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A MULTIGRID METHOD FOR SADDLE POINT PROBLEMS ARISING FROM
MORTAR FINITE ELEMENT DISCRETIZATIONS∗
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Abstract. A multigrid algorithm for saddle point problems arising from mortar finite element discretizations is
analyzed. Here, we do not require that the constraints at the interface are satisfied in each smoothing step, but we
work on the squared system. Using mesh dependent norms for the Lagrange multipliers, suitable approximation and
smoothing properties are established. A convergence rate independent of the meshsize is obtained for theW–cycle.
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1. Introduction. Domain decomposition techniques provide powerful tools for the nu-
merical solution of partial differential equations. Within the framework of mortar methods
[6, 7], the flexible coupling of different discretization schemes or of nonmatching triangula-
tions can be realized. Adequate weak continuity conditions replace the pointwise continuity
at the interfaces. The arising variational problems are either positive definite nonconforming
problems or saddle point problems.

Efficient iterative solvers for the mortar formulation have been considered. The first
approaches were based on iterative substructuring methods and preconditioners for the Schur
complement system; see [15, 16, 1, 2, 3, 17, 18, 22, 23]. More recently multigrid methods
for the discrete nonconforming [12, 19] as well as the discrete saddle point problem have
been established; see [10, 11, 28]. Working with the nonconforming variational problem
has the drawback that the corresponding nodal basis functions have, in general, non–local
support. Thus it might be advantageous to work with the unconstraint product space for
the numerical realization of the mortar method. Even if the starting point is the positive
definite variational problem, the non–local nodal basis function of the constrained space are,in
general, not explicitly used [19]. Instead one works with the local nodal basis functions of
the unconstrained product space and the global mortar projection. An alternative approach
is to use the equivalent saddle point problem as starting point [4]. In this case, an indefinite
problem has to be solved and standard multigrid methods cannot be applied.

Recently, special multigrid techniques for the arising indefinite problems were developed
[10, 11, 28]. They are based on the concepts in [13] for the Stokes problem. The characteris-
tic feature of these multigrid methods is the choice of the symmetric smoother for the saddle
point problem. It is defined so that the constraints are satisfied in each smoothing step. As
a consequence, each smoothing step requires the exact solution of a modified Schur comple-
ment system. Using this type of smoother, one works in the positive definite subspace of the
saddle point problem, and the multigrid analysis of the standard positive definite case carries
over. The drawback is that the solution of the modified Schur complement system in each
smoothing step might be too expensive. In [33], a generalization of this type of smoother is
investigated defining an inner and outer iteration cycle.

A different approach for the construction of an efficient iterative solver for the saddle
point problem is given in [2, 17, 18, 22, 23]. The saddle point problem is solved by a multi-
level preconditioned Lanczos iteration. The preconditioner is a block diagonal matrix involv-
ing a good preconditioner for the exact Schur complement.
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These observations motivate our new approach. In particular, we do not require that the
iterates satisfy the weak continuity conditions at the interfaces exactly. As a consequence, we
neither need a good preconditioner for the exact Schur complement nor an exact solver for
a modified Schur complement. Following the ideas of [27], we introduce a smoother for the
squared positive definite system.

The rest of the paper is organized as follows: In Section 2, we give a brief overview
of the mortar method in case of P1–Lagrangian finite elements. We review the definition of
the discrete spaces and the saddle point formulation as well as the a priori estimates. The
two basic tools, approximation and smoothing properties, for the convergence analysis of a
multigrid method are analyzed in Sections 3 and 4. In Section 3, the approximation property
is formulated. Since we are not working in the positive definite subspace, we cannot avoid the
use of norms for the Lagrange multiplier. Our analysis is based on mesh dependent norms for
the Lagrange multiplier. In Section 4, we establish the smoothing property, where we follow
the lines of [27], and introduce a block diagonal smoother. Finally, the convergence rate for
the W–cycle is given.

