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MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR THE
NONLINEAR SCHRÖDINGER EQUATION ∗

JING-BO CHEN † AND MENG-ZHAO QIN‡

Abstract. Bridges and Reich suggested the idea of multi-symplectic spectral discretization on Fourier space
[4]. Based on their theory, we investigate the multi-symplectic Fourier pseudospectral discretization of the nonlinear
Schrödinger equation (NLS) on real space. We show that the multi-symplectic semi-discretization of the nonlinear
Schrödinger equation with periodic boundary conditions has N (the number of the nodes) semi-discrete multi-
symplectic conservation laws. The symplectic discretization in time of the semi-discretization leads to N full-
discrete multi-symplectic conservation laws. We also prove a result relating to the spectral differentiation matrix.
Numerical experiments are included to demonstrate the remarkable local conservation properties of multi-symplectic
spectral discretizations.
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1. Introduction. We consider the nonlinear Schrödinger equation

iψt + ψxx + a|ψ|2ψ = 0(1.1)

with the periodic boundary condition ψ(0, t) = ψ(L, t). Here a > 0 is a constant parameter.
The equation (1.1) can be cast into a multi-symplectic Hamiltonian system [2,3,8]. A

large class of PDEs (for simplicity, we only consider one space dimension) can be written as

Mzt +Kzx = 5zS(z), z ∈ Rn, (x, t) ∈ R2,(1.2)

where M and K are skew-symmetric matrices on Rn, n ≥ 3 and S : Rn → R is a smooth
function. We call the above system multi-symplectic Hamiltonian system, since it has a
multi-symplectic conservation law

∂

∂t
ω +

∂

∂x
κ = 0,(1.3)

where ω and κ are the pre-symplectic forms

ω =
1

2
dz ∧Mdz, κ =

1

2
dz ∧Kdz.

The system (1.2) has an energy conservation law (ECL)

∂

∂t
E +

∂

∂x
F = 0,(1.4)

with energy density

E = S(z)− 1

2
zTKzx,
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and energy flux

F =
1

2
zTKzt.

The system (1.2) also has a momentum conservation law (MCL)

∂

∂t
I +

∂

∂x
G = 0,(1.5)

with momentum density

I =
1

2
zTMzx,

and momentum flux

G = S(z)− 1

2
zTMzt.

Now consider the nonlinear Schrödinger equation (1.1). Using ψ = p + iq, we can
rewrite (1.1) as a pair of real-valued equations

pt + qxx + a(p2 + q2)q = 0,(1.6)

qt − pxx − a(p2 + q2)p = 0.(1.7)

Next we introduce a pair of conjugate momenta v = px, w = qx, and obtain the multi-
symplectic PDE

qt − vx = a(p2 + q2)p,

−pt − wx = a(p2 + q2)q,
(1.8)

px = v,

qx = w,

with state variable z = (p, q, v, w)T and the Hamiltonian

S(z) =
1

2
(v2 + w2 +

a

2
(p2 + q2)2).

In this case,

M =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , K =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0


 .

The corresponding multi-symplectic conservation law is

∂

∂t
(−dp ∧ dq) +

∂

∂x
(dp ∧ dv + dq ∧ dw) = 0.(1.9)

The corresponding energy conservation law is

∂

∂t
[
1

2
(
a

2
(p2 + q2)2 − v2 − w2)] +

∂

∂x
(vpt + wqt) = 0.(1.10)
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And the corresponding momentum conservation law is

∂

∂t
(pw − qv) + +

∂

∂x
[
1

2
(
a

2
(p2 + q2)2 + v2 + w2 − pqt + qpt)] = 0.(1.11)

Bridges and Reich introduced the idea of a multi-symplectic Fourier transform for multi-
symplectic PDEs with periodic boundary conditions [4]. The multi-symplectic Fourier trans-
form leads to a semi-discretization on Fourier space and the concept of multi-symplecticity
on Fourier space. Their theory lay a foundation of multi-symplectic spectral and pseudospec-
tral methods. In this paper, we derive the semi-discrete and full-discrete multi-symplectic
conservation laws directly on real space.

An outline of the paper is as follows. In section 2, we present the standard Fourier
pseudospectral method for the nonlinear Schrödinger equation. Section 3 is devoted to the
analysis of the multi-symplectic spectral discretization. Numerical experiments are reported
in section 4. Section 5 contains some conclusions and comments.

