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RETOOLING THE METHOD OF BLOCK CONJUGATE GRADIENTS∗

A. A. DUBRULLE †

Abstract. Block implementations of the conjugate-gradients method for the solution of a linear system must
deal with linear dependences that may appear in the descent or residual blocks in the course of the iteration. New
algorithms presented here avoid rank estimation and deflation through the use of changes of bases and algorith-
mic reformulations that eliminate rank near defects. The transformations include a robust process of nonunitary
orthogonalisation in the metric of a symmetric positive-definite matrix.
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1. Introduction. The method of conjugate gradients with preconditioning is a method
of choice for the solution of large, sparse systems of linear equations with symmetric positive-
definite matrix and vector right-hand side. In spite of its widespread use and the considerable
body of work dedicated to various improvements or extensions, efforts towards the devel-
opment of dependable block generalisations have been comparatively few. One of the main
difficulties encountered in block designs concerns rank defects that may appear in the descent
or residual matrices. O’Leary [6] proposes to tackle this problem by rank monitoring of the
descent matrix with a QR factorisation and by discarding dependent vectors. A variable-
block method in [5] uses oblique projectors to reduce block size adaptively. In [2], Broyden
gives necessary and sufficent conditions for the absence of breakdown in an analysis based
on Krylov sequences.

I take here a different tack by using changes of bases that supplement rank defects and
enforce linear independence. One approach uses factorisations of the descent blocks and
an alternate form of the iteration for which the ill-conditioned factors disappear. Another
consists of a reformulation of the common iteration that accommodates a QR factorisation of
the residual blocks and implicitly eliminates the effects of rank deficiencies.

The material is organised as follows. Section 2 provides the necessary background on the
common form of the conjugate-gradients algorithm and its block generalisation. The alternate
formulation that lends itself to transparent transformations of the descent matrix is described
in Section 3. Sections 4 and 5 discuss the use of nonunitary orthogonalisation for a consistent
generalisation of the vector algorithm. Section 6 describes another generalisation of the vector
algorithm where the common form of the iteration is retooled for the orthogonalisation of
the residual matrix. Sample results of experiments are summarised in Section 7. Overall,
this work should be considered a preliminary investigation and not a design of bulletproof
software.

For simplicity of exposition, preconditioning, which independently applies to the meth-
ods discussed here, is omitted.

The notation is that commonly used in numerical linear algebra. Given a matrix G, gj

denotes its jth column, and gij , its generic element. I(n,m) is the matrix of the leading m
columns of the identity matrix of order n, with m ≤ n.

2. The common block algorithm. The conjugate-gradients method iteratively builds
the solution of the linear system with positive-definite matrix and vector right-hand side Ax =
b, A ∈ R

n×n, b ∈ R
n, from projections on a Krylov basis. The kth iterate x(k), x(0) = 0,
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minimizes the functional

f(y) = ‖A1/2(x− y)‖2, y ∈ span{Aib}k−1
i=0

The common form of the algorithm (see [4] and [3]) is displayed in Figure 2.1. The sets of

CG

x(0) = 0, r(0) = b, r(−1) = e1, v(0) = 0,

σ(k−1) =
r(k−1)T r(k−1)

r(k−2)T r(k−2)
,

v(k) = r(k−1) + σ(k−1)v(k−1),

τ (k) =
r(k−1)T r(k−1)

v(k)T Av(k)
,

x(k) = x(k−1) + τ (k)v(k),

r(k) = r(k−1) − τ (k)Av(k),
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FIG. 2.1. Conjugate gradients, common form.

residuals {r(k)} and descent vectors {v(k)} satisfy the following orthogonality relations:

v(i)T Av(j) = 0, i 6= j,

r(i)T r(j) = 0, i 6= j,

v(i)T r(j) = 0, i ≤ j.

(2.1)

In exact arithmetic, the algorithm terminates for k ≤ n, but not in finite-precision computa-
tions, for which it should be considered purely iterative. Details of convergence can be found
in [3].

The generalisation of the vector iteration to a system with full-rank matrix right-hand
side,

AX = B, A ∈ R
n×n, B ∈ R

n×m, m � n,

derives from the minimisation of the following matrix functional by the kth iterate X(k),
X(0) = 0:

f(Y ) = ‖A1/2(X − Y )‖F , Y ∈ span{AiB}k−1
i=0 .

It is defined by the equations in Figure 2.2. The descent matrices V (k) and residuals R(k)

satisfy the orthogonality relations:

V (i)T AV (j) = 0, i 6= j,

R(i)T R(j) = 0, i 6= j,

V (i)T R(j) = 0, i ≤ j.

(2.2)

The case m = 1 coincides with the vector iteration. Orthogonality properties imply that at
most bn÷mc blocks of independent descent directions and residuals can exist. Consequently,
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BCG

X(0) = 0, R(0) = B, R(−1) = I(n,m), V (0) = 0,

S(k−1) = (R(k−2)T R(k−2))−1R(k−1)T R(k−1),

V (k) = R(k−1) + V (k−1)S(k−1),

T (k) = (V (k)T AV (k))−1R(k−1)T R(k−1),

X(k) = X(k−1) + V (k)T (k),

R(k) = R(k−1) −AV (k)T (k),
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FIG. 2.2. Block conjugate gradients, common form.

