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POLYNOMIAL EIGENVALUE PROBLEMS
WITH HAMILTONIAN STRUCTURE

�
VOLKER MEHRMANN

�
AND DAVID WATKINS

�
Abstract. We discuss the numerical solution of eigenvalue problems for matrix polynomials, where the

coefficient matrices are alternating symmetric and skew symmetric or Hamiltonian and skew Hamiltonian. We
discuss several applications that lead to such structures. Matrix polynomials of this type have a symmetry in
the spectrum that is the same as that of Hamiltonian matrices or skew-Hamiltonian/Hamiltonian pencils. The
numerical methods that we derive are designed to preserve this eigenvalue symmetry. We also discuss linearization
techniques that transform the polynomial into a skew-Hamiltonian/Hamiltonian linear eigenvalue problem with a
specific substructure. For this linear eigenvalue problem we discuss special factorizations that are useful in shift-
and-invert Krylov subspace methods for the solution of the eigenvalue problem. We present a numerical example
that demonstrates the effectiveness of our approach.

Key words. matrix polynomial, Hamiltonian matrix, skew-Hamiltonian matrix, skew-
Hamiltonian/Hamiltonian pencil, matrix factorizations.

AMS subject classifications. 65F15, 15A18, 15A22.

1. Introduction. In this paper we discuss the numerical solution of � -th degree poly-
nomial eigenvalue problems

�����
	���
 �� �
���

�
�
� � ��
����

(1.1)

Polynomial eigenvalue problems arise in the analysis and numerical solution of higher
order systems of ordinary differential equations.

EXAMPLE 1. Consider the model of a robot with electric motors in the joints, [15],
given by the system������	 ��"!$#%�&�('%)��	%!+*+�&�-,/.0	1
2�

(robot model),34�.5!$67).�,98:�&�-,/.0	1
2�
(motor mechanics),(1.2)

with
*;
<*>=?'@8A
B8C=

positive definite,
3

diagonal and positive definite,
6

diagonal
and positive semidefinite.

Linearization (
#%�&�('�)��	D
AEF)�5!HGI�

) and simplification (
������	D
J�9K

) in the robot
equations leads to an equation for the robot dynamics of the form�LKM��N!+EF)�"!��&GO!+*>	P�-,L*:.Q
���'
(1.3)

with
� K 
R�H=K

positive definite,
EB
S,NEC=

, and
GS
RGI=

. Solving this equation for
.

and inserting in the second equation of (1.2) leads to the polynomial system� K �UT K@V !$�9WX�UT W V !+�9YZ�UT Y V !$�+[\)�N!$� � �]
O�^'
(1.4)

where �9W-
OE2!+*93\_ [ 6:*9_ [ � K '
�9Y-
`GO!a*b!+*93\_ [ 6:*9_ [ E2!a*a3\_ [ 8c*9_ [ � K '

�+["
�*93\_ [ ��6:*a_ [ GO!+6d!+8C*9_ [ EC	e'
f
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and � � 
O*a3 _ [ 8c* _ [ G4�
The substitution

�]
������ �
then yields a polynomial eigenvalue problem of the form (1.1).

A particular class of polynomial eigenvalue problems that we are interested in are
those where the coefficient matrices form alternating sequences of symmetric and skew-
symmetric matrices.

An application that motivates the study of this particular class is given by the following
example.

EXAMPLE 2. The study of corner singularities in anisotropic elastic materials [1, 7,
9, 13, 16] leads to quadratic eigenvalue problems of the form� Y � �4!$�^EI�C!a* �5
2�^'

�;
`�H= 'AEH
 ,NE]=?' * 
�* =1�(1.5)

The matrices are large and sparse, having been produced by a finite element discretization.�
is a positive definite mass matrix, and

,N*
is a stiffness matrix. Clearly, the coefficient

matrices are alternating between symmetric and skew-symmetric matrices.
Polynomial eigenvalue problems with alternating sequences of symmetric and skew-

symmetric matrices also arise naturally in the optimal control of systems of higher order
ordinary differential equations.