2. Standard Fourier pseudospectral method for NLS. We begin with the pair of
real-valued equations (1.6)-(1.7) with periodic boundary conditions p(0, t) = p(L, t) and
q(0, t) = q(L, t). We follow the standard Fourier pseudospectral formulation [5-7]. Spe-
cial attention is paid to the antisymmetry of the spectral differentiation matrix which plays a
crucial role in what follows.

The Fourier pseudospectral method involves two basic steps. First, we construct the
discrete representation of the solution through interpolating trigonometric polynomial of the
solution at collocation points. Second, equations for the discrete values of the solution are
obtained from the original equation. This second step involves finding an approximation for
the differential operator in terms of the discrete values of the solution at collocation points.

We approximate p(x, t) and q(x, t) by INp(x, t) and INq(x, t), respectively, which in-
terpolate them at the following set of collocation points

xj =
L

N
j, j = 0, 1, · · · , N − 1.

Here N is an even number.
The approximations INp(x, t) and INq(x, t) have the form

INp(x, t) =

N−1∑

j=0

pjgj(x),(2.1)

INq(x, t) =
N−1∑

j=0

qjgj(x),(2.2)

where pj = p(xj , t), qj = q(xj , t), gj(xk) = δk
j , and gj(x) is a trigonometric polynomial of

degree N/2. In fact, gj(x) is given explicitly by

gj(x) =
1

N

N/2∑

l=−N/2

1

cl
eilµ(x−xj),(2.3)

where cl = 1(|l| 6= N/2), c
−N/2 = cN/2 = 2, µ = 2π

L .
Substituting (2.3) into (2.1) and (2.2), we obtain
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INp(x, t) =

N/2∑

l=−N/2

1

cl
eilµx 1

N

N−1∑

j=0

pje
−ilµxj ,(2.4)

INq(x, t) =

N/2∑

l=−N/2

1

cl
eilµx 1

N

N−1∑

j=0

qje
−ilµxj .(2.5)

Defining

p̂l =
1

Ncl

N−1∑

j=0

pje
−ilµxj ,(2.6)

q̂l =
1

Ncl

N−1∑

j=0

qje
−ilµxj ,(2.7)

(2.4) and (2.5) become, respectively,

INp(x, t) =

N/2∑

l=−N/2

p̂le
ilµx,(2.8)

INq(x, t) =

N/2∑

l=−N/2

q̂le
ilµx.(2.9)

Therefore,

pj =

N/2∑

l=−N/2

p̂le
ilµxj ,(2.10)

qj =

N/2∑

l=−N/2

q̂le
ilµxj .(2.11)

In order to obtain the equations for pj and qj , we substitute (2.8) and (2.9) into (1.6)-
(1.7), and require that (1.6)-(1.7) are satisfied exactly at collocation points, i.e.,

[(INp(x, t))t + (INq(x, t))xx + a((INp(x, t))
2 + (INq(x, t))

2)INq(x, t)] |x=xj
= 0,

[(INq(x, t))t − (INp(x, t))xx − a((INp(x, t))
2 + (INq(x, t))

2)INp(x, t)] |x=xj
= 0,

where j = 0, 1, · · · , N − 1.
The crucial step here is to obtain values for the derivatives ∂kINp(x, t)/∂x

k and
∂kINq(x, t)/∂x

k at the collocation points xj in terms of the values pj and qj , respectively.
This is done by differentiating (2.1)-(2.2) and evaluating the resulting expressions at the
points xj :

∂kINp(xj , t)

∂xk
=

N−1∑

n=0

pn
dkgn(xj)

d xk
= (Dkp)j ,(2.12)

∂kINq(xj , t)

∂xk
=

N−1∑

n=0

qn
dkgn(xj)

d xk
= (Dkq)j ,(2.13)
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where Dk is an N ×N matrix with elements

(Dk)j,n =
dkgn(xj)

d xk
,

and p = (p0, · · · , pN−1)
T and q = (q0, · · · , qN−1)

T .
We can obtain explicitly

(D1)j,n =

{
1
2µ(−1)j+n cot(µ

xj−xn

2 ), j 6= n,
0, j = n,

(D2)j,n =

{
1
2µ

2(−1)j+n+1 1
sin2(µ(xj−xn)/2)

, j 6= n,

−µ2 2(N/2)2+1
6 , j = n,

and

(D3)j,n =

{
µ3(−1)j+n cos(µ(xj−xn)/2)

sin3(µ(xj−xn)/2)
+ µ3N2

8 (−1)j+n+1 cot(µ
xj−xn

2 ), j 6= n,

0, j = n.