BCGdQ

X(0) = 0, R(0) = B, R(−1) = I(n,m), P (0) = 0, C(0) = I,

S(k−1) = C(k−1)(R(k−2)T R(k−2))−1R(k−1)T R(k−1),

P (k)C(k) = R(k−1) + P (k−1)S(k−1),

T (k) = (P (k)T AP (k))−1C(k)−T R(k−1)T R(k−1),

X(k) = X(k−1) + P (k)T (k),

R(k) = R(k−1) −AP (k)T (k),
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FIG. 2.3. Block conjugate gradients, common form, with QR factorisation of the descent matrix.

in finite-precision computations, the matrices S(k), T (k) ∈ R
m×m should be expected to

approach singularity or nullity for some value of k > 0, causing a breakdown of the process.
To remedy this, O’Leary [6] suggests to incorporate in the algorithm a QR factorisation of
V (k) to monitor column dependences and eliminate redundant descent directions, thereby
decreasing m. The factorisation

V (k) = P (k)C(k), P (k)T P (k) = I, c
(k)
i j = 0 ∀ i > j, ‖(C(k))−1‖ < ∞,

produces a set {P (i)} that obviously possesses the same orthogonality properties as the set
{V (i)}. The substitution of the above expression V (k) in BCG and a little algebra yield
algorithm BCGdQ1 of Figure 2.3. This formulation improves the condition of the system to
be solved for T (k). Yet, estimating the rank of C(k) for elimination of linear dependences
in V (k) is a delicate operation that one would rather avoid. The next section addresses that
problem.

3. Alternate formulation. Figure 3.1 displays a variant of the vector iteration that de-
rives directly from the basic orthogonality relations (2.1). This alternate formulation appears
in the original paper by Hestenes and Stiefel [4]. Its block version BCGA shown in Figure
3.2 has the interesting property that any factorisation

V (k) = P (k)C(k), C(k) ∈ R
m×m, ‖(C(k))−1‖ < ∞,(3.1)

1 Note that the matrices S(k) and T (k) are not the same as those of the previous algorithm.
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CGA

x(0) = 0, r(0) = b, σ(0) = 1, v(0) = 0,

v(k) = r(k−1) + σ(k−1)v(k−1),

τ (k) =
v(k)T r(k−1)

v(k)T Av(k)
,

x(k) = x(k−1) + τ (k)v(k),

r(k) = r(k−1) − τ (k)Av(k),

σ(k) = − v(k)T Ar(k)

v(k)T Av(k)
,
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FIG. 3.1. Conjugate gradients, alternate form.

BCGA

X(0) = 0, R(0) = B, S(0) = I, V (0) = 0,

V (k) = R(k−1) + V (k−1)S(k−1),

T (k) = (V (k)T AV (k))−1V (k)T R(k−1),

X(k) = X(k−1) + V (k)T (k),

R(k) = R(k−1) −AV (k)T (k),

S(k) = −(V (k)T AV (k))−1V (k)T AR(k),
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FIG. 3.2. Block conjugate-gradients, alternate form.

produces an algorithm BCGAdF, where C(k) does not appear explicitly (see Figure 3.3)2.
Hence, if the decomposition (3.1) is such that all or part of some ill-conditioning of V (k)

is transferred to C(k), S(k) and T (k) are bound to have better condition numbers than their
BCGA homologues. Yet, one must keep in mind that this magic disappearance of a potential
ill-conditioning hinges on the assumption that C (k) has an inverse, which in theory is not true
after bn÷mc iterations. Finite-precision computations, however, are not likely to make C (k)

exactly singular, and the formulas of BCGAdF remain mathematically valid. Now, if C (k)

is numerically singular, P (k) may contain some spurious descent vectors artificially created
by the factorisation scheme. If these vectors reside in a subspace already visited, the corre-
sponding corrections to X (k−1) are small because of the effect of R(k−1) in the computation
of T (k). If they do not, they significantly contribute to X (k), a desirable situation, albeit
serendipitous. These considerations constitute the basis for an implicit treatment of singular-
ities that altogether circumvents the difficulties associated with rank estimation, and entirely
trusts iteration control to the magnitude of the residuals. In the absence of rank defect, the set
{P (i)} has the same orthogonality properties as the set {V (i)}.

Two obvious algorithms derive from the BCGAdF template. One, BCGAdQ, uses a QR
factorisation so that P (k) has orthonormal columns. The other, BCGAdL, builds P (k) as a

2 The matrices S(k) and T (k) are different from those of the previous algorithms.
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BCGAdF

X(0) = 0, R(0) = B, S(0) = I, P (0) = 0,

P (k)C(k) = R(k−1) + P (k−1)S(k−1),

T (k) = (P (k)T AP (k))−1P (k)T R(k−1),

X(k) = X(k−1) + P (k)T (k),

R(k) = R(k−1) −AP (k)T (k),

S(k) = −(P (k)T AP (k))−1P (k)T AR(k),
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FIG. 3.3. Block conjugate-gradients, alternate form, with factorisation of the descent matrix.

function [v,av]=NUMGS(v,av)

m=size(v,2);
for k=1:m-1

t=sqrt(1/(v(:,k)’*av(:,k)));
v(:,k)=t*v(:,k);
av(:,k)=t*av(:,k);
j=k+1:m;
w=v(:,k)’*av(:,j);
v(:,j)=v(:,j)-v(:,k)*w;
av(:,j)=av(:,j)-av(:,k)*w;

end
t=sqrt(1/(v(:,m)’*av(:,m)));
v(:,m)=t*v(:,m);
av(:,m)=t*av(:,m);
return

FIG. 4.1. In-situ modified Gram-Schmidt nonunitary orthogonalisation. The entry parameters are V and AV ,
and the results, P and AP such that P T AP = I in the absence of rank defect in V .

row permutation of a lower-trapezoidal matrix by LU decomposition with partial pivoting
(see Section 5 for a bound on the condition number of such a matrix).