Consider the control problem to minimize the cost functional� ����
	 �� �
� �

��� T
� V 	 =�� � � T � V !�
 =�� 
����e'

with
� � 
 � =�

, subject to the polynomial control system

�� �
���

� � �UT
� V 
���
\�
�P	X'

(1.6)

with control input

\�
�P	

and initial conditions� T
� V �
� � 	?
2� �
� � '�� 
���'�� 'Z� � � ' � ,�� �

(1.7)

The classical procedure to turn (1.6) into a first-order system of differential algebraic equa-
tions, by introducing new variables

� � 
�� T � V
for
�c
B��'Z� � � ' � ,�� '

leads to the control
problem  )��
�!N�]!#"�$
\�
�P	

with

 

%&&&&&' � �)(

. . . ( (
*,+++++
- '�!�


%&&&&&' ,-� � _ [ ,-� � _ Y � �Z� ,-�+[ ,-� �(
. . . ( (

*,+++++
- '

��

%&&&&&' � � _ [� � _ Y...� [� �

*,+++++
- ' "�d


%&&&&&' � �
...��

*,+++++
- '
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and the cost functional � � ��
	 � =�� �]! 
 = � 
����e'
with

� 

%&&&&&'
� � _ [ � � _ Y . . . � [ � �

*,+++++
- �

Direct application of the Pontryagin maximum principle for descriptor systems [12] leads
to the two-point boundary value problem of the Euler-Lagrange equations�  �� ,  =�� � )� )� � 
 � ! , "� � _ [ "�c=� !-= � � �� � '(1.8)

with initial conditions for
�

given by (1.7) and � � � [Z	1
O�
. Setting

� 

%&' � � _ [...� �

*,+
- '

partitioned as
�

, and rewriting the system again as a polynomial system in variables

� �� � ,

where � 
 � � _ [ ' leads to the polynomial two-point boundary value problem

� _ [�� � [
� ��, � 	 � _ [ � � �H=Y ��9Y � � � � � T Y � V� T Y � V � !

� _ [�� � [
� � ,-�H=Y ��� [�9Y ��� [ � � � � T Y ��� [ V� T Y ��� [ V � !� , � � �H=�� � , � � _ [ �c=�� � �� � 
���'

(1.9)

with initial conditions (1.7) and � T
� V �
� [Z	?
��

for
� 
O��'Z� �Z� � , � , where we have introduced

the new coefficients
� � � ["
�� � � Y-
 � � �(
2�9Y � 
2�

.
It follows that all coefficients of derivatives higher than � are singular. If the weighting

matrices
� �

are chosen to be zero for all
�
	 ����
 , then we have that all coefficients of

derivatives higher than � vanish, and (after possibly multiplying the second block row
by

, �
) we obtain an alternating sequence of symmetric and skew-symmetric coefficient

matrices. The solution of this polynomial boundary value problem can then be obtained
via the solution of the corresponding polynomial eigenvalue problem.

Consider the following example.
EXAMPLE 3. Control of linear mechanical systems is governed by a differential equa-

tion of the form �S��5!+6H)��!+* � 
���
 '
where

�
and



are vectors of the state and control variables, respectively. Again the matri-

ces can be large and sparse. The task of computing the optimal control



, that minimizes
the cost functional � ���� 	 � = � � ��!B)� = � [ )��!�
 = � 
����e'
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leads to the system� � [ �H=� � � � �� �� � ! � � ,N6:=6 � � � )� )� � ! � , � � * =* , � � _ [ �c=�� � �� � 
2��'
which is a special case of (1.9). The substitution� �� � 
�� ��� � �� �
then yields the quadratic eigenvalue problem� � Y � � [ �H=� � � !$� � � ,N6:=6 � � ! � , � � * =* , � � _ [ �c=���� � �� � 
����
(1.10)

Clearly the coefficient matrices alternate between symmetric and skew-symmetric ma-
trices. An alternate statement of (1.10) is obtained by swapping the (block) rows and
introducing a minus sign:� � Y � � �, � [ ,-�H= � !+� � 6 �� 6:=�� ! � * , � � _ [ �c=� � ,N*>= ��� � �� � 
����
(1.11)
Now the structure of the matrices is not so obvious. The first matrix is Hamiltonian, the
second is skew Hamiltonian, and the third is again Hamiltonian (defined below).