2. Mortar finite elements. Mortar methods are based on domain decomposition tech-
niques. Within this approach, different discretization schemes as well as geometrical non-
conforming triangulations can be coupled. The resulting nonconforming method is optimal
in the sense that the discretization error is of the same order as the sum of the best approx-
imation errors on the different subdomains. Here, we will only briefly review the definition
of a special mortar method. For an overview of more general mortar techniques, we refer the
reader to [4, 5, 6, 7, 11].

Let Ω ⊂ IR2 be a bounded polygonal domain. Consider a geometrical conforming non–
overlapping decomposition into K polygonal subdomains Ωk such that

Ω̄ =

K
⋃

k=1

Ω̄k.

The intersection between the boundaries of two adjacent subdomains Ωl and Ωk, 1 ≤ l 6= k ≤
K is called interface Γlk := ∂Ωl ∩ ∂Ωk. Furthermore, the union of subdomain boundaries
S := ∪K

k=1(∂Ωk \ ∂Ω) can be decomposed into M disjoint open subsets

S =

M
⋃

m=1

γm

where for each non–mortar γm, 1 ≤ m ≤ M , there exist a l(m) and k(m), 1 ≤ l(m) <
k(m) ≤ K such that γm = Γl(m)k(m).

We consider the following elliptic second order boundary problem

−div(a∇u) + bu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where a is an uniformly positive function a ∈ L∞(Ω), f ∈ L2(Ω) and 0 ≤ b ∈ L∞(Ω). Each
subdomain Ωk, 1 ≤ k ≤ K is associated with a quasi–uniform simplicial triangulation Tk;h

of meshsize h. For the discretization on the different subdomains Ωk, we use P1–conforming
finite elements X(Ωk; Tk;h), k = 1, ...,K, satisfying homogeneous boundary conditions on
∂Ωk ∩ ∂Ω. Then, the unconstraint product space

Xh :=
K
∏

k=1

X(Ωk; Tk;h)
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satisfies no weak continuity condition at the interface and is not a suitable space for the dis-
cretization of (2.1). In particular, the consistency error would be not bounded by the meshsize
h. To define an appropriate global discrete space, we have to impose weak continuity con-
ditions at the interfaces of the decomposition. Each non–mortar γm will be associated with
a 1-D triangulation Sm;h, inherited either from Tl(m);h or Tk(m);h. Then, the local Lagrange
multiplier space Mh(γm;Sm;h) associated with the non–mortar γm is given by

Mh(γm;Sm;h) := {µ ∈ C(γm) | µ|e ∈ P1(e), e ∈ Sm;h,
µ|e ∈ P0(e), e contains an endpoint of γm}.

The global Lagrange multiplier space is defined as the product space

Mh :=

M
∏

m=1

Mh(γm;Sm;h),

see [5, 6, 7]. We refer the reader to [26, 31, 32] for possible modifications of the Lagrange
multiplier space. In terms of Mh, a suitable global space Vh for the discretization of (2.1) can
be defined by

Vh := {v ∈ Xh | b(v, µ) = 0, µ ∈ Mh},

where the bilinear form b(·, ·) is given by the following duality pairing

b(v, µ) :=

M
∑

m=1

〈[v], µ〉γm
, v ∈

K
∏

k=1

H1(Ωk), µ ∈
M
∏

m=1

(

H
1
2 (γm)

)′

.

Here, [·] denotes the jump, [v] := v|Ωk(m)
− v|Ωl(m)

. The bilinear form b(·, ·) restricted on

Xh × Mh can be written as b(v, µ) =
∑M

m=1

∫

γm
[v]µds. With this notation for Vh, the

nonconforming formulation of the mortar method can be given as : find uh ∈ Vh such that

a(uh, vh) = f(vh), vh ∈ Vh;(2.2)

see [6, 7]. Here, the bilinear form a(·, ·) is defined as a(v, w) :=
∑K

k=1

∫

Ωk
a∇v · ∇w +

bv w dx, v, w ∈
∏K

k=1 H1(Ωk) and f(v) :=
∫

Ω
fv dx, v ∈ L2(Ω). The following saddle

point problem is equivalent to (2.2): find (uh, λh) ∈ Xh ×Mh such that

a(uh, vh) + b(vh, λh) = f(vh), vh ∈ Xh

b(uh, µh) = 0, µh ∈ Mh.
(2.3)