The generality of the decomposition (3.1) naturally leads to yet another form of iteration
of lesser complexity described in the next section.

4. Nonunitary orthogonalisation. If the arbitrary factorisation (3.1) were engineered
to make P (k) A-orthogonal, obvious simplifications would ensue for the computation of T (k)

and S(k) in an algorithm of the BCGAdF type. It turns out that this A-orthogonalisation can
be performed without additional reference to A other than for the unavoidable multiplication
AV (k).

PROPOSITION 4.1. Let A ∈ R
n×n be symmetric positive definite. Given full-rank

matrices V ∈ R
n×m, m ≤ n, and W = AV , the matrices P, Q ∈ R

n×m such that

V = PC, cij = 0 ∀ i > j, QT P = I, Q = AP,(4.1)

can be computed without reference to A.
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Proof. The proof is by construction of a generalised modified Gram-Schmidt (MGS)
scheme based on the elementary A-projector

Πi = I − piq
T
i , qi = Api, qT

i pi = 1,

which transforms an arbitrary vector into a vector A-orthogonal to pi. Starting with

p1 = α1v1, q1 = α1w1,

we derive p2 by projection of v2 on the A-orthogonal complement of p1,

p2 = α2Π1v2, q2 = α2Π1w2, qT
2 p2 = 1,

where α1 and α2 are defined by A-normalisation. Letting

Pj =

j
∑

i=1

pie
T
i , Qj =

j
∑

i=1

qie
T
i ,

we observe that our proposition is verified for matrices in R
n×2:

QT
2 P2 = I, Q2 = AP2.

We now assume that Pk and Qk have been computed so that QT
k Pk = I and Qk = APk for

k < m. Because of orthogonality, these matrices have the formal properties

I − PkQT
k = Πk . . . Π1, I −QkP T

k = ΠT
k . . . ΠT

1 ,

as the elementary projectors commute. In finite precision computations, however, these iden-
tities are not generally verified3. The computation of Pk+1 and Qk+1 follows from:

pk+1 = αk+1Πk . . . Π1vk+1,

qk+1 = αk+1Π
T
k . . . ΠT

1 wk+1,







qT
k+1pk+1 = 1.(4.2)

These recurrence relations constitute a generalisation of the MGS procedure that builds P =
Pm and Q = Qm = APm to verify equations (4.1). C is the upper-triangular Cholesky factor
of V T AV .

An in situ MATLAB implementation NUMGS of the above procedure4 is displayed in
Figure 4.1. Substituting V (k) = P (k)C(k) in BCGA with P (k) A-orthogonal, we obtain
algorithm BCGAdA5 displayed in Figure 4.2, where the equation defining P (k)C(k) repre-
sents the computation of P (k) and AP (k). Since BCGAdA builds all its descent directions
A-orthogonal, it constitutes a more consistent generalisation of the vector iteration6 than
BCGAdQ and BCGAdL. We must expect losses or orthogonality in the presence of nearly-
dependent columns in V (k). Assuming that the computation of AV (k) is accurate to working
precision ε, a bound for the MGS process in [3] yields

‖P (k)T AP (k) − I‖2 ≈ εκ2(A
1/2V (k)) ≤ εκ2(A

1/2) κ2(V
(k)),(4.3)

3 The replacement of Πk . . .Π1 with I − PkQT

k
in equations (4.2) would produce a classical Gram-Schmidt

scheme, which is more unstable.
4 A generalisation to the case where A is symmetric, nonsingular, but indefinite, is obtained by substituting the

requirement |QT P | = I for QT P = I in Proposition 4.1, and by replacing in the proof the projector Πi by
Π̃i = I − θipiq

T

i
, θi = sgn(pT

i
qi).

5 The matrices S(k) and T (k) are different from those of the previous algorithms.
6 The generalisation is not quite complete, as the columns of a residual block are not orthogonal.
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BCGAdA

X(0) = 0, R(0) = B, S(0) = I, P (0) = 0,

P (k)C(k) = R(k−1) + P (k−1)S(k−1),

T (k) = P (k)T R(k−1),

X(k) = X(k−1) + P (k)T (k),

R(k) = R(k−1) −AP (k)T (k),

S(k) = −P (k)T AR(k),
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FIG. 4.2. Block conjugate-gradients, alternate form, with A-orthogonalisation of the descent matrix.

where κ2 is the `2 condition number. In experiments, algorithm BCGAdA proves rather
temperamental, either by working well or by failing in big ways. Typically, if the tolerance η
of the stopping criterion

max
j

‖r(k)
j ‖2

‖bj‖2
≤ η(4.4)

is out of the reach of the initial convergent phase of the iteration, unfettered divergence sets in.
This phenomenon is explained by the inability of the nonunitary orthogonalisation process to
furnish adequate replacements for dependent descent vectors. We discuss in the next section
an approach that corrects this deficiency.

