.1018± 0.2256i

−0.2089± 0.2211i
−0.0496± 0.1028i

0.0364∓ 0.0582i







−0.1351
0.9890

−0.0030
−0.0035

0.0607
−0.0000

0.0001







−0.9669
−0.2536
−0.0001
−0.0293

0.0020
−0.0004

0.0006







−0.1566
0.4343
0.7495

−0.0000
−0.3748
−0.0677
−0.2829




.

Define perturbations satisfying (2.1) as
∆A1 =

ε




−3.8192 −3.3826 0.0820 −0.9856 1.8974 2.5714 3.2129
3.4555 2.1405 1.6639 −2.4112 0.4222 −1.3083 −2.3635
2.2656 −2.0906 2.8754 3.5109 1.4215 0.0840 −1.9934
2.3509 2.7341 −2.1501 2.8360 2.5907 −1.5920 0.3138

−1.2737 −1.6610 1.8700 −2.8914 1.6040 −1.6882 1.8227
−2.3913 −1.5716 0.7964 2.8471 −3.5891 2.8926 −2.3599
−0.7342 2.7644 3.8267 −1.9896 −1.9955 2.4706 −2.8546




,

∆B1 = ε




8.1053 −1.8532
−1.7706 −1.4891
−9.5757 4.1846

6.8511 2.6593
3.4265 −0.5449

−7.0891 11.5788
−7.9824 11.2792




,

and

∆Λ1 = ε diag(0.3560± 0.4559i,−0.5490± 0.1466i, 2.4850, 6.1808, 0.0178).

For the minimum perturbation, the computed eigenvectors are



−0.4152∓ 0.2351i
0.6122± 0.3133i
0.0569∓ 0.1879i

−0.0720∓ 0.1070i
0.1682± 0.4612i
0.0032∓ 0.0477i

−0.0058± 0.0298i







−0.3715∓ 0.2613i
0.5418± 0.3085i
0.1517∓ 0.2128i

−0.0662∓ 0.1362i
0.0916± 0.5468i
0.0226∓ 0.0638i

−0.0213± 0.0362i







−0.2547
0.9650

−0.0031
−0.0080

0.0615
−0.0001

0.0002







0.8654
0.5002

−0.0004
0.0265
0.0110
0.0004

−0.0005







0.1166
−0.3233
−0.5580

0.0000
0.2790
0.0504

−0.7000




.

Define perturbations satisfying (2.1) as
∆A2 =

ε




3.0760 2.6045 −1.4300 3.1049 2.6324 2.2352 −3.2888
2.3436 0.4874 3.7785 2.3391 −0.3691 3.7375 −0.2633

−0.0472 −1.4392 3.0293 −2.7895 0.2311 −2.9460 1.4481
−2.8082 −1.7018 −1.2077 1.1342 1.5224 2.9446 3.7304
−0.4955 2.2313 −2.9869 0.4704 2.6611 −1.9103 0.6989
−1.9873 3.8598 −1.6331 0.6989 −2.6065 2.6475 −0.7115
−0.0875 3.9339 −3.5926 −0.9245 −0.2940 −1.2704 3.6772




,
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∆B2 = ε




9.3574 7.8692
4.5651 5.0172

−7.9163 −7.7619
−6.7618 −7.5011

5.7692 −5.8986
−6.6062 −5.7049

7.2259 −2.8500




,

and

∆Λ2 = ε diag(0.1841∓ 0.5068i,−0.2936± 0.2815i,−0.6861, 5.8224,−0.0671).

Table 4.3 displays results for a range of ε-values. Note that the estimate given by (2.17) is
one order of magnitude greater then the computed value of ‖Ṽ 1 − V 1‖F .

TABLE 4.3
Results for ∆V , Example 4.3

ε 1.0e-07 1.0e-09 1.0e-11 1.0e-13
∆V 2.91e-04 2.91e-06 2.91e-08 2.91e-10

‖Ṽ 1 − V 1‖F 2.97e-05 2.97e-07 2.97e-09 2.97e-011
‖Ṽ 2 − V 2‖F 4.19e-07 4.19e-09 4.19e-11 4.19e-13

Example 4.4. With A, B and eigenvalues as in Example 4.3, computed eigenvectors




0.5525∓ 0.2293i
−0.2073± 0.5166i

0.1929± 0.0626i
0.1683± 0.0164i

−0.4797± 0.1641i
0.0436± 0.0446i

−0.0253∓ 0.0308i







0.0463∓ 0.3533i
−0.8124∓ 0.0415i
−0.0761± 0.1694i

0.0613∓ 0.1126i
−0.1399∓ 0.3683i

0.0612∓ 0.0144i
−0.0354± 0.0032i







−0.9980
−0.0482
−0.0008
−0.0374

0.0151
−0.0009

0.0010







−0.3466
0.9367

−0.0019
−0.0092

0.0487
−0.0001

0.0002







0.1182
−0.3279
−0.5660

0.0000
0.2830
0.0511
0.6895




,

and

K =

[
0.1693 −0.0972 0.8889 −4.2885 0.5320 4.0489 −0.0311

−0.0301 0.0937 −4.6356 −0.5097 −2.2873 1.7809 −2.4823

]
,

define perturbations satisfying (2.1) as
∆A1 =

ε




1.0818 −0.5301 −3.2246 −0.9528 −3.6388 1.2752 −2.6901
−3.7376 2.4787 0.6683 −0.6055 2.6487 1.5129 2.3012
−1.0068 −0.0985 1.8877 −2.2400 −2.1470 3.0329 −4.1027