In general, we have the following result.
THEOREM 2.1. For the spectral differentiation matrices Dk and (D1)

k, the following
equation holds

(Dk)j,n = (Dk
1 )j,n + (−1)j+n µ

k

2N

[(
i
N

2

)k

+

(
−iN

2

)k
]
.(2.14)

In particular, Dk = (D1)
k, if k is an odd number.

Proof. First, we have from (2.3)

(Dk)j,n =
dkgn(xj)

dxk
=

1

N

N/2∑

l=−N/2

(ilµ)k

cl
eilµ(xj−xn).(2.15)

Now we compute (D1)
k directly. First, we have

(D2
1)j,n =

N−1∑

m=0

(D1)j,m(D1)m,n

=

N−1∑

m=0

1

N

N/2∑

l=−N/2

ilµ

cl
eilµ(xj−xm) 1

N

N/2∑

p=−N/2

ipµ

cp
eipµ(xm−xn)

=
1

N

N/2∑

l=−N/2

N/2∑

p=−N/2

−lpµ2

clcp
eiµ(lxj−pxn) 1

N

N−1∑

m=0

eiµ(p−l)xm .

Using the identity (see equation (2.7) in [7])

N−1∑

m=0

eiµ(p−l)xm =

{
0, p− l 6= nN, n is an integer,
N, p− l = nN,

(2.16)
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and noting that

e−iµN(xj−xn)/2 = eiµN(xj−xn)/2 = (−1)j−n = (−1)j+n,

e−iµN(xj+xn)/2 = eiµN(xj+xn)/2 = (−1)j+n = (−1)j−n,

c
−N/2 = cN/2 = 2, cl = 1 (|l| 6= N/2),

we obtain

(D2
1)j,n =

1

N

N/2∑

l=−N/2

(−(lµ)2

c2l

)
eilµ(xj−xn) + 2(−1)j+n µ

2

4N

(
N

2

)2

=
1

N

N/2−1∑

−N/2+1

(−(lµ)2

c2l

)
eilµ(xj−xn)

=
1

N

N/2−1∑

−N/2+1

(
(ilµ)2

cl

)
eilµ(xj−xn).

We rewrite (D2
1)j,n as

(D2
1)j,n =

1

N

N/2∑

l=−N/2

bl(ilµ)2eilµ(xj−xn),(2.17)

where b
−N/2 = bN/2 = 0, bl = 1

cl
= 1 (|l| 6= N/2).

Using the same method, we have

(D3
1)j,n =

N−1∑

m=0

(D2
1)j,m(D1)m,n

=

N−1∑

m=0

1

N

N/2∑

l=−N/2

bl(ilµ)2eilµ(xj−xm) 1

N

N/2∑

p=−N/2

ipµ

cp
eipµ(xm−xn)

=
1

N

N/2∑

l=−N/2

N/2∑

p=−N/2

bl(ilµ)2ipµ

cp
eiµ(lxj−pxn) 1

N

N−1∑

m=0

eiµ(p−l)xm

=
1

N

N/2∑

l=N/2

bl(ilµ)3

c3l
eilµ(xj−xn)

=
1

N

N/2−1∑

l=N/2+1

(ilµ)3

cl
eilµ(xj−xn).

Applying induction on k leads to

(Dk
1 )j,n =

1

N

N/2−1∑

l=−N/2+1

(ilµ)k

cl
eilµ(xj−xn).(2.18)

Subtracting (2.18) from (2.15), we arrive at the equation (2.14).
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We note that D1 is a real antisymmetric matrix. Using the spectral differentiation ma-
trix, we obtain the standard Fourier pseudospectral semi-discretization for the nonlinear
Schrödiger equation:

d

dt
pj + (D2q)j + a(p2

j + q2j )qj = 0,(2.19)

d

dt
qj − (D2p)j − a(p2

j + q2j )pj = 0,(2.20)

where j = 0, 1, · · · , N − 1, p = (p0, · · · , pN−1)
T ,q = (q0, · · · , qN−1)

T .
Since D2 is symmetric, (2.19)-(2.20) is a Hamiltonian system with Hamiltonian

H(p,q) =
1

2
[pTD2p + qTD2q] +

a

4

N−1∑

j=0

(p2
j + q2j )2.

Therefore, symplectic methods should be used to integrate in time.
Here we have presented the standard Fourier pseudospectral method in some detail in

order to show that the first spectral differentiation matrix D1 derived in the above way is
antisymmetric. In the following slightly different way, the spectral differentiation matrix is
not antisymmetric.