BCGAdFA

X(0) = 0, R(0) = B, S(0) = I, P (0) = 0,

Ω(k)∆(k) = R(k−1) + P (k−1)S(k−1),

P (k)Γ(k) = Ω(k),

T (k) = P (k)T R(k−1),

X(k) = X(k−1) + P (k)T (k),

R(k) = R(k−1) −AP (k)T (k),

S(k) = −P (k)T AR(k),
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FIG. 5.1. Block conjugate-gradients, alternate form, A-orthogonalisation of the descent matrix with conditioning.

5. Robust nonunitary orthogonalisation. An investigation of existing methods of
nonunitary orthogonalisation quickly reveals that those based on the computation of
V (k)T AV (k) are poor choices. For example, consider the well-known scheme, perhaps the
least objectionable in that category, which calls on the symmetric singular-value decomposi-
tion

Ψ(k)D(k)Ψ(k)T = V (k)T AV (k), P (k) = V (k)Ψ(k)D(k)−1/2.
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In the presence of a numerical rank defect in V (k), the values
√

d
(k)
ii close to zero must be

expected to incur absolute errors of the order of 0.5ε‖V (k)T AV (k)‖2/d
(k)1.5
ii for a working

precision ε (see, for example, [7]). Under such conditions, no computation of P (k) can be
reliable. Even for monitoring linear dependences in V (k), this approach is not recommended

since the smallest
√

d
(k)
ii value, which is of crucial importance, can be erroneous by a quantity

of the order of the A-condition number of V (k). Clearly, the design of a dependable scheme
must be found elsewhere.

That NUMGS works well when V (k) is well-conditioned is consistent with inequality
(4.3), and suggests a simple two-stage approach to building a robust algorithm. It consists of
first computing a safe basis for a subspace of dimension m containing the range of V (k), and
then passing this basis to NUMGS for A-orthogonalisation. The first stage, or conditioning
transformation, can be carried out with a factorisation

V (k) = Ω(k)∆(k), Ω(k) ∈ R
n×m,(5.1)

such that Ω(k) is well-conditioned. The second stage consists of the application of NUMGS
to {Ω(k), AΩ(k)}:

Ω(k) = P (k)Γ(k), P (k)T AP (k) = I, γ
(k)
i j = 0 ∀ i > j.

A combination of these equations yields

V (k) = P (k)C(k), C(k) = Γ(k)∆(k).

Figure 5.1 describes BCGAdFA, a block conjugate-gradients algorithm with robust A-
orthogonalisation where matrices ∆(k) and Γ(k) “vanish” from the computation. Left multi-
plication of the first equation in BCGAdFA by P (k)T A yields

C(k) = P (k)T AR(k−1).

This identity shows that, predictably, C(k) converges to negligibility like R(k−1):

‖C(k)‖2 ≤ ‖R(k−1)‖A.

By inequality (4.3), the best conditioning transformation (5.1) is a thin Householder QR de-
composition for which Ω(k) has orthogonal columns, and ∆(k) and C(k) are upper-triangular.
This sure-fire approach, which provides replacements for the defective columns of V (k), is
costly of computation and may just be overkill. An obvious alternative is an LU decomposi-
tion with partial pivoting, for which Ω(k) is a row permutation of a lower-trapezoidal matrix
that we denote by L(k). Since its suitability hinges on a question of condition expressed by
inequality (4.3), we develop in the following an upper bound on its `2 condition number.

L(k) has the highest condition number when it coincides with the matrix L̂ resulting from
the LU decomposition of an n×m matrix that produces the largest possible element growth
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factor in the course of the computation (see [8], p. 212):

L̂ =


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1 0 0 0 · · · 0 0 0

−1 1 0 0 · · · 0 0 0

−1 −1 1 0 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·

−1 −1 −1 −1 · · · −1 1 0

−1 −1 −1 −1 · · · −1 −1 1

· · · · · · · · · · · · · · · · · · · · · · · ·
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To derive a bound on the condition number of L̂ we start with

‖L̂‖2 ≤ ‖L̂‖F <
√

mn,(5.2)

which follows from the definition of the matrix.
An upper bound for ‖L̂−1‖2 is obtained by building a lower-triangular matrix Υ ∈

R
m×m that has the same condition number as L̂ and a known inverse. The Frobenius norm

of this inverse provides the desired bound, as follows.
We first apply to L̂ a Householder transformation that modifies row m and annihilates

rows m + 1, ..., n. Υ is obtained by removing the null rows from the result. These operations
preserve the condition of L̂ and its Frobenius norm. We have

Υ =





























1 0 0 0 · · · 0 0 0

−1 1 0 0 · · · 0 0 0

−1 −1 1 0 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · ·
−1 −1 −1 −1 · · · −1 1 0

−µ −µ −µ −µ · · · −µ −µ µ





























, µ =
√

n−m + 1.

This matrix has the following inverse, which is the Cholesky factor of (L̂T L̂)−1,

Υ−1 =





























1 0 0 · · · 0 0 0

1 1 0 · · · 0 0 0

2 1 1 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
2m−3 2m−4 2m−5 · · · 1 1 0

2m−2 2m−3 2m−4 · · · 2 1 µ−1





























.