An example of a control problem governed by a third order equation is given in [5, 10].
EXAMPLE 4. As a final example, consider the linear quadratic optimal control prob-

lem for descriptor systems [3, 12], which is governed by a first-order system of differential
equations and leads to an eigenvalue problem of the form� ! , �$�5=GI= G , ! = � � �� � ,9� �  ��  =�� � �� � 
2�^�
(1.12)

Now we have a first-order eigenvalue problem, but the structure of the matrices is the same
as that of those in (1.11); one is Hamiltonian, and the other is skew Hamiltonian. If we
rewrite (1.12) with the top and bottom rows interchanged and introducing a minus sign, we
obtain � GI= G , ! =, ! , �$�5=�� � �� � ,9� � �  =,  � � � �� � 
O�^'
(1.13)

in which one matrix is symmetric and the other is skew symmetric.
Because of the special structure of these problems, all of them possess a special spec-

tral symmetry: the eigenvalues occur in � ��'Z, ��� pairs. This is the same symmetry as
occurs in the spectra of Hamiltonian matrices. In this paper we will restrict our attention to
real matrices, for which we have even more structure: the eigenvalues occur in quadruples� �%' �%' ,-�%' , ��� . We call this symmetry a Hamiltonian structure.

In the following we introduce a general family of polynomial eigenvalue problems
that includes (1.5), (1.10), and (1.13) (hence indirectly also (1.11) and (1.12)) as special
cases, having the Hamiltonian eigenvalue symmetry. We then present general tools that can
be used in solving eigenvalue problems of this type. Although these tools have practical
importance, each one has its own intrinsic interest and beauty as well, so we discuss them
separately from the applications.

In order to explain the tools, we introduce our general problem now. Let
� � , �+[

,
. . .

� � be (large, sparse) matrices in �	�
�
� . Consider the � th degree polynomial eigenvalue

problem

�����
	���
 �� �
���

�
�
� � ��
����

(1.14)
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Of greatest interest to us are the cases� =� 
d��, � 	 � � � '
for
�\
2�^' � �Z�X' �(1.15)

and � =� 
7��, � 	 � � [ � � '
for
� 
2�^' �Z� �X' � �(1.16)

In either case we will refer to � �
�
� � �

�
� �

as an alternating pencil or alternating matrix
polynomial, since the coefficient matrices alternate between symmetric and skew symmet-
ric. Problems (1.5), (1.10), and (1.13) have the form (1.14), subject to (1.15).

The following simple result is easily verified.
PROPOSITION 1.1. Consider the polynomial eigenvalue problem

���&�0	 �:
O�
given by

(1.14) with an alternating pencil
�

. That is, either
� =� 
 ��, � 	 � � �

or
�H=� 
 ��, � 	 � � [ � �

for
�\
2�^' � �Z�X' � . Then

���&�0	 ��
2�
if and only if

�(= ����,-�0	1
��
.

In words,
�

is a right eigenvector of
�

associated with eigenvalue
�

if and only if
� =

is a left eigenvector of
�

associated with eigenvalue
,-�

. Thus the eigenvalues of
�

occur
in quadruples � �%' �%' ,-�%' , ��� , that is, the spectrum has Hamiltonian structure. It should be
noted that for eigenvalues with real part zero, where

�Q
7, �
, the quadruple may be only a

pair.
When � is even, there is a second way to write the matrix polynomial that is also

useful. Suppose � 
 
�� , and define

3 Y��:
 � � ( �, ( � � � '
where ( � is the ����� identity matrix. Often, in cases where the dimension is obvious from
the context, we will leave off the subscript and simply write

3
rather than

3 Y	�
. Obviously3 _ [ 
d3�=a
 ,I3

. A matrix 
�� � Y��
� Y��

is said to be Hamiltonian iff
��3 
 	P=+
 3 
 and

skew Hamiltonian iff
� 3 
 	P= 
 ,I3 
 . It is said to be symplectic iff

� 
 	 =13 
 
 3
. If

we multiply the matrix polynomial
���&�0	

of (1.14) by
3 _ [ 
7,I3

, we obtain an equivalent
problem

� ���
	���
 �� �
���

�
�


� ��
2�^'

(1.17)

with


� 
B,I3%� �

,
�4
 ��'Z� � � ' � . If the

� �
alternate between symmetric and skew sym-

metric, then the


�

alternate between Hamiltonian and skew Hamiltonian. Both (1.11) and
(1.12) have this form. We may restate Proposition 1.1 in this new language.

