
Electronic Transactions on Numerical Analysis.
Volume 13, pp. 22-37, 2002.
Copyright  2002, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

IMAGE RESTORATION THROUGH SUBIMAGES AND CONFIDENCE IMAGES∗

JAMES G. NAGY† AND DIANNE P. O’LEARY‡

Abstract. Some very effective but expensive image reconstruction algorithms cannot be applied to large images
because of their cost. In this work, we first show how to apply such algorithms to subimages, giving improved
reconstruction of regions of interest. Our second contribution is to construct confidence intervals for pixel values,
by generalizing a theorem of O’Leary and Rust to allow both upper and lower bounds on variables. All current
algorithms for image deblurring or deconvolution output an image. This provides an estimated value for each pixel
in the image. What is lacking is an estimate of the statistical confidence that we can have in those pixel values
or in the features they form in the image. There are two obstacles in determining confidence intervals for pixel
values: first, the process is computationally quite intensive, and second, there has been no proposal for providing the
results in a visually useful way. In this work we overcome the first of those limitations and develop an algorithm
called Twinkle to overcome the second. We demonstrate the usefulness of these techniques on astronomical and
motion-blurred images.

Key words. image restoration, regularization, confidence intervals, confidence images, motion blur, conjugate
gradient method.
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1. Introduction. Image deconvolution or deblurring can be accomplished by a variety
of methods, some simple and some quite expensive. Linear methods such as (linear) least
squares or back-projection methods often provide adequate results, and their cost is quite
low. In contrast, constrained least squares algorithms, which impose the side conditions that
pixel values lie within a given range, are more expensive but sometimes yield better results.

In many cases, after a reconstruction of the image, there may be a need to further improve
a small part of the image. In astronomical imaging, for example, this may be a star cluster; in
medical imaging, it may be an area in which a tumor is suspected. We develop the techniques
required to extract subimages and apply more sophisticated processing techniques to them.

Our basic idea can be outlined as follows.
1. Given an image restoration problem involving a measured image y and a point-

spread function (PSF) K, we use a basic technique to compute an initial reconstruc-
tion x̂ of the true n × n image x.

2. Using the initial reconstruction x̂, we identify a region of interest for further im-
provement. We denote this true subimage by xs and apply a more sophisticated
technique in order to obtain improved estimates x̃s on this subimage.

There are numerous variants on this basic scheme. As an example, a few steps of pre-
conditioned conjugate gradients (PCG) can be applied to the problem

min
x

‖Kx − y‖2,

where K is the matrix corresponding to the PSF K and the vectors x and y contain the pixel
values of the true image and the measured image, respectively. The result of this computation
is an estimate x̂, and then we can compute confidence intervals for each pixel value in some
subimage.
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As a second example, filtered backprojection can be used in Step 1, and we can use a
nonnegatively constrained least squares algorithm in Step 2.

Basically, our approach combines the power of an inexpensive method (such as PCG or
filtered back projection) to obtain an initial (global) reconstruction of the image, and then
further improve small subimages of interest using a nonlinear method that gives better recon-
structions. Because the improvements are done on small subimages, the nonlinear methods
become economical to implement.

The improvement of subimages has been considered in other work in the context of
improving efficiency of expensive global methods. Some examples of this work include the
sectioning methods developed by Trussell and Hunt [12], a scanning SVD method suggested
by Fish, Grochmalicki and Pike [3], and more recently a piecewise polynomial SVD method
suggested by Hansen [5]. These methods, though, require that the size of the image blocks
be at least as large as the support of the PSF. This is a severe restriction in cases where the
image contains a substantial blur. The approach considered in this paper does not have this
restriction, and thus we are able to solve a wider class of problems.

In section 2 we describe how we construct the subproblem data. We illustrate the use
of nonlinear methods on such subproblems in order to improve the reconstruction over the
subimage. In section 3 we describe how confidence images can be used to compute approx-
imations to discrete ill-posed problems. We illustrate the effectiveness of our approach by
computing and displaying confidence images for some image restoration examples. Section
4 presents some summary comments.