Summations of geometric progressions of common ratio 4 easily yield ‖Υ−1‖F . A simple
upper bound ensues, where, for simplicity, the contribution of the last diagonal element is
replaced by unity:

‖Υ−1‖2 < ‖Υ−1‖F <
1

3

√
4m + 6m− 1.
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¿From inequality (5.2), it follows that

κ2(L
(k)) ≤ κ2(L̂) <

1

3

√

mn(4m + 6m− 1).

This bound, which adequately approximates κ2(L̂) when n is sizeably larger than m, is not
small. For m = 10 and n = 2000, κ2(L̂) is of the order of 104. Yet, it grossly exceeds
the condition numbers that one should expect in practice. This is not surprising since L̂
is an artificial construction to illustrate element growth in Gaussian elimination, and a very
unlikely occurrence in normal computations. By contrast, the LU decomposition of a random
2000×10 matrix with elements normally distributed inN (0; 1) produces a lower-trapezoidal
factor with condition number generally less than 10. In any case, a wealth of studies of
Gaussian elimination and its long history of widespread use tell us that LU conditioning is a
fairly safe bet.

In summary, the preferred robust scheme with LU conditioning consists of two phases:
1. Computation of L(k) by LU factorisation with partial pivoting:

V (k) = L(k)U (k),
2. Computation of P (k) from {L(k), AL(k)} with NUMGS:

L(k) = P (k)Γ(k).
Again, C(k) = Γ(k)U (k) is upper-triangular. In numerical experiments, LU and QR con-
ditionings of the descent blocks yield equally good results, and do not require more work
than the approach based on the singular-value decomposition of V (k)T AV (k). Tests show
good accuracy measured by the deviation of P (k)T AP (k) from the identity and by the small
subdiagonal elements of C(k) computed as

C(k) = P (k)T AV (k).

The following example illustrates the effect of LU conditioning, where A is a Wishart matrix,
n = 500, κ2(A) = 1.44× 106, and V (k) is defined for m = 10 by

v
(k)
ij =

(

i

n

)j

, κ2(V
(k)) = 1.55× 107.

(i) Simple A-orthogonalisation of V (k) (sub(∗) designates the subdiagonal part of a
matrix):

‖I − P (k)T AP (k)‖2 = 2.24× 10−9, ‖sub(P (k)T AV (k))‖2 = 8.23× 10−7.

(ii) Robust A-orthogonalisation of V (k) with LU conditioning:

‖I − P (k)T AP (k)‖2 = 2.55× 10−15, ‖sub(P (k)T AV (k))‖2 = 9.38× 10−13.

The BCGAdFA template defines the variants BCGAdLA and BCGAdQA for LU and QR
conditionings.

6. Orthogonalisation of the residual matrix. In Section 4, we saw how an appropriate
change of basis produced an A-orthogonal descent matrix, a property formally consistent
with the vector iteration. Orthogonality of the residual vectors is another such property that
we propose to enforce with another change of basis.

In algorithm BCG of Section 2, consider the thin QR factorisation of the generic block
of residuals

R(j) = Q(j)C(j), Q(j)T Q(j) = I, ‖(C(j))−1‖ < ∞,
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and the associated transformation of the descent block that defines P (k):

V (k) = P (k)C(k−1).

Replacement of these formulas in algorithm BCG and a little algebra yield algorithm BCGrQ7

of Figure 6.1, where the equation defining the product Q(k)S(k) represents a thin Householder
QR decomposition. The identity

S(k) = C(k)(C(k−1))−1,(6.1)

which follows from this decomposition, provides a stable formula for the computation of
C(k). The discussion of a possible singularity of C(k) is the same as that for the factori-

BCGrQ

X(0) = 0, Q(0)C(0) = B, S(0) = I, P (0) = 0,

P (k) = Q(k−1) + P (k−1)S(k−1)T ,

T (k) = (P (k)T AP (k))−1,

X(k) = X(k−1) + P (k)T (k)C(k−1),

Q(k)S(k) = Q(k−1) −AP (k)T (k),

C(k) = S(k)C(k−1),











































k = 1, 2, . . . ·

FIG. 6.1. Block conjugate-gradients with orthogonalisation of the residual matrix.

sation of the descent block in Section 3. In this algorithm, C(k−1), which contains all the
information on the magnitude of the residuals, appears only for the purpose of scaling the
contribution of P (k) to the solution.

¿From the orthogonality relations (2.2), P (i)T Q(j) = 0 for i ≤ j. Since Q(i)T has
orthogonal columns, it follows that

Q(k−1)T P (k) = I, P (k)T AP (k) = Q(k−1)T AP (k).

It is possible to derive from BCGAdF an algorithm BCGAdFArQ (Figure 6.2) that combines
both robust A-orthogonalisation of the descent matrix and orthogonalisation of the residual
matrix. Such a construction, which constitutes a true generalisation of the vector iteration,
generates two algorithms, BCGAdQArQ and BCGAdLArQ, for LU and QR conditionings.

7. Summary report of experiments. Results of sample MATLAB experiments are dis-
played in the Appendix. For easier reading, I recapitulate how algorithm name relates to
implementation.

• Common form of the method
◦ BCG: the plain algorithm (for reference).
◦ BCGdQ: a slight improvement of BCG by orthogonalisation of the descent

matrix (for reference).
◦ BCGrQ: retooled algorithm based on the orthogonalisation of the residual ma-

trix.