PROPOSITION 1.2. Consider the polynomial eigenvalue problem
� �&�0	 �+
S�

given
by (1.17) with the coefficients



�

alternatively Hamiltonian and skew Hamiltonian. Then� ���
	���
��
if and only if � = � ��,-�0	?
2�

, where � 
73 �
.

A matrix pencil � ,+���
is said to be a skew-Hamiltonian/Hamiltonian (SHH) pencil

iff � is Hamiltonian and
�

is skew Hamiltonian. An example is given by (1.12). An SHH
pencil is a matrix polynomial of degree one that satisfies the hypotheses of Proposition 1.2
with � 
�
 � and

� 
d,�
�[
. Thus the eigenvalues of an SHH pencil occur in quadruples� �%' �%' ,-�%' , ��� . The identity matrix ( Y	� is skew Hamiltonian, so the standard eigenvalue

problem � ,Q� ( Y	� for the Hamiltonian matrix � is also an SHH pencil. Thus the spectrum
of a Hamiltonian matrix also has the special structure, as we stated earlier.

Having observed the particular structures, in the interests of efficiency and stability,
any good numerical method for solving problems of this type should preserve and exploit
this structure. This is the purpose of our tools.

The first tool addresses the problem of linearization. The most commonly used ap-
proach to solving a � th degree eigenvalue problem of dimension � is to linearize it, i.e., to
transform it to an equivalent first-degree equation

! �],D� ��� 
2�
of dimension ��� . There



ETNA
Kent State University 
etna@mcs.kent.edu

Polynomial Eigenvalue Problems with Hamiltonian Structure 111

are many ways to perform the linearization. The following question arises: Can we do
the linearization in such a way that the structure is preserved? That is, is every � th degree
problem (1.14), subject to (1.15) or (1.16), equivalent to a first-degree problem! �:,9� �$�/
2�
(1.18)

with the same structure? In Section 2 we answer the question affirmatively and construc-
tively by displaying an equivalent eigenvalue problem (1.18) with one coefficient matrix
symmetric and the other skew symmetric. This has the form (1.14) with � 
 �

and satisfies
(1.15) or (1.16).

The second tool is concerned with the efficient use of the linearization produced by the
first tool. In Section 3 we present two factorizations!2,L� � 
����
(1.19)

that facilitate the evaluation of expressions of the form
��!2, � �5	 _ [ �

for non-eigenvalues� and vectors
�

. This allows the use of the shift-and-invert strategy in conjunction with
Krylov subspace methods for solving the eigenvalue problem for

!O,9� �
.

The usual way to shift and invert a pencil is to apply the operator
� ! , � �5	 _ [ �

.
The extra

�
on the right here stands in the way of preservation of Hamiltonian structure.

Fortunately, so long as �D� is even, since
�

is real, it is always possible to factor
�

into a

product
� 
 � = 3 �

, where
3 
 � � (, ( � � and

�
is essentially triangular [4, 2].

�
can

be computed by an � � � W 	 algorithm that uses complete pivoting for stability. Also if the
matrix

�
is large and sparse, then sparse factorization techniques can be derived, similar to

those in sparse LU factorizations. Using this factorization, we can transform the problem! �",�� ���D
��
to

��3 _ [ � _ = ! � _ [ ,�� ( 	 � �/
2�
, with 
 
73 _ [ � _ = ! � _ [

Hamiltonian.
Then the shift-and-invert operation is applied to

� 
 , � ( 	 _ [ 
 � � !9, � ��	 _ [ � = 3
, using

the factorization (1.19) to apply
��!O, � �5	 _ [

.
Once we have the means to apply the operators

� 
 , � ( 	 and
� 
 , � ( 	 _ [ efficiently,

we can also apply the real skew-Hamiltonian operators� 
 , � ( 	 _ [ � 
 ! � ( 	 _ [ '
� 
 , � ( 	 _ [ � 
 , � ( 	e_ [ � 
 ! � ( 	e_ [ � 
 ! � ( 	 _ [ '

and the real symplectic operators � 
 , � ( 	 _ [ � 
 ! � ( 	X'
� 
 , � ( 	e_ [ � 
 ! � ( 	 � 
 , � ( 	e_ [ � 
 ! � ( 	e'

and we can therefore apply the structure-preserving Krylov subspace algorithms that were
presented in [13].