The Lagrange multiplier λh is an approximation of the flux at the interfaces λγm
:= a ∂u

∂nkl
,

where nkl is the unit outer normal on Ωk(m) restricted to ∂Ωk(m) ∩ ∂Ωl(m); see [5, 30].
In the rest of this section, we state technical tools which will be necessary for the analysis

of the multigrid method. In particular, the coercivity of the bilinear form a(·, ·), a discrete
inf–sup condition and well–known a priori estimates are given. In the following all constants
0 < c ≤ C < ∞ are generic constants depending on the coefficients of (2.1) and on the
shape regularity of the triangulation but not on the meshsize.

Under the assumption of H2–regularity, we have the following O(h) estimate for the
discretization error in the broken H1–norm and anO(h2) estimate for the discretization error
in the L2–norm

||u− uh||1 ≤ C h ||f ||0;Ω,

||u− uh||0;Ω ≤ C h2 ||f ||0;Ω(2.4)
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where ||v||21 :=
∑K

k=1 ||v||21;Ωk
, v ∈ ∏K

k=1 H1(Ωk), see [6, 7, 10].
Furthermore, we have ellipticity of the bilinear form a(·, ·) on Y × Y , i.e.,

a(v, v) ≥ c ||v||21, v ∈ Y,(2.5)

and Vh is a subspace of Y

Y := {v ∈
K
∏

k=1

H1(Ωk) | v|∂Ω
= 0,

∫

γm

[v] ds = 0, 1 ≤ m ≤ M};

see [8].
Our multigrid approach will be based on the saddle point formulation (2.3). It is intro-

duced and analyzed in [5] where a discrete inf–sup condition is given in the H
1/2
00 –norm of

the Lagrange multiplier. Here, we work with mesh dependent norms for which a discrete
inf–sup condition is established in [30]

||µ||2h−s;S :=
∑

γm

∑

e∈Sm;h

h2s
e ||µ||20;e, µ ∈ Mh, s ≥ 0;

see also [10, 11]. The notation || · ||h−s;S is chosen because the mesh dependent norm repre-
sents a kind of discrete Hs–dual norm. The inf–sup condition

c ||µh||
h−

1
2 ;S

≤ sup
vh∈Xh
vh 6=0

b(vh, µh)

||vh||1
, µ ∈ Mh(2.6)

can be found in [30] where also the a priori estimate for the Lagrange multiplier in the mesh
dependent norm,

||λ− λh||
h−

1
2 ;S

≤ C h||f ||0;Ω,(2.7)

is established. We remark that the constants in the inf–sup condition (2.6) and in the a priori
estimate (2.7) are independent of the meshsize. The proof of (2.7) requires a careful analysis
since the bilinear form b(vh, µh) is not uniformly bounded in h. Thus the general saddle
point theory; see [14], cannot be applied directly. Combining the two a priori estimates (2.4)
and (2.7), we get an order h2 a priori estimate for the mesh dependent norm ||(u − uh, λ −
λh)||h;Ω×S , where

||(v, µ)||2h;Ω×S := ||v||20;Ω + ||µ||2
h−

3
2 ;S

, (v, µ) ∈ L2(Ω)× L2(S).

The corresponding mesh dependent scalar product on L2(Ω) × L2(S) is denoted by
(·, ·)h;Ω×S

((v, µ), (w, ν))h;Ω×S := (v, w)0;Ω + (µ, ν)
h−

3
2 ;S

:= (v, w)0;Ω +
∑

γm

∑

e∈Sm;h

h3
e(µ, ν)0;e.