7 As usual, the matrices S(k) and T (k) are not the same as in previous algorithms
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BCGAdFArQ

X(0) = 0, Q(0)C(0) = B, S(0) = I, P (0) = 0,

P (k)F (k) = Q(k−1) + P (k−1)S(k−1),

T (k) = P (k)T Q(k−1),

X(k) = X(k−1) + P (k)T (k)C(k−1),

Q(k)Z(k) = Q(k−1) −AP (k)T (k),

C(k) = Z(k)C(k−1),

S(k) = −P (k)T AQ(k),























































k = 1, 2, . . . ·

FIG. 6.2. Block conjugate-gradients, alternate form, with orthogonalisation of the residual matrix and robust
A-orthogonalisation of the descent matrix. The expression P (k)F (k) represents the robust A-orthogonalisation,
and Q(k)Z(k), a thin QR decomposition.

• Alternate form of the method
Unless specified otherwise, transformations apply to the descent blocks.
◦ BCGAdQ: QR factorisation.
◦ BCGAdL: LU factorisation with partial pivoting.
◦ BCGAdQA: Robust A-orthogonalisation with QR conditioning.
◦ BCGAdLA: Robust A-orthogonalisation with LU conditioning.
◦ BCGAdQArQ: Robust A-orthogonalisation of the descent matrix with QR

conditioning and orthogonalisation of the residual matrix.
◦ BCGAdLArQ: Robust A-orthogonalisation of the descent matrix with LU con-

ditioning and orthogonalisation of the residual matrix.

To illustrate these methods, I ran five sets of experiments for systems of orders ranging from
200 to 800 with the following types of matrices:

1. Matrices generated by random unitary congruence from positive eigenvalues nor-
mally distributed with null mean and unit variance. The condition numbers were set
to 106.

2. Shifted Wishart matrices.
The Wishart matrices are obtained from the multiplication of square matrices of
entries normally distributed with null mean and unit variance by their transposes
[1]. Appropriate shifts of the diagonal produce condition numbers close to 105.

3. Symmetric tridiagonal matrices of diagonal {2+t, . . . , 2+t, t} and unit codiagonal.
These matrices have an approximate condition number 4.5/t, where t is set to 10−5.

4. Shifted Wilkinson tridiagonal matrices of even orders.
Wilkinson’s tridiagonal matrix W−

n [8] has unit codiagonal and diagonal elements
di = bn/2c − i + 1, 1 ≤ i ≤ n. For the values of n considered here, condition
numbers of the order of 105 result by subtracting n2/(2n+1.01) from the diagonal.

5. Squares of symmetric tridiagonal matrices with random diagonal elements uni-
formly distributed in (−1/8, +1/8) and unit codiagonal.

Concerning the operation counts (Mflop) reported in the Appendix, note that the structures of
the above tridiagonal and pentadiagonal matrices are not exploited in the matrix multiplica-
tions performed by the algorithms.
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The right-hand sides vectors have random elements uniformly distributed in (−1, +1)
for m = 10. The criterion used for stopping the iteration is

max
j

‖r(k)
j ‖2

‖bj‖2
≤ η,

with η set to 10−12. For BCGrQ, c
(k)
j replaces r

(k)
j in the inequality. In the results displayed

in the Appendix, the residual represents

max
j

‖bj −Axj‖2

‖bj‖2
.

A number of iterations that attains the set limit [n÷ 3] is flagged by ‘+++’.
In the experiments reported here as well as in others, BCGrQ consistently shows the

least sensitivity to matrix condition and delivers the best overall performance for number
of iterations, residual size, and count of operations. The reasons for this superior behavior
are not entirely clear. BCGdLArQ and BCGdQArQ generally place second for number of
iterations.

8. Conclusion. The main result of this exploratory work is that retooling the block
method for appropriate changes of bases is an effective means to generate reliable algo-
rithms free of tricky rank monitoring and repair of singularities. An alternate form of the
method allows for transparent transformations of the descent matrix, including one that en-
sures A-orthogonality. The best algorithm, however, follows from the common method by
orthogonalisation of the residual matrix. A true generalisation of the vector iteration that
combines A-orthogonalisation of the descent matrix and orthogonalisation of the residual
matrix is competitive for count of iterations, but more costly for count of operations.
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Appendix.

Matrices with eigenvalues normally distributed

n m κ(A) η Algorithm Iterations Residual Mflop

max= [n/3]