In Section 4 we present a numerical example that illustrates the use of the tools.
Much of what we have to say can be extended to complex matrices. However, the real

case is of much greater interest for both the theory and the applications, so we will restrict
ourselves to that case.

2. A Structure-Preserving Linearization. Any � th degree eigenvalue problem of
dimension � � � can be transformed to a first-degree eigenvalue problem of dimension
� � � �D� . This well-known procedure is commonly called linearization [6]. Our task here
is to perform a linearization that preserves the alternating structure.

THEOREM 2.1. Consider the polynomial eigenvalue problem
�����
	��F
 �

given by
(1.14) with either

�H=� 
d��, � 	 � � �
or

�H=� 
 �P, � 	 � � [ � �
and with

� � nonsingular. Then
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the pencil
!O,9� � ��� � �

�
� � , where

!`

%&&&&&&&'
,-� � � � � ����� �� ,-�9Y ,-�9W ,-� K ����� ,-� �� �9W � K �� ,-� K �

...
...

...� �I� � � � ����� �

* +++++++
-(2.1)

and

�d

%&&&&&&&'

�+[ �aY �9W������ � � _ [ � �,-� Y ,-� W ,-�LK������ ,-� � �� W �9K � �,-�LK � �
...

...
...�I� � � � ����� � �

*,+++++++
-
'

(2.2)

has the same eigenvalues as
�

. Here
�I� � is shorthand for

��, � 	 � _ [ � � . If
�7=� 
��, � 	 � � �

, then
!

is symmetric and
�

is skew symmetric. If
� =� 
 �P, � 	 � � [ � �

, then
�

is

symmetric and
!

is skew symmetric. If
�����
	��>
d�

, then � �(= �^�U= ����� � � _ [ �(=
	 =
is an eigenvector of

!O,9� �
.

Proof. Define new variables
�([

, . . . ,
� � by

� 
�� [
,
��Y:
 �^� [

,
��W:
 �^��Y

, . . . ,
� � 
�^� � _ [ . Then the equation

�����
	���
��
is clearly equivalent to%&&&' ,-� � � ����� �� (

...
. . .� (

*,+++
-
%&&&' � [� Y

...� �

*,+++
- 
��

%&&&' �+[������ � � _ [ � �( �
. . .

...( �

*,+++
-
%&&&' � [

...� � _ [� �

*,+++
- �

(2.3)

This is nothing new; it is the standard linearization procedure [6]. The matrices in (2.3)
have no special structure. To obtain from (2.3) a pencil that does have structure, simply
multiply on the left by %&&&&&&&'

( � � � ����� �� ,-�9Y ,-�9W ,-� K ����� ,-� �� �9W � K �� ,-� K �
...

...
...� �I� � � � ����� �

*,+++++++
-
�

(2.4)

This clearly yields the pencil
! ,/� �

specified by (2.1) and (2.2). Our assumption that
� �is nonsingular guarantees that (2.4) is nonsingular. Thus

!`,$� �
is strictly equivalent to

(2.3).
What do we gain from this theorem? The pencil (2.3) has the same eigenvalues as the� th degree pencil

�����
	
. In particular, the Hamiltonian symmetry of the eigenvalues holds

so long as the coefficients
� �

are alternately symmetric and skew symmetric. However,
it is difficult for a numerical method to exploit this structure, since the large matrices that
comprise the pencil do not have any easily identified structure whose preservation will
guarantee that the special form of the spectrum will be preserved. In contrast, the pencil!/,�� �

specified by (2.1) and (2.2) does have easily exploitable structure. The fact that one
of
!

and
�

is symmetric and the other is skew symmetric forces the � �%' ,-��� pairing of the
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eigenvalues. By using a numerical algorithm that exploits this structure, we can guarantee
that the pairing is preserved.