2. Construction of Subimage and Submatrix. In this section we describe how to con-
struct the small subproblem

Ksxs ≈ ys .

We’ll assume that the original image has dimension n×n, while the subimage has dimension
r×c. We note that for large image restoration problems, the matrix K is not formed explicitly,
so extracting a submatrix from it is not necessarily a trivial operation. In fact, the efficient
formation of Ks requires some background material involving PSFs and Kronecker products,
but before we present that, let’s consider the idea itself. We begin with the problem

Kx ≈ y ,

where K is the N×N matrix corresponding to the PSF, y is a vector containing the measured
values of the pixels (including noise), and x is the unknown true image. Note that N = n2,
where n is the dimension of the true image. Let E be the matrix with N rows and S = rc

columns, each column a unit vector corresponding to a pixel in the subimage. Let Ē have
columns equal to the other N − S unit vectors. Then

Kx = (K
[

E Ē
]

)(

[

ET

ĒT

]

x)

≡
[

K̂s K̂t

]

[

xs

xt

]

= K̂sxs + K̂txt,

where xs contains the pixels in the subimage. The idea is to improve the entries of xs while
leaving those of xt at their current values, so our resulting problem is

K̂sxs ≈ y − K̂txt .
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Since most of the rows of K̂s are zero (because the PSF typically has small support), we can
drop down to a smaller dimensional problem, dropping the unwanted rows

Ksxs ≈ ys .

Our discussion is therefore divided into several subsections, beginning with a discussion
of how we form ys.

2.1. Constructing the Subimage. We begin by considering a simple example. Suppose
we partition the problem Kx = y as





K11 K12 K13

K21 K22 K23

K31 K32 K33









x1

x2

x3



 =





y1

y2

y3



 ,

and suppose the subimage that we would like to improve is xs = x2. We’ll assume that the
row partitioning of K has been done so that K12 = 0, K32 = 0, and there are no zero rows
in K22. Then





K12

K22

K32



xs =





y1

y2

y3



−





K11 K13

K21 K23

K31 K33





[

x1

x3

]

.

A subproblem involving xs can then be formed as

Ksxs ≈ ys ,

where Ks = K22 and ys = y2 − K21x1 − K23x3.
Of course since x is not known, we cannot compute ys. However, if we assume that a

good initial approximation, x̂, can be computed using PCG or some other method, then we
can replace x1 and x3 with x̂1 and x̂3, and this gives us an estimate of ys.

With this simple example in mind, we can generalize the approach to construct ys. Recall
that we have defined E be the matrix with N rows and S columns, each column a unit vector
corresponding to a pixel in the subimage, and Ē has columns equal to the other N − S unit
vectors. Note that

xs = ET x

and

x =
[

E Ē
]

[

ET

ĒT

]

x ,

since the product of those matrices is the identity. Let Ê be the matrix with N rows and S +s

columns, each column a unit vector corresponding to a row of K22. Then, assuming x̂ has
been previously computed, the vector ys can be obtained this way:

1. Form a vector z that is equal to zero in the subimage and equal to x̂ outside that
subimage:

z =
[

E Ē
]

[

0
ĒT

]

x̂ .

2. Compute ŷ = y − Kz.
3. Then ys = ÊT ŷ.
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The efficiency of this approach depends on the cost of forming a matrix-vector product
with K. The effectiveness depends on the error contained in ys and how it is magnified by
solving the subproblem. Fortunately, the subproblem is better conditioned than the original
problem, since the singular values of the submatrix Ks are bounded above and below by the
singular values of the original matrix K. The right-hand side ys, however, has somewhat
more error than the original y, and the distribution of this error has also been changed in a
manner dependent on how the estimates of the x variables were made.

Our next goal is to construct the submatrix Ks = ÊT KE.

2.2. Construction of the Submatrix. The matrix K is defined through PSFs that rep-
resent the blur of a point source. These functions can be determined by an idealized model
of the blur, or experimentally by physically recording one or more images of a point source.
If the blur is spatially invariant, then the blur is independent of position, and one PSF com-
pletely describes the blurring operation. In this case, fast Fourier transforms can be used to
efficiently form matrix-vector multiplications involving K. The matrix K is never formed
explicitly; only the single PSF is needed.