From (2.6), it is obvious that p̂
−N/2 = p̂N/2 and eiNµxj/2 = e−iNµxj/2. Thus we can

rewrite (2.10) as

pj =

N/2−1∑

l=−N/2

¯̂ple
ilµxj ,(2.21)

where ¯̂pl = p̂l (l = −N/2 + 1, · · · , N/2− 1), ¯̂p
−N/2 = 2p̂

−N/2.
Similarly, we have

qj =

N/2−1∑

l=−N/2

¯̂qle
ilxj ,(2.22)

where ¯̂ql = q̂l (l = −N/2 + 1, · · · , N/2− 1), ¯̂q
−N/2 = 2q̂

−N/2.
It is more efficient to implement Fast Fourier Transform using (2.21) and (2.22) instead

of (2.10) and (2.11). However, the following fact should be noted.
Let

ĪNp(x, t) =

N/2−1∑

l=−N/2

¯̂ple
ilµx,(2.23)

ĪNq(x, t) =

N/2−1∑

l=−N/2

¯̂qle
ilµx.(2.24)

It is obvious that ĪNp(x, t) 6= INp(x, t), ĪNq(x, t) 6= INq(x, t). In fact,

INp(x, t) = ĪNp(x, t) + p̂N/2(e
iNµx/2 − e−iNµx/2),(2.25)

INq(x, t) = ĪNq(x, t) + q̂N/2(e
iNµx/2 − e−iNµx/2).(2.26)

The spectral differentiation matrix is not antisymmetric if we use (2.23) and (2.24) in-
stead of (2.8) and (2.9) when deriving the spectral differentiation matrix. In fact, the resulting
spectral differentiation matrix has diagonal entries −i/2.
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3. The multi-symplectic Fourier pseudospectral method for NLS. As was men-
tioned in the Introduction, Bridges and Reich introduced the idea of multi-symplectic Fourier
transform and obtained multi-symplectic semi-discretization on Fourier space. They showed
that the resulting semi-discretization leads automatically to a finite dimensional Hamiltonian
system in time when truncated. They also used the 1D shallow-water equations and the Z-K
equation as examples to demonstrate the local conservation property of the multi-symplectic
spectral discretization. Their theory applies to both spectral and pseudospectral methods [4].
Here we derive the multi-symplectic structure of the Fourier pseudospectral method for the
NLS directly from the real space.

Applying the Fourier pseudospectral method to the multi-symplectic system (1.8) and
using the notations

p = (p0, · · · , pN−1)
T ,q = (q0, · · · .qN−1)

T ,

v = (v0, · · · , vN−1)
T ,w = (w0, · · · .wN−1)

T ,

we obtain

dqj
dt

− (D1v)j = a(p2
j + q2j )pj ,

−dpj

dt
− (D1w)j = a(p2

j + q2j )qj ,(3.1)

(D1p)j = vj ,

(D1q)j = wj .

Here j = 0, 1, · · · , N − 1 and D1 is the first order spectral differentiation matrix.
THEOREM 3.1. The Fourier pseudospectral semi-discretization (3.1) has N semi-

discrete multi-symplectic conservation laws

d

dt
ωj +

N−1∑

k=0

(D1)j,kκjk = 0, j = 0, 1, · · · , N − 1,(3.2)

where

ωj =
1

2
(dzj ∧Mdzj), κjk =

1

2
[dzj ∧Kdzk + dzk ∧Kdzj ],

and zj = (pj , qj , vj , wj)
T , j = 0, 1, · · · , N − 1. M and Kare the antisymmetric matrices in

the Introduction.
Proof. We rewrite (3.1) in the compact form

M
d

dt
zj +K

N−1∑

k=0

(D1)j,kzk = 5zS(zj).(3.3)

The variational equation associated with (3.3) is

M
d

dt
dzj +K

N−1∑

k=0

(D1)j,kdzk = Szz(zj)dzj .(3.4)

Taking the wedge product with dzk and noting the fact

dzj ∧ Szz(zj)dzj = 0,
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we obtain the N multi-symplectic conservation laws (3.2).
Since D1 is antisymmetric and κjk = κkj , we can sum (3.2) over the spatial index and

obtain

d

dt

N−1∑

j=0

ωj = 0,(3.5)

which implies conservation of the total symplecticity over time [4]. Thus it is natural to
integrate with respect to time using a symplectic integrator. We discretize (3.1) with respect
to time by the midpoint rule and obtain

q1j − q0j
∆t

− (D1v
1/2)j − a((p

1/2
j )2 + (q

1/2
j )2)p

1/2
j = 0,

p1
j − p0

j

∆t
+ (D1w

1/2)j + a((p
1/2
j )2 + (q

1/2
j )2)q

1/2
j = 0,(3.6)

(D1p
1/2)j = v

1/2
j ,

(D1q
1/2)j = w

1/2
j .