1.4494 1.1704 0.0023 3.2571 2.6906 −2.7734 1.1614
1.2856 0.0208 4.0648 −2.6443 −2.2752 2.2656 3.8843

−3.8387 −2.0093 −2.5948 −0.5333 3.0975 −2.2155 2.3436
0.0592 −0.2996 −1.8969 0.8775 2.0849 1.8696 3.9161




,
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∆B1 = ε




−12.2212 −10.4005
1.0649 5.3107

−3.1903 2.8906
0.6625 1.3633

−1.6827 1.0726
3.7369 −13.5984

−0.0950 −10.6973




,

∆Λ1 = ε diag(−0.0301∓ 0.2104i, 0.1588∓ 0.3612i, 1.9563, 0.0275, 0.0466),

∆A2 =

ε




3.5501 0.7677 −0.0470 0.6981 3.6748 2.3717 −0.1520
0.5828 2.5052 0.2798 1.1927 −1.0432 −1.9981 −3.9968

−3.9275 3.8399 4.0487 2.6892 0.4788 3.1016 3.4917
−0.6373 1.0905 −3.3759 2.8012 1.0362 −1.4872 −2.7135

0.6396 −3.4510 −1.2366 1.9567 −1.9062 0.4253 −0.1461
−3.3654 2.5050 −1.3715 0.2911 −0.0656 −1.4468 −3.9716

1.4148 0.8038 2.8124 −3.6424 0.3130 −3.3626 −1.2145




,

∆B2 = ε




3.3611 7.4928
12.2752 6.4126
2.9557 0.8021

−6.0221 −6.6566
−0.0368 12.0282

6.3241 −7.8475
−1.2250 −5.2959




,

and

∆Λ2 = ε diag(−0.3548∓ 0.0969i, 0.5605∓ 0.4749i, 0.7368,−0.9905,−0.1539).

Table 4.4 displays results for a range of ε-values.

TABLE 4.4
Results for (∆K)CC , Example 4.4

ε 1.0e-05 1.0e-07 1.0e-09 1.0e-11 1.0e-13
(∆K)CC 2.43e-00 2.43e-02 2.43e-04 2.43e-06 2.43e-08

(∆K1)MX 1.56e+02 1.56e-00 1.56e-02 1.56e-04 1.56e-06
‖K̃1 −K‖F 1.08e-02 1.08e-04 1.08e-06 1.08e-08 1.08e-10
(∆K2)MX 1.49e+02 1.49e-00 1.49e-02 1.49e-04 1.49e-06
‖K̃2 −K‖F 7.63e-04 7.64e-06 7.64e-08 7.64e-10 7.63e-12

Note that the upper bound given by (2.26) is two orders of magnitude tighter than the
upper bound given in [12]. This example points out one of the main differences between the
upper bound given by (2.26) and the upper bound in [12]. The bound in (2.26) includes the
condition number of the matrix of right eigenvectors, whereas the bound in [12] includes the
condition number of the closed-loop matrix (A−BK). For this example, κ2(V ) = 28.0115,
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and κ2(A− BK) = 620.8399. It may be possible to combine the best features of these two
bounds into a “hybrid” bound which supercedes both results.

Using the method in [17], a distance, d, to the nearest uncontrollable system, was com-
puted for each example. For Example 1, d = 1, and the computed results based on (2.26) and
the analogous result in [12] were each within one order of magnitude of the true perturbation.
For Example 2, where d = 0.037, (2.26) yielded a result two orders of magnitude larger than
the exact value while the bound in [12] produced a value four orders of magnitude larger
than the exact value. These results are consistent with the following observations. First, the
denominator in the perturbation bound for K in [12] contains a term closely related to the
distance to uncontrollability. A similar term appears in (2.26) in a more subtle manner. In
[5], it is shown that κ2(V ) is bounded below by a factor which is inversely proportional to the
distance to uncontrollability. And κ2(V ) is present in (2.26) through the term ‖Φ−1‖2‖V ‖2.
A topic for future study is the relationship between distance to uncontrollability, condition
number of the eigenvector matrix, and the perturbation bound for the gain matrix K.

5. Conclusion. This paper contains a perturbation analysis of the multi-input eigen-
structure assignment problem. Upper bounds for perturbations on the eigenvector matrix are
derived even though this matrix is not unique. Upper bounds on perturbations in the gain
matrix are developed. All bounds are to first order in the relative perturbations in the data.

Numerical results for a range of perturbations are provided, confirming analytical results.
Although numerical results are reasonably close to predicted bounds, tighter analytical

results may be obtainable. It may be possible to redo the analysis using an alternate definition
to that in (2.14), which is smaller and thus closer to the true condition number of Mj . Also,
it may be worthwhile to derive entry-wise perturbation results, especially for sparse systems
such as in Examples 4.3 and 4.4.
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