The situation is more difficult if the blur is spatially variant. In this case, the blur depends
on the position of the point source, and therefore a single PSF does not completely describe
the blurring operation. If the blur is assumed to be locally spatially invariant, then efficient
matrix-vector multiplies can be implemented and effective preconditioners for PCG can be
constructed; see [7, 8] for further details.

In the rest of our discussion, we assume that the blur is possibly spatially variant, but that
locally the blur is spatially invariant (this is a common assumption in image restoration; see
[7] and the references therein). Therefore, when we apply PCG to the large image, we use a
spatially variant model of the blur, but when we consider the subproblem, we use a spatially
invariant model.

In the spatially invariant case, the matrix K has an interesting decomposition. Let P

be a p × p array containing the coefficients of the PSF. Then the n2 × n2 matrix K can be
decomposed into

K =

k
∑

i=1

Ai ⊗ Bi ,

where k =rank(P ), and Ai and Bi are banded n × n Toeplitz matrices [6]. The notation ⊗
denotes Kronecker product:

A ⊗ B =







a11B · · · a1nB
...

...
an1B · · · annB






.

We remark that in our experience, most blurs have PSFs with rank very small compared to
(and independent of) the dimension of the image (e.g., rank(P ) ≤ 5). The cost of computing
Ai and Bi is O(p3).

Analogous to the Kronecker product decomposition of K, the matrix E has a Kronecker
product decomposition:

E = Ep ⊗ Eq ,

where Ep is an n × r matrix with each column a unit vector corresponding to a row in the
two-dimensional image that is in the subimage. Similarly, Eq is an n×c matrix of unit vectors
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corresponding to columns of the image that are in the subimage. We also decompose Ê as

Ê = Êp ⊗ Êq .

Thus the submatrix Ks can be computed as

Ks = (Êp ⊗ Êq)
T K(Ep ⊗ Eq)

= (Êp ⊗ Êq)
T

(

k
∑

i=1

Ai ⊗ Bi

)

(Ep ⊗ Eq)

=
k
∑

i=1

(ÊT
p AiEp) ⊗ (ÊT

q BiEq) .

This is quite efficient to compute if the dimension S = rc of the subimage, and the rank
k are both small. If k is too large, we can truncate the summation to obtain the best such
approximation in the Frobenius norm; see [6] for more details.

It may be possible to exploit further structure of Ks when using it in computations, but
since this matrix is relatively small, we feel that such (possibly unstable) techniques are not
necessary. We also point out that if the subimage is near the boundary of the image domain,
then consideration should be given to choice of correct boundary conditions; see, for example,
[9]. However, if the subimage is contained within the image domain, boundary conditions are
easily taken into account by extending the subimage boundaries sufficiently away from the
object of interest.

2.3. An Example: Hubble Space Telescope image, with a spatially variant PSF.
We obtained data from ftp://ftp.stsci.edu/software/stsdas/testdata/restore/sims/star cluster, in-
tended to simulate a star cluster as it would appear to the Hubble Space Telescope Wide-Field
Planetary Camera before its repair. First, we begin with only one PSF, assuming that the blur
is spatially invariant. Figure 1 shows the true star cluster image, the blurred image, the PCG
restored image (using 3 iterations), and the subimage we attempt to improve. The precon-
ditioner used here is an optimal circulant approximation to the PSF matrix, K, and can be
efficiently implemented using fast Fourier transforms; see [1, 4, 7] for further details. In the
larger images in this plot, the subimage of interest is outlined by a white box. This 16 × 16
subimage corresponds to row pixels 45 to 60, and column pixels 175 to 190. We use non-
negatively constrained least squares (as implemented in the algorithm NNLS of Matlab) to
improve our estimates over this subimage.