EXAMPLE 5. If we apply Theorem 2.1 to the quadratic eigenvalue problem (1.5), we
obtain the symmetric/skew-symmetric pencil� ,N* �� ,-� � ,L� � E �,-� � � �
If we then multiply by

,I3
, we obtain the SHH pencil� � �,N* � � ,L� � � �E � � �

This is essentially the linearization that was used in [13].
Theorem 2.1 does not depend on the alternating symmetry and skew symmetry of

the
� �

; it is valid regardless of the structure of the coefficients. However, the result is
not particularly useful if the coefficients do not alternate. In cases where the coefficient
matrices are either all symmetric or all skew symmetric, we can get a (perhaps) better
result by stripping the minus signs from (2.4). The pencil obtained by transforming with
this modified matrix is �!O,9� �� , where

�!`

%&&&&&&&'
,-� � � � � ����� �� � Y � W �LK������ � �� �aW � K �� � K �

...
...

...� � � � � ����� �

* +++++++
-

and

�� 

%&&&&&&&'
�+[ �aY �aW������A� � _ [ � ��9Y �aW � K �����A� � ��9W � K � ��LK � �

...
...

...� � � � ����� � �

*,+++++++
-
�

This linearization is essentially the same as that given in Theorem 4.2 of [8]. If all
� �

are
symmetric, then both

!
and

�
are symmetric. If all

� �
are skew symmetric, then both

!
and

�
are skew symmetric.

EXAMPLE 6. The numerical solution of vibration problems by the dynamic element
method [14, 18, 19] leads to cubic eigenvalue problems� W � W �I!$� Y � Y �]!+��� [ �I!�� � ��
2�
in which

�C=� 
�� �
for all

�
.

3. Factorizations of the Linearized Pencil. We provide two factorizations of
� !`,� �5	 _ [

. The first is valid for all finite � and is suitable for use if � � � is not too big. The
second is valid for all nonzero � and is suitable for use when � � � is not too small.

First Factorization. Our first factorization will make use of the auxiliary polynomials"� [ � � 	?
 � � � ,
"� Y � � 	1
 � Y � � ! � � � _ [ , and, in general,

"� � � � 	 
 �� �
� [ �

�
� � _ ���

� �
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THEOREM 3.1. Let
!O,9� �

be as in Theorem 2.1. Then, for any nonzero � ,!F, � � 
 � �L'
where

�H

%&&&&&' ( � (( � (

. . .
. . .( � ((

* +++++
-(3.1)

and

� 

%&&&&&&&'

,N��� � 	 � � � ����� �! "� � _ [�� � 	 ,-�aY ,-�9W ,-� K ����� ,-� �, "� � _ Y � � 	 �9W � K �! "� � _ W � � 	 ,-�9K �
...

...
...��"� [ � � 	 �I� � � � ����� �

*,+++++++
-
�

(3.2)

Proof. Multiply
�

by
�

, and use the relationships
"� ��� [ � � 	1
 � � "� � � � 	0!L� � _ � 	 and��� � 	?
 "� � � � 	%!$� � to verify that the product is

!O, � � .
We derived the factorization by performing block row operations on

!7, � � , from
bottom to top, to eliminate the � terms from all but the first column. Another way to
proceed is to exploit the low displacement rank (Hankel-like structure) of

!2, � � . Let �
denote the block shift matrix

� 

%&&&' � (

. . .
. . .� ( �

*,+++
- �

(3.3)

Then
! 
 G � !�! � = � , where

G � consists entirely of zeros, except that its first block
column is the same as that of

!
. Similarly

�b
dGN[N, � ! � = � . Thus
!�, � �R
 �&G � ,� G"[ 	 !`� ( ! � � 	 ! � = � . Letting

G�� � 	N
R� ( ! � � 	 _ [ �&G � , � G"[Z	 , we have
!�, � ��
� ( ! � � 	X�&G�� � 	X!�! � = � 	