Here, without loss of generality, we take the time index as 0 and 1 instead of n and n+1.
∆t is the time step length. p1/2 = 1

2 (p0 + p1), etc.
THEOREM 3.2. The scheme (3.6) hasN full-discrete multi-symplectic conservation laws

ω1
j − ω0

j

∆t
−

N−1∑

k=0

(D1)j,kκ
1/2
j,k = 0,(3.7)

where ωn
j = 1

2dz
n
j ∧Mdzn

j , n = 0, 1, and κ1/2
j,k = 1

2 (dz
1/2
j ∧Kdz1/2

k + dz
1/2
k ∧Kdz1/2

j ),
j = 0, 1, · · · , N − 1.

Proof. From Theorem 3.1, we know that (3.6) can be rewritten in the compact form

M
z1

j − z0
j

∆t
+K

N−1∑

k=0

(D1)j,kz
1/2
k = 5zS(z

1/2
j ).(3.8)

The variational equation associated with (3.8) is

M
dz1

j − dz0
j

∆t
+K

N−1∑

k=0

(D1)j,kdz
1/2
k = Szz(z

1/2
j )dz

1/2
j .(3.9)

Taking the wedge product with dz1/2
j and noting the fact

dz
1/2
j ∧ Szz(z

1/2
j )dz

1/2
j = 0, dz

1/2
j =

1

2
(dz0

j + dz1
j ),

we obtain the full-discrete multi-symplectic conservation laws (3.7) after slightly complicated
but trivial derivations.

The full-discrete multi-symplectic conservation laws are completely local, and therefore
the scheme (3.6) has remarkable local conservation properties [8]. In the next section, we
shall demonstrate this observation.
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Fig.1 Waveforms at t = 0, 14, 25, 41, 50 and the residual in local ECL

4. Numerical experiments. For the numerical experiments, we consider the cubic NLS

iψt + ψxx + 2|ψ|2ψ = 0,(4.1)

with initial condition

ψ(x, 0) = 0.5 + 0.025 cos(µx),(4.2)

and periodic boundary condition ψ(0, t) = ψ(L, t). Here L = 4
√

2π, µ = 2π/L. The initial
condition (4.2) is in the vicinity of the homoclinic orbit [1].
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Now we perform numerical experiments using the scheme (3.6). Special attention is paid
to monitoring the local energy conservation law (1.10). First, we consider the discrete version
of (1.10). Corresponding to the scheme (3.6), the discrete local energy conservation law is

E1
i −E0

i

∆t
+ (D1F

1

2 )i = Ri,

En
i =

1

2
[((pn

i )2 + (qn
i )2)2 − (vn

i )2 − (wn
i )2], n = 0, 1,(4.3)

F
1

2 = v
1

2 (
p1 − p0

∆t
) + w

1

2 (
q1 − q0

∆t
).

Here i = 0, 1, · · · , N − 1 and Ri is the residual in the local energy conservation law due to
the discretization.

We take N = 256,∆t = 0.01 and compute for 0 ≤ t ≤ 50. In Figure 1, the waveforms
at different time levels and the residual in the local energy conservation law are showed.
From the waveforms, we can clearly observe the recurrence of the state. The residual in
the discrete local energy conservation law (ECL) is summed over the spatial index i from
i = 100 to i = 150. That is, R =

∑150
i=100 Ri. We note that the scheme (3.6) exhibits

a good local energy conservation property. The reason behind this performance is that the
scheme (3.6) satisfies the multi-symplectic conservation laws. The local ECL is a useful
indicator of spatial discretization errors. The large fluctuations in local ECL when using a
multi-symplectic spectral discretization indicate a coarse discretization, since the local ECL
is a natural part of the multi-symplectic spectral discretizations [4].

5. Conclusions. Using the multi-symplectic formulation of the NLS, we show that the
Fourier pseudospectral semi-discretization of the nonlinear Schrödinger equation with pe-
riodic boundary conditions has N semi-discrete multi-symplectic conservation laws. The
symplectic discretization in time of the semi-discretization leads to N full-discrete multi-
symplectic conservation laws. These results have helped us to gain a deeper understanding
of the Fourier pseudospectral method. We also prove a result on the spectral differentiation
matrix. The numerical experiments show that the multi-symplectic spectral discretizations
have remarkable local conservation properties.

For other multi-symplectic Hamiltonian systems, such as Sine-Gordon equation and KdV
equation, we can arrive at the same conclusions.
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