In Figure 2 we compare the true, blurred, PCG restored, and NNLS improved subimages.
Figure 3 shows the same images, but as mesh plots. The NNLS improvement is better than
the PCG restoration in this subimage, but still we are not able to determine that only one star
is in this subimage.
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FIG. 1. Satellite data and restoration using one PSF in PCG.
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FIG. 2. Subimages, using one PSF for PCG.



ETNA
Kent State University 
etna@mcs.kent.edu

28 J. G. Nagy and D. P. O’Leary

0
10

20

0

10

20
0

100

200

300

mesh of true subimage

0
10

20

0

10

20
0

100

200

300

mesh of blurred subimage

0
10

20

0

10

20
0

100

200

300

mesh plot of cg restored submiage

0
10

20

0

10

20
0

100

200

300

mesh plot of nnls restored subimage

FIG. 3. Mesh plot of subimages, using one PSF for PCG.
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Since the blur is actually spatially variant, we hope that we can improve the picture
using more PSFs. From our earlier work [8], we found that good PCG restorations could be
obtained using four PSFs.

Figure 4 shows the subimages of the true, blurred, PCG restored image after three iter-
ations, and NNLS improved subimages in this case. Figure 5 shows the same images, but
as mesh plots. We see that using the spatially variant blur, we are able to do much better.
Note that we used multiple PSFs in the PCG restoration, but needed only the one local PSF
to construct the submatrix used by NNLS.

Thus, we can quite effectively use expensive algorithms to reconstruct a subimage, once
an inexpensive algorithm has been applied to find a region of interest. It should be noted
that the coefficient matrix in this particular example is fairly well-conditioned, and therefore
a good restoration can be computed without any regularization. However, in many image
restoration problems, regularization is necessary, and this issue will be addressed in the next
section.
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FIG. 4. Subimages, using four PSFs for PCG.

3. Confidence Intervals for Ill-Posed Problems. Now that we have the machinery to
extract subproblems involving the reconstruction of subimages, we develop an algorithm to
construct and display confidence intervals for the pixels of the subproblem

Ksxs ≈ ys ,

where the right-hand side contains error, and where we know that the values xs satisfy xs ≥ 0.

3.1. Computing Confidence Images. Computing confidence intervals for uncon-
strained least squares problems Ksxs ≈ ys is a standard problem in statistics. It can be
done either without a distribution assumption on the unknown errors, or by assuming a nor-
mal distribution.
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FIG. 5. Mesh plot of subimages, using four PSFs for PCG.

Unfortunately, confidence intervals computed in the usual way are often so pessimistic
that they have no value. The trouble is that ill-conditioning in the matrix K causes them to
be quite wide, since they are not constrained by side information such as bounds on the pixel
values.

When there are upper and lower bounds xup and xlo on the values, the problem is some-
what more difficult computationally. However, the inclusion of bound constraints in the com-
putation provides a natural regularization procedure [2], and therefore often produces much
better results, especially for severely ill-conditioned problems. We make use of the following
result:

THEOREM 3.1. Assume that the noise η is normally distributed with mean zero, standard
deviation S. Then the probability that xi, a component of x, is contained in the interval [`i, ui]
is greater than or equal to α, where

α =

∫ γ2

0

χ2(ρ)dρ ,

β = min
x

‖Kx − y‖2

S ,

µ2 = β + γ2 ,

`i = min{xi : ‖Kx − y‖S ≤ µ, xlo ≤ x ≤ xup} ,

ui = max{xi : ‖Kx − y‖S ≤ µ, xlo ≤ x ≤ xup} ,

where ‖z‖2

S = zT S−2z and χ2 is the probability density function for the chi-squared distri-
bution with the number of degrees of freedom equal to the rank of K.

Proof. This result is a minor extension of a theorem of O’Leary and Rust [10, 11] for
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problems with nonnegativity constraints, and its proof requires changing x ≥ 0 in their proof
to xlo ≤ x ≤ xup everywhere it appears.

These confidence intervals also have joint probability α. Therefore, confidence intervals
for p pixel values can be computed. Each confidence interval is computed by root finding,
where function evaluation is the solution of a quadratic programming problem. This is ex-
pensive, but possible for modestly-sized subimages.