Finally, the following lemma gives a relation between the weighted L2–norm of the jump and
the nonconformity of an element. A similar result can be found in [30] where finite element
spaces of different order are used. Here, we use the same order for the finite element spaces
but two different triangulations Th and T2h. We assume that the triangulation Th is obtained
by uniform refinement from T2h.
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LEMMA 2.1. Let vh ∈ Xh satisfy

b(vh, µ2h) = 0, µ2h ∈ M2h.

Then, the jump of vh can be bounded by

∑

γm

∑

e∈Sm;h

1

he
||[vh]||20;e ≤ C inf

v∈H1
0 (Ω)

||vh − v||21.

Proof. Here, we will sketch the proof only for the quasi–uniform case. For more details,
we refer the reader to [30]. Using the approximation property of M2h and a trace Theorem,
we obtain for each v ∈ H1

0 (Ω) and µ2h ∈ M2h

||[vh]||20;S = ([vh], [vh − v]− µ2h)0;S ≤ C h
1
2 ||[vh]||0;S ||[vh − v]|| 1

2 ;S

≤ C h
1
2 ||[vh]||0;S ||vh − v||1.

Here, the norm || · ||1/2;S is defined by

||µ||21
2 ;S :=

M
∑

m=1

||µ||21
2 ;γm

, µ ∈
M
∏

m=1

H
1
2 (γm),

where || · ||1/2;γm
is the standard H1/2–norm on γm.

3. Approximation property for the saddle point problem. A suitable approximation
property is one of the basic tools needed to establish a level independent convergence rate
for the W–cycle. Here, we will establish an approximation result not only for the first so-
lution component but also for the Lagrange multiplier. An approximation property for the
first solution component is given in [10]. Although the bilinear form b(·, ·) is not bounded
independently of the meshsize, optimal approximation properties can be established.

A family of finite element spaces associated with a nested sequence of triangulations Tl

of meshsize hl is given by

X0 ×M0 ⊂ X1 ×M1 ⊂ · · · ⊂ Xl ×Ml ⊂ · · · ⊂ Xn ×Mn.

Here, we assume that the triangulations are quasi–uniform and that hl−1 = 2hl. The spaces
Xl, Ml and Xl×Ml equipped with the norms ||·||0;Ω, ||·||

h
−3/2
l ;S

and ||·||hl;Ω×S , respectively,

are Hilbert spaces. Let T be a linear continuous operator T : H1 −→ H2. Here, H1 and H2

associated with the norms || · ||H1
and || · ||H2

, respectively, are Hilbert spaces. We use the
standard operator norm

||T || := sup
x∈H1
x6=0

||Tx||H2

||x||H1

.

The following lemma is an adaption of Lemma 4.2 in [27] to mortar finite elements.
Based on this lemma a suitable approximation property will be formulated at the end of this
section. In contrast to [27], the b(·, ·) is not continuous. However, Lemma 2.1 guarantees the
continuity of b(·, ·) on a suitable subspace of Xl × L2(S)

|b(wl, µ)| ≤ C‖wl‖1 ‖µ‖
h−

1
2 ;S

, (wl, µ) ∈ X̂l × L2(S),

where X̂l := {wl ∈ Xl | b(wl, µl−1) = 0}.
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LEMMA 3.1. Let (dl, δl) ∈ Xl ×Ml be orthogonal to Xl−1 ×Ml−1, i.e.
(

(dl, δl), (vl−1, µl−1)
)

hl,Ω×S
= 0, (vl−1, µl−1) ∈ Xl−1 ×Ml−1,

and (wl, νl) ∈ Xl ×Ml be the solution of the problem: find (wl, νl) ∈ Xl ×Ml such that

a(wl, vl) + b(vl, νl) = (dl, vl)0;Ω, vl ∈ Xl

b(wl, µl) = (δl, µl)
h
− 3

2
l ;S

, µl ∈ Ml.(3.1)

Then, there exists a constant satisfying

||(wl, νl)||hl;Ω×S ≤ C h2
l ||(dl, δl)||hl;Ω×S .