200 10 106 10−12 BCG +++ 5.00 × 10−5 68

BCGdQ +++ 1.04 × 10−6 75

BCGrQ 35 1.43 × 10−11 38

BCGAdQ 42 1.59 × 10−11 48

BCGAdL 43 1.37 × 10−11 47

BCGAdQA 43 1.75 × 10−11 51

BCGAdLA 42 1.59 × 10−11 47

BCGAdQArQ 40 1.52 × 10−11 50

BCGAdLArQ 41 1.37 × 10−11 49

400 10 106 10−12 BCG +++ 4.40 × 10−4 483

BCGdQ 114 1.60 × 10−11 437

BCGrQ 58 1.28 × 10−11 213

BCGAdQ 73 1.53 × 10−11 285

BCGAdL 75 1.44 × 10−11 282

BCGAdQA 74 1.51 × 10−11 295

BCGAdLA 72 1.50 × 10−11 276

BCGAdQArQ 52 1.39 × 10−11 272

BCGAdLArQ 53 1.40 × 10−11 275

600 10 106 10−12 BCG +++ 1.59 × 10−6 1568

BCGdQ +++ 4.41 × 10−10 1629

BCGrQ 76 1.51 × 10−11 601

BCGAdQ 88 1.53 × 10−11 727

BCGAdL 89 1.48 × 10−11 716

BCGAdQA 89 1.51 × 10−11 745

BCGAdLA 86 1.59 × 10−11 701

BCGAdQArQ 81 1.56 × 10−11 694

BCGAdLArQ 83 1.59 × 10−11 693

800 10 106 10−12 BCG +++ 7.26 × 10−7 3644

BCGdQ 126 1.79 × 10−11 1771

BCGrQ 101 1.85 × 10−11 1388

BCGAdQ 110 1.79 × 10−11 1563

BCGAdL 109 1.72 × 10−11 1517

BCGAdQA 112 1.78 × 10−11 1609

BCGAdLA 107 1.74 × 10−11 1506

BCGAdQArQ 105 1.79 × 10−11 1535

BCGAdLArQ 103 1.81 × 10−11 1476
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Shifted Wishart matrices

n m κ(A) η Algorithm Iterations Residual Mflop

max= [n/3]

200 10 ≈ 105 10−12 BCG +++ 1.56 × 10−10 68

BCGdQ 61 1.64 × 10−12 68

BCGrQ 37 1.64 × 10−12 39

BCGAdQ 50 1.58 × 10−12 58

BCGAdL 50 1.59 × 10−12 54

BCGAdQA 49 1.69 × 10−12 58

BCGAdLA 49 1.64 × 10−12 55

BCGAdQArQ 50 1.60 × 10−12 63

BCGAdLArQ 51 1.60 × 10−12 61

400 10 ≈ 105 10−12 BCG +++ 4.39 × 10−10 483

BCGdQ 125 2.11 × 10−12 479

BCGrQ 75 1.87 × 10−12 277

BCGAdQ 111 2.08 × 10−12 434

BCGAdL 111 2.09 × 10−12 417

BCGAdQA 111 1.94 × 10−12 442

BCGAdLA 111 2.14 × 10−12 426

BCGAdQArQ 113 2.24 × 10−12 468

BCGAdLArQ 113 2.01 × 10−12 452

600 10 ≈ 105 10−12 BCG +++ 2.67 × 10−10 1568

BCGdQ +++ 1.84 × 10−12 1629

BCGrQ 106 1.73 × 10−12 841

BCGAdQ 177 1.85 × 10−12 1462

BCGAdL 177 1.98 × 10−12 1423

BCGAdQA 176 1.71 × 10−12 1473

BCGAdLA 146 1.75 × 10−12 1190

BCGAdQArQ 138 1.87 × 10−12 1049

BCGAdLArQ 171 1.93 × 10−12 1293

800 10 ≈ 105 10−12 BCG +++ 1.04 × 10−9 3644

BCGdQ +++ 5.84 × 10−11 3753

BCGrQ 158 2.09 × 10−12 2179

BCGAdQ 247 2.37 × 10−12 3510

BCGAdL 246 2.43 × 10−12 3424

BCGAdQA 246 2.50 × 10−12 3533

BCGAdLA 247 2.46 × 10−12 3476

BCGAdQArQ 219 2.37 × 10−12 3217

BCGAdLArQ 177 2.04 × 10−12 2546
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Symmetric tridiagonal matrices with diagonal {2+ t, . . . , t}, t = 10−5, and unit codiagonal

n m κ(A) η Algorithm Iterations Residual Mflop

max= [n/3]

200 10 ≈ 4.5 × 105 10−12 BCG +++ 7.21 × 10−5 68

BCGdQ +++ 1.30 × 10−10 75

BCGrQ 25 5.50 × 10−12 26

BCGAdQ 40 6.02 × 10−12 46

BCGAdL 36 6.44 × 10−12 39

BCGAdQA 40 7.92 × 10−12 48

BCGAdLA 36 5.80 × 10−12 40

BCGAdQArQ 24 2.63 × 10−12 30

BCGAdLArQ 24 8.16 × 10−12 28

400 10 ≈ 4.5 × 105 10−12 BCG +++ 1.85 × 10−7 482

BCGdQ +++ 2.15 × 10−7 510

BCGrQ 41 4.69 × 10−12 150

BCGAdQ 45 8.81 × 10−12 176

BCGAdL 40 5.54 × 10−12 150

BCGAdQA 44 4.24 × 10−12 175

BCGAdLA 40 5.52 × 10−12 153

BCGAdQArQ 41 6.50 × 10−12 167

BCGAdLArQ 41 4.21 × 10−12 162

600 10 ≈ 4.5 × 105 10−12 BCG +++ 1.94 × 10−7 1568

BCGdQ 62 4.17 × 10−12 505

BCGrQ 61 1.85 × 10−12 481

BCGAdQ 61 4.67 × 10−12 504

BCGAdL 61 7.25 × 10−12 490

BCGAdQA 61 3.99 × 10−12 511

BCGAdLA 61 1.04 × 10−11 497

BCGAdQArQ 57 4.72 × 10−12 486

BCGAdLArQ 62 6.96 × 10−12 516

800 10 ≈ 4.5 × 105 10−12 BCG +++ 6.14 × 10−8 3644

BCGdQ 65 2.90 × 10−12 914

BCGrQ 58 1.80 × 10−12 791

BCGAdQ 68 7.76 × 10−12 966

BCGAdL 69 5.48 × 10−12 960

BCGAdQA 68 1.71 × 10−12 977

BCGAdLA 68 2.48 × 10−12 957

BCGAdQArQ 58 2.71 × 10−12 842

BCGAdLArQ 58 4.37 × 10−12 825
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Shifted Wilkinson tridiagonal matrices W−
n of even orders

n m κ(A) η Algorithm Iterations Residual Mflop

max= [n/3]