There is a similar result for non-normal noise, but the resulting confidence intervals are
typically wider. Again the result is a minor extension of a theorem of O’Leary and Rust [11].

3.2. Displaying Confidence Images. Suppose that for each pixel in an image, we com-
pute an estimate xi of its true value as well as a confidence interval [`i, ui] which is guaranteed
with α% certainty. In other words, if we repeated the data gathering 100 times, we would ex-
pect that α% of the images would have each pixel value within its confidence interval. The
collection of confidence intervals forms the confidence image. We are left with the task of
displaying a confidence image in some useful way.

To do this, we developed an algorithm called Twinkle image. We generate a sequence
of images, each with pixel values contained in the ranges defined by the confidence image.
Thus, in each of these images, pixel value i is taken to be a random value chosen from the
interval [`i, ui]. We display this sequence of images as a movie, running the frames at a rate
so that the change in frame is barely perceptible to the viewer. By comparing the movie with
the image x, the viewer can conclude with α% confidence that features that persist in the
frames of the movie are real. Those that appear to flicker (or “twinkle”) could be either real
or artifact.

We show three examples for illustration. We include frames from the movie of our
algorithm as figures; the movies can be viewed at
http://www.mathcs.emory.edu/˜nagy/Twinkle/.

Jorge E. Pinzón (private communication) tells us that he is using a similar technique to
display uncertainties in the characteristics of ground cover, estimated by satellite images at
NASA Goddard.

3.2.1. An Illustrative Example. Figure 6 is an example computed using Matlab. Sup-
pose that medical imaging has produced this image. A physician might reasonably conclude
from this data that there are three masses, and a treatment option appropriate to this conclu-
sion would be chosen.

If the confidence intervals are such that the images in the left side of Figure 7 are typical
of those within the 95% confidence level, then this conclusion would be justified. The movie
of such images has barely perceptible flicker, and the three masses are persistent features. But
if there is more noise in the measurements, or more uncertainty in the image reconstruction,
then perhaps the images on the right side of Figure 7 are typical. In this case, the existence of
three masses is far from certain. As the physician views this movie of confidence images, at
least two suspected masses flicker, sometimes distinctly visible, but other times disappearing,
and this would demonstrate the uncertainty in their existence.

In both scenarios, the clinician can make better decisions if presented with confidence
images rather than just the reconstructed image of Figure 6.

http://www.mathcs.emory.edu/~nagy/Twinkle/
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FIG. 6. A model medical image
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FIG. 7. Two low-noise reconstructions of the medical image (left) and two high-noise reconstructions (right).

3.2.2. Star Intensity Example. We took the subimage used in Section 2.3 and com-
puted confidence intervals for it, assuming that the error was normally distributed with mean
zero and standard deviation one, and that pixel values are constrained to be nonnegative. Be-
cause the pixels surrounding the subimage were computed to be black, the errors in these
border values have negligible contributions to the error distribution. We chose a value of γ

corresponding to a 99.99% confidence interval.
The data is shown in Figure 8 and the result of such a reconstruction is shown in Figure

9. Bright stars can oversaturate an image, washing out dimmer stars and other objects, so we
display images of the actual pixel values along with images of the log of the pixel values. The
top two images show the true subimage, the second two are the reconstructed one, while the
remaining are 99.99% confidence images, where the noise has been assumed to be normally
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distributed with mean zero and standard deviation one. Although the images containing the
log pixel values show some change in the confidence images, the confidence images of the
actual pixel values are virtually indistinguishable from the reconstructed image, giving high
confidence in the reconstruction of the star and enabling estimates of derived quantities such
as star intensity, as well as error estimates for these quantities.

The full movie produced by the Twinkle algorithm can be viewed at
http://www.mathcs.emory.edu/˜nagy/Twinkle/.
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FIG. 8. True star image and blurred image, with subimage extracted from the upper right corner.