Proof. The quasi–uniformity of the triangulations yields

c (||wl||0;Ω + h
3
2

l ||νl||0;S) ≤ ||(wl, νl)||hl;Ω×S ≤ C (||wl||0;Ω + h
3
2

l ||νl||0;S).

The estimate for the term in the Lagrange multiplier will be based on the discrete inf–sup
condition (2.6) whereas the bound for ||wl||0;Ω is based on duality techniques. We start with

an estimate for the upper bound of h
3/2
l ||νl||0;S . The continuity of a(·, ·), the discrete inf–sup

condition (2.6) and the orthogonality of dl, (dl, vl−1)0;Ω = 0, vl−1 ∈ Xl−1, yield an upper
bound for ||νl||h−1/2

l ;S
in terms of ||wl||1

||νl||
h
− 1

2
l ;S

≤ C sup
vl∈Xl
vl 6=0

b(vl, νl)

||vl||1

= C inf
vl−1∈Xl−1

sup
vl∈Xl
vl 6=0

(dl, vl − vl−1)0;Ω − a(wl, vl)

||vl||1
≤ C ( ||wl||1 + hl||dl||0;Ω) .

(3.2)

Observing that wl ∈ Y , applying (2.5) and using (3.2), we find for wl−1 ∈ Xl−1

c ||wl||21 ≤ a(wl, wl) = (dl, wl)0;Ω − b(wl, νl)
= (dl, wl − wl−1)0;Ω − (δl, νl)

h
− 3

2
l ;S

≤ C hl

(

||dl||0;Ω + h
3
2

l ||δl||0;S
)

||wl||1 + C h
7
2

l ||dl||0;Ω||δl||0;S .

To obtain an upper bound for ||wl||1 in terms of h
3
2

l ||δl||0;S and ||dl||0;Ω, it is sufficient to
apply Young’s inequality and to observe that

(h
7
2

l ||dl||0;Ω||δl||0;S)1/2 ≤ 1

2
(hl‖dl||0;Ω + h

5
2

l ||δl||0;S).

Thus, we have

||wl||1 ≤ C hl

(

||dl||0;Ω + h
3
2

l ||δl||0;S
)

.(3.3)

Combining (3.3) with the upper bound for ||νl||h−1/2
l ;S

, we find

h
3
2

l ||νl||0;S ≤ C h2
l

(

||dl||0;Ω + h
3
2

l ||δl||0;S
)

.(3.4)
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In the next step, we will focus on an estimate for ||wl||0;Ω. Let ŵ ∈ H1
0 (Ω) be the solution of

the continuous variational problem: find ŵ ∈ H1
0 (Ω) such that

a(ŵ, v) = (wl, v)0;Ω v ∈ H1
0 (Ω).

Taking into account that wl, in general, is not contained in H1
0 (Ω), we get

||wl||20;Ω = a(ŵ, wl) + b(wl, ν̂),

where ν̂ := a∇ŵn is the flux of ŵ at the interfaces S. Using the orthogonalities a(wl, vl−1)+
b(vl−1, νl) = 0, vl−1 ∈ Xl−1, b(wl, µl−1) = 0, µl−1 ∈ Ml−1 and observing b(ŵ, νl) = 0,
νl ∈ Ml , we find for vl−1 ∈ Xl−1 and µl−1 ∈ Ml−1

||wl||20;Ω = a(ŵ − vl−1, wl) + b(wl, ν̂) + b(ŵ − vl−1, νl)

≤ C ( ||ŵ − vl−1||1||wl||1 + ||[wl]||0;S ||ν̂ − µl−1||0;S + ||[ŵ − vl−1]||0;S ||νl||0;S) .

We choose vl−1 ∈ Vl−1 as a local quasi–projection of ŵ such that

||ŵ − vl−1||1 ≤ C hl−1||ŵ||2;Ω
||[ŵ − vl−1]||0;S ≤ C h

3
2

l−1||ŵ||2;Ω;

see [25], and µl−1 ∈ Ml−1 such that

||ν̂ − µl−1||0;S ≤ C h
1
2

l−1||ν̂|| 12 ;S .