. We then easily check that
�`
 ( ! � � and

� 
�G�� � 	X!�! � = � .
EXAMPLE 7. In Example 5 we linearized the quadratic eigenvalue problem (1.5) to

obtain !O, � �d
 � ,N* �� ,-� � , � � E �,-� � � �
Applying Theorem 3.1 to this pencil, we get!O, � �d
 � ( � (( � � ,N��� � 	 �� � � � �
Expanding this to!F, � � 
 � ( � (( � � ,N��� � 	 � � � ( �� ( ( � '(3.4)

we have essentially the factorization that was used in [13].
The decomposition

!H, � � 
 � �
can be used to evaluate

� !H, � �5	 _ [ �
for any

vector
�

by two back-solves, one with the simple triangular matrix
�

(3.1), and one with
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the essentially block triangular
�

(3.2). Execution of the latter requires that we be able
to solve linear systems with coefficient matrices

��� � 	 and
� � . If these matrices are large

(but not too large) and sparse, we can perform sparse �
�

decompositions of
��� � 	 and

� �for this step. The decomposition of
� � needs to be done only once and can then be used

repeatedly; that of
��� � 	 needs to be done only once for each choice of shift � .

Second Factorization. Our second factorization will make use of partial sums
� � � � 	

defined by

� � � � 	 
 �� �
� � �

�
� � �

THEOREM 3.2. Let
!O,9� �

be as in Theorem 2.1. Then, for any nonzero � ,!O, � �d

�
81'

where

� 

%&&&&&' � (( � (( � (

. . .
. . .( � (

* +++++
-(3.5)

and

87

%&&&&&&&'
, � _ [ � [�� � 	 ,-�9Y ,-�9W ,-� K ����� ,-� �! � _ Y � Y � � 	 �9W � K �, � _ W � W � � 	 ,-� K �

...
...

...�I� � � � ����� �
� � _ � � � � � 	 � � � ����� �

*,+++++++
-
�

(3.6)

Proof. Verify that � 8 
�!O, � � by direct multiplication.
We derived this factorization by performing block row operations on

!/, � � , from top
to bottom. Just as for the previous result, it is also possible to derive the factorization by
using the displacement structure of the pencil. Letting � be the shift matrix (3.3) as before,
we have

!`
2G � ! � = � � � and
�d
`G [ , � � � . Thus

!+, � �d
 ��G � , � G [ 	
!$� � ( !
� = 	X� � � � 	?
d� � ( ! � = 	 � "G�� � 	^! � � � 	

, where
"G�� � 	?
 � � ( ! � = 	 _ [ ��G � , � G [ 	 . One

easily checks that � 
 � ( ! � =
and

8 
 "G�� � 	%! � � � .
The decomposition

!7, � � 
 � 8
can be used to evaluate

� ! , � ��	 _ [ �
for any

vector
�

in essentially the same way as the
���

decomposition from Theorem 3.1 can.

4. Numerical Example. We built quartic eigenvalue problems�&� K �LK !+� W � W !$� Y � Y !$�0� [ !$� � 	���
2�^'
in which the

� �
are matrices of order � 
 "� Y

, by a tensor product construction. Let



denote the "� � "� nilpotent Jordan block


 

%&&&' � ��

. . . � �

*,+++
- '
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FIG. 4.1. Eigenvalues of ��������� quartic pencil

and define
"� � 
 [

� ��� (
	� !�
 !�
 = 	
,
"� [ 
 
J, 
 =

,
"� Y 
 ,C� 
 (
	� , 
J, 
 = 	

,"�9W-
 "�+[
, and

"� K 
7, "�aY
. Then we set

� � 
��
� [ (
	� 
 "� � !��

� Y "� �

 (�	� ' � 
���'Z� �Z�X'��
'

(4.1)

where the coefficients
�
� � are positive constants.

If we take "� 
��
and

� � [ 
 �^� �^' � � Y 
 � � �^'
�Z[@[ 
 � � �^' �Z[PY 
 �^� � '
� Ye[ 
 �^� � ' � Y@Y 
 � � 
 '� We[ 
 � � �^' � W@Y 
 � � �^'
�eK [ 
 � � 
 ' �eK Y 
 � � �^'(4.2)

then we obtain a
��� � ��� quartic pencil, whose 256 eigenvalues are shown in Figure 4.1.