200 10 1.03 × 105 10−12 BCG 43 6.01 × 10−12 44

BCGdQ 45 4.25 × 10−13 50

BCGrQ 22 2.74 × 10−13 23

BCGAdQ 28 6.64 × 10−13 32

BCGAdL 27 9.96 × 10−13 29

BCGAdQA 28 7.98 × 10−13 33

BCGAdLA 27 8.64 × 10−13 30

BCGAdQArQ 22 2.34 × 10−13 27

BCGAdLArQ 22 2.62 × 10−13 26

400 10 2.47 × 105 10−12 BCG +++ 1.94 × 10−7 482

BCGdQ 68 5.93 × 10−13 261

BCGrQ 42 1.51 × 10−13 154

BCGAdQ 46 8.11 × 10−13 180

BCGAdL 45 5.87 × 10−13 169

BCGAdQA 46 8.41 × 10−13 183

BCGAdLA 56 8.07 × 10−13 215

BCGAdQArQ 42 5.39 × 10−13 172

BCGAdLArQ 42 2.50 × 10−13 166

600 10 3.96 × 105 10−12 BCG +++ 5.86 × 10−7 1568

BCGdQ 116 8.66 × 10−13 945

BCGrQ 60 6.43 × 10−13 473

BCGAdQ 63 6.31 × 10−13 520

BCGAdL 64 7.14 × 10−13 514

BCGAdQA 63 6.67 × 10−13 527

BCGAdLA 64 4.97 × 10−13 522

BCGAdQArQ 60 4.91 × 10−13 512

BCGAdLArQ 60 8.04 × 10−13 499

800 10 5.46 × 105 10−12 BCG +++ 5.16 × 10−8 3644

BCGdQ 126 8.85 × 10−13 1771

BCGrQ 72 5.80 × 10−13 986

BCGAdQ 90 7.75 × 10−12 1279

BCGAdL 74 9.18 × 10−12 1030

BCGAdQA 77 9.47 × 10−12 1106

BCGAdLA 77 6.86 × 10−12 1083

BCGAdQArQ 71 9.53 × 10−13 1033

BCGAdLArQ 71 8.54 × 10−13 1013
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Squares of symmetric tridiagonal matrices with random diagonal elements uniformly dis-
tributed in (−1/8, +1/8) and unit codiagonal

n m κ(A) η Algorithm Iterations Residual Mflop

max= [n/3]

200 10 2.64 × 104 10−12 BCG +++ 1.05 × 10−6 68

BCGdQ +++ 1.39 × 10−12 75

BCGrQ 24 6.84 × 10−13 25

BCGAdQ +++ 1.51 × 10−11 77

BCGAdL +++ 3.07 × 10−12 73

BCGAdQA +++ 1.39 × 10−12 80

BCGAdLA 51 9.25 × 10−13 57

BCGAdQArQ 39 9.40 × 10−13 49

BCGAdLArQ 40 1.08 × 10−12 48

400 10 5.14 × 105 10−12 BCG +++ 1.89 × 10−8 483

BCGdQ +++ 2.10 × 10−9 510

BCGrQ 63 4.34 × 10−12 232

BCGAdQ +++ 1.93 × 10−11 520

BCGAdL 100 5.83 × 10−12 376

BCGAdQA 93 6.25 × 10−12 370

BCGAdLA 89 6.36 × 10−12 341

BCGAdQArQ 79 5.69 × 10−12 326

BCGAdLArQ 74 5.58 × 10−12 295

600 10 4.24 × 105 10−12 BCG +++ 1.18 × 10−6 1568

BCGdQ +++ 2.28 × 10−4 1629

BCGrQ 72 4.01 × 10−12 569

BCGAdQ 128 7.88 × 10−12 1057

BCGAdL 128 7.58 × 10−12 1029

BCGAdQA 126 7.99 × 10−12 1055

BCGAdLA 127 7.76 × 10−12 1036

BCGAdQArQ 80 4.74 × 10−12 685

BCGAdLArQ 79 5.00 × 10−12 659

800 10 2.87 × 105 10−12 BCG +++ 9.98 × 10−8 3644

BCGdQ +++ 2.87 × 10−3 3753

BCGrQ 98 2.10 × 10−12 1346

BCGAdQ +++ 6.25 × 10−12 3794

BCGAdL 180 3.96 × 10−12 2505

BCGAdQA 179 3.94 × 10−12 2571

BCGAdLA 216 4.90 × 10−12 3040

BCGAdQArQ 106 2.38 × 10−12 1550

BCGAdLArQ 127 3.00 × 10−12 1823
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