Finally, we use the H2–regularity, a trace Theorem and Lemma 2.1 to obtain

||wl||20;Ω ≤ C hl

(

||wl||1 + ||νl||
h
− 1

2
l ;S

)

||wl||0;Ω

which proves together with (3.3) and (3.4) the assertion.
The approximation property of Lemma 3.1 can be also reformulated in an operator set-

ting. Let Al : Xl −→ Xl, Bl : Ml −→ Xl, B∗
l : Xl −→ Ml be the operators defined

by

(Alvl, wl)0;Ω := a(vl, wl), (Blµl, wl)0;Ω := b(wl, µl), (B∗
l wl, µl)

h
− 3

2
l ;S

:= b(wl, µl).

Then, the self–adjoint non–singular operator Kl : Xl ×Ml −→ Xl ×Ml associated with the
saddle point problem (2.3) is given by

Kl(vl, µl) := (Alvl + Blµl, B
∗
l vl), (vl, µl) ∈ Xl ×Ml.(3.5)

The solution (wl, νl) of the saddle point problem (3.1) satisfies

Kl(wl, νl) = (dl, δl),

and thus ||K−1
l (dl, δl)||hl;Ω×S ≤ C h2

l ||(dl, δl)||hl;Ω×S for (dl, δl) ∈ Xl×Ml being orthog-
onal on Xl−1 ×Ml−1 with respect to (·, ·)hl;Ω×S . Equivalently, we find

||(wl, νl)||hl;Ω×S ≤ C h2
l ||Kl(wl, νl)||hl;Ω×S(3.6)

for (wl, νl) ∈ Xl × Ml satisfying (Kl(wl, νl), (vl−1, µl−1))hl;Ω×S = 0, (vl−1, µl−1) ∈
Xl−1 ×Ml−1.
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The properties of the operator Bl will be essential for the stability of the iteration process.
In the rest of this section, we consider Bl in more detail, whereas in the next section a suitable
smoothing property will be established. The following lemma provides upper and lower
bounds for ||Blµl||0;Ω. As before in Lemma 3.1, we obtain the qualitative result as if the
bilinear form b(·, ·) would be uniformly bounded in the meshsize. However, one has to be
more careful in the proof.

LEMMA 3.2. There exist constants such that

c
1

h2
l

||µl||
h
− 3

2
l ;S

≤ ||Blµl||0;Ω ≤ C
1

h2
l

||µl||
h
− 3

2
l ;S

.(3.7)

Proof. The proof of the upper bound is based on the observation that the the bilinear form
b(·, ·) reflects a duality pairing on the interfaces. Using an inverse estimate and the definition
of Bl, we obtain

||Blµl||0;Ω = sup
wl∈Xl
wl 6=0

(Blµl, wl)0;Ω
||wl||0;Ω

= sup
wl∈Xl
wl 6=0

b(wl, µl)

||wl||0;Ω

≤ sup
wl∈Xl
wl 6=0

||[wl]||0;S ||µl||0;S
||wl||0;Ω

≤ C

h2
l

||µl||
h
− 3

2
l ;S

.

The proof of the lower bound follows the lines of the proof of the inf–sup condition and is
obtained by construction. Our starting point is

||Blµl||0;Ω ≥ b(wl, µl)

||wl||0;Ω
, wl ∈ Xl, wl 6= 0.

Each wl ∈ Xl is uniquely defined by its values at the vertices of the triangulation. We
define wl(p) := µl(p) if p is an interior vertex of one of the 1D interface triangulations Sm;l,
1 ≤ m ≤ M . For all other vertices p of Tl, we set wl(p) := 0. This special choice yields
b(wl, µl) ≥ c ||[wl]||0;S ||µl||0;S , we refer to [30] for details. Now, the lower bound in (3.7)

follows from ||[wl]||0;S ≥ c h
−1/2
l ||wl||0;Ω.