These were computed by applying Matlab’s eig command to the 
�� � � 
�� � matrix pencil
(2.1,2.2), ignoring all structure, at a cost of 
 � � � �Z��� flops.

Now let us see how to use our tools to compute a portion of the spectrum at much
lower cost. Suppose we want to compute the ten eigenvalues in the right half plane closest
to the target � 
 ��� 
 . (The triangles in Figure 4.1 are

� � .) We begin with the structured
matrix pencil of Theorem 2.1. Then we factorize the skew-symmetric matrix

�
of (2.2)

into a product � =?3 � using the algorithm of [2]. This costs about
� � �Z� � flops. Let


 
 3�= � _ = ! � _ [
, where

!
is as in (2.1). Then 
 is a 
�� � � 
�� � Hamiltonian matrix

with the same eigenvalues as our quartic pencil. We can then compute the eigenvalues
of 
 near

� � by applying the skew-Hamiltonian, isotropic, implicitly-restarted Arnoldi
(SHIRA) process to the operator

� 
 ! � ( 	 _ [ � 
 , � ( 	 _ [ 
 � ��!$! � ��	 _ [ � � !O, � �5	e_ [ � = 3��
To evaluate

��! , � �5	 _ [
and

��! ! � �5	 _ [
, we use the factorizations given by Theorem 3.1.

The factorizations associated with � and
, � are nearly identical, and one can be derived

easily from the other. Thus we effectively need only one factorization, not two.
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After six iterations (restarts) of SHIRA, we obtain the ten eigenvalues��� 
 ��� � � ��������� ������� �a�^� 
 ������� ��� � 
 ��������� ���� � ����� � 
 � ��������� 
 � �a�^� 
 
 ��������������� 
 � � ������ ����� � � � � ����� ��� ��� �a�^� � ��������������� 
 � 
 �Z������ 
 ����� 
 ��������� � � � � �a�^� 
�����
 � � � 
 � ����� 
 ������ � 
 
 � ����� 
 � ��������� �a�^� 
 � � ����� 
 � 
 ������� 
 �
all of which are correct to 11 or more decimal places. These are the ten eigenvalues of the
quartic pencil that are closest to � . We have actually found twenty eigenvalues in all, since
the reflections of these ten eigenvalues in the left halfplane are also eigenvalues. The total
cost of this SHIRA run is about

� � ��� � � ��� flops.
When we factorized the skew-symmetric matrix

�
as a product � =?3 � , we ignored

the fact that
�

has a displacement structure. In problems where the order of the polynomial
is high, the efficiency of the method might be improved by designing a method that makes
use of this extra structure. Since the polynomials that we have considered so far have only
a low degree, we have not investigated this possibility.

5. Conclusions. We have developed two tools for analyzing polynomial eigenvalue
problems with Hamiltonian structure. The first tool is a structure-preserving lineariza-
tion technique that reduces the matrix polynomial to a matrix pencil with Hamiltonian
structure. The second tool is a factorization of the pencil that facilitates evaluation of ex-
pressions of the form

� !�, � ��	 _ [ �
and thereby allows the use of the shift-and-invert

strategy in conjunction with Krylov subspace methods. We have shown how to use these
tools in conjunction with the factorization technique for skew-symmetric matrices and the
skew-Hamiltonian isotropic implicitly-restarted Arnoldi process (SHIRA) [13] to compute
eigenvalues of matrix polynomials with Hamiltonian structure. Some important open prob-
lems remain to be studied. One topic is a structured perturbation analysis of the linearized
versions of pencils compared with the original polynomial problem. In general, this anal-
ysis does not come out in favor of the linearized problem, see [17], but the extra structure
may improve the results. The other topic is that of descriptor systems, where the lead-
ing coefficient of the polynomial is singular. In this case many theoretical and numerical
difficulties arise already in the case of linear polynomials, see [12, 11].

6. Acknowledgement. We thank Peter C. Müller for pointing out the construction
of higher order systems of ordinary differential equations as a combination of lower order
systems.
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