An easy consequence of (3.7) is

inf
vl∈Xl

B∗
l

vl=B∗
l

wl

||vl||0;Ω ≤ C h2
l ||B∗

l wl||
h
− 3

2
l ;S

, wl ∈ Xl.(3.8)

Remark: The fact that the bilinear form b(wl, µl) is not uniformly bounded by
‖wl‖1 ‖µl‖h−1/2;S has no influence on the estimate (3.7). We have to consider the L2–norm
of the jump [wl] in more detail. The properties of the operator Bl are strongly connected with
the inf–sup condition (2.6), the duality pairing on the interface and an inverse inequality.

4. Smoothing property for the saddle point problem. The second basic tool required
to establish convergence within the multigrid framework is the smoothing property. We fol-
low the lines of [27] and work with the squared system. The advantage of this approach
is that, in contrast to [10], modified Schur complements systems do not need to be solved
exactly in each smoothing step.

Using the definition (3.5) of the operator Kl, the saddle point problem (2.3) on Xl ×Ml

is equivalent to the following operator equation: find z∗l := (ul, λl) ∈ Xl ×Ml such that

Klz
∗
l = fl,

where fl := (f̃l, 0) ∈ Xl ×Ml is defined by (f̃l, vl)0;Ω := (f, vl)0;Ω, vl ∈ Xl.
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The smoothing operator K̂l : Xl×Ml −→ Xl×Ml is defined by means of the symmetric
positive definite bilinear forms â(·, ·) and d(·, ·) on Xl ×Xl and Ml ×Ml, respectively,

(K̂l(vl, µl), (wl, νl))hl;Ω×S := â(vl, wl) + d(νl, µl), (wl, νl) ∈ Xl ×Ml.(4.1)

It has a block diagonal structure

K̂l(vl, µl) = (Âlvl, Dlµl),

where the operators Âl : Xl −→ Xl and Dl : Ml −→ Ml are associated with the bilinear
forms â(·, ·) and d(·, ·), respectively. One smoothing iteration on level l is given by

zm
l := zm−1

l + K̂−1
l KlK̂

−1
l (rl −Klz

m−1
l ),(4.2)

where rl stands for the right side of the system Klzl = rl which has to be solved, zl is the
exact solution and zm

l denotes the iterate in the mth–step. Each smoothing step can be easily
performed provided that the application of Â−1

l and D−1
l is cheap. The following lemma

gives the smoothing rate:
LEMMA 4.1. Let K̂l be defined as in (4.1), where Âl, ||Âl|| ≤ C/h2

l , and Dl, ||Dl|| ≤
C/h2

l , are self–adjoint positive definite operators. Under the assumptions that there exists a
αwl

, 0 < αwl
< 1 for each wl ∈ Xl such that

(Alwl, wl)0;Ω ≤ αwl
(Âlwl, wl)0;Ω, (BlD

−1
l B∗

l wl, wl)0;Ω ≤ (1− αwl
)(Âlwl, wl)0;Ω,

the following smoothing property for the iteration (4.2) holds

||Kle
m
l ||hl;Ω×S ≤

C

h2
l

√
m
||e0

l ||hl;Ω×S , m ≥ 1,(4.3)

where em
l := zm

l − zl, 0 ≤ m is the iteration error in the mth–smoothing step.
Furthermore, if ||Â−1

l || ≤ C h2
l , we have the following stability estimate for the iteration

error

||em
l ||hl;Ω×S ≤ C ||e0

l ||hl;Ω×S , m ≥ 1(4.4)

with a constant independent of m.
Proof. The iteration error em

l is given by

em
l = (Id− K̂−1

l KlK̂
−1
l Kl)

me0
l , m ≥ 1.

Since K̂l is a self–adjoint positive definite operator and Kl is self–adjoint, there exists a
complete set of eigenfunctions zi

l satisfying

K̂
− 1

2

l KlK̂
− 1

2

l zi
l = λiz

i
l .

Setting (wi
l , µ

i
l) := K̂

− 1
2

l zi
l , we find for λi 6= 0,

Alw
i
l +

1

λi
BlD

−1
l B∗

l wi
l = λiÂlw

i
l .

Then, the assumptions on Al and Dl yield |λi| ≤ 0.5(αwi
l
+

√

α2
wi

l

+ 4(1− αwi
l
)) ≤ 1. With-

out loss of generality, we can assume that the eigenfunctions are normalized (zi
l , z

j
l )hl;Ω×S =

δij . Then, the norm of Kle
m
l is bounded by

||Kle
m
l ||hl;Ω×S ≤ ||K̂

1
2

l K̂
− 1

2

l KlK̂
− 1

2

l (Id− K̂
− 1

2

l KlK̂
−1
l KlK̂

− 1
2

l )mK̂
1
2

l e0
l ||hl;Ω×S

≤ sup

s∈σ(K̂
− 1

2
l KlK̂

− 1
2

l )

|s(1− s2)m| ||K̂l|| ||e0
l ||hl;Ω×S .
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Using supt∈[0;1](t(1 − t2)m) ≤ C/
√

m and ||K̂l|| ≤ C/h2
l , we obtain (4.3). To obtain the

stability estimate (4.4), we use the same type of arguments. The assumption on Dl and (3.8)
yield an upper bound for ||D−1/2

l ||,

||D− 1
2

l || = sup
µl∈Ml
µl 6=0

||D− 1
2

l µl||h−3/2
l ;S

||µl||h−3/2
l ;S

= sup
µl∈Ml

B∗
l

wl=µl 6=0

||D− 1
2

l B∗
l wl||h−3/2

l ;S

||B∗
l wl||h−3/2

l ;S

≤ sup
µl∈Ml
µl 6=0

inf
wl∈Xl

B∗
l

wl=µl

||Â
1
2

l wl||0;Ω
||B∗

l wl||h−3/2
l ;S

≤ C h−1
l h2

l ≤ C hl.

The last inequality together with the assumption on A
−1/2
l gives ||K̂−1/2

l || ≤ hl, and thus

||em
l ||hl;Ω×S = ||(Id− K̂−1

l KlK̂
−1
l Kl)

m|| ||e0
l ||hl;Ω×S

≤ sups∈[−1;1](1− s2)m||K̂
1
2

l || ||K̂
− 1

2

l || ||e0
l ||hl;Ω×S ≤ C ||e0

l ||hl;Ω×S .

Remark: Replacing the iteration (4.2) by a conjugate residual algorithm improves the
upper bound (4.3). As in the positive definite case with a suitable Jacobi–type smoothing
operator, we obtain

||Kle
m
l ||hl;Ω×S ≤

C

h2
l m

||e0
l ||hl;Ω×S , m ≥ 1.

For more details, we refer the reader to [27].
Combining the approximation property (3.6) and the smoothing property (4.3), we obtain

a mesh size independent convergence rate for the two–grid algorithm. The stability estimate
(4.4) is necessary in case of the W–cycle analysis. Under the assumptions of Lemma 4.1
the convergence rate of the W–cycle in the || · ||hl;Ω×S–norm is independent of the number
of refinement levels provided that the number of smoothing steps is large enough [21, 27].
For numerical results in the saddle point framework, where the iterates does not satisfy the
constraints exactly, we refer the reader to [29]. In case that the constraints are satisfied in
each smoothing step a weaker approximation result than that given in Lemma 3.1 can be
used. Working in the more general framework has the advantage that no mass system has to
be solved in each smoothing step as is required in [10, 11].

Remark: A suitable smoother in the algebraic formulation of the method is given by the
following diagonal matrix

K̂ :=

(

α1Id 0
0 h2

l α2Id

)

with some constants α1, α2 > 0. An optimal scaling of the constants has to be obtained by
numerical results. Here, nodal basis functions for the finite elements as well as the Lagrange
multiplier are used. Then, the level independent convergence rate of the W–cycle is obtained
for the energy norm || · ||K̂ of K̂.
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