3.2.3. A Motion Blur Example. Cameras are used as a means of law enforcement by
capturing the license plates of cars that fail to obey speed limits or traffic signals. The images
acquired may be contaminated by motion blur, so we investigate the uncertainties involved in
processing such images.

We used a digital camera to image a stationary white van. If the van were moving directly
away from the camera, then the motion blur would be in the vertical direction in the image.
We applied such a blur, spreading each pixel to the adjacent 19 pixels, and then added a
noise image with each component chosen from a normal distribution and with the norm of
the noise equal to 6.0 × 10−5 times the norm of the image. We then cropped the image
to size 36 × 66, to isolate the license plate. Each column of pixels gives an independent
reconstruction problem of rank 36. The results are in Figure 10. The original and blurred
images are in the top row. The second row contains the reconstructed images, using the
assumptions of nonnegativity of pixel values and bounds of [0, 1] respectively. The tighter
bounds give much better reconstructions. The third row contains two confidence images for

http://www.mathcs.emory.edu/~nagy/Twinkle/
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actual pixel values, and images on the right show the log of the pixel values.
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the upper and lower bound reconstruction. Although the reconstructed image is quite clear,
the confidence images are not as definitive. In this case, the pixels surrounding the subimage
are not known exactly, so the errors in these border values contribute to the error distribution,
although this additional error has been neglected in the computation of confidence intervals.
Our boundary conditions were quite crude: we implicitly assume that the pixel values in the
18 rows below this subimage are black. If we allow these values to vary, by increasing the
size of the subimage, then the Chi-squared parameter must be increased because the rank of
the matrix increases, and the bounds worsen.

The full movie produced by the Twinkle algorithm on the license plate can be viewed at
http://www.mathcs.emory.edu/˜nagy/Twinkle/.

Original subimage Blurred subimage

Reconstructed subimage, using [0,1] boundsReconstructed subimage, using nonnegativity

Confidence image, using [0,1] bounds Confidence image, using [0,1] bounds

FIG. 10. The images from the license plate example.

3.3. Displaying Confidence Images Based on Feature Estimates. The previous ver-
sion of Twinkle is useful when we have confidence intervals on the pixel values in the image.
In some cases, though, it is the features in the image that have uncertainty. For example,
a fluid dynamics computation might produce flow lines that have uncertainty. Or a topo-
graphical map or estimate of a function might have uncertainties in the locations of contour
lines.

In such cases, we apply a variant of the algorithm, Twinkle feature. Each feature is
represented by its distribution. For instance, we might know that the location of a contour
has some expected value, some variance, and that the uncertainty is normally distributed.
Twinkle feature would then generate a sequence of contours chosen from this distribution
and display them as a movie.

3.3.1. A Weather Forecasting Example. Weather forecasts of such things as high/low
pressure regions, temperatures, precipitation, etc., are often displayed as isopleths; that is,

http://www.mathcs.emory.edu/~nagy/Twinkle/
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forecasted isotherms one of the twinkled isotherms

one of the twinkled isotherms one of the twinkled isotherms

FIG. 11. Forecasted temperatures (top left), and three images illustrating forecast uncertainties.

lines connecting points of equal value of the particular variable in question. These isopleths
are usually shown on maps as fixed lines which do not indicate any uncertainty in the forecast.
An isotherm example is shown in the top left image of Figure 11. Uncertainty in temperature
is not easy to visualize from this single image. Suppose, as an example, that the vertical
uncertainty in the isotherms is

• 5 pixels in the top isotherm
• increasing from 0.2 to 5.6 pixels across the second isotherm,
• 0.05 times the y-coordinate of the third isotherm, and
• 6 vertical pixels in the bottom isotherm.

We display the bounds for the isotherms as solid lines. By generating sample locations of
these isotherms within these bounds, we obtain pictures like the other three images of Figure
11. Displaying them as a movie gives the viewer a much clearer idea of what will be the
expected temperature. Note, for example, that the uncertainty in northern Florida is nicely
illustrated by the movie samples.

4. Conclusions. We have presented techniques useful in obtaining more accurate re-
construction of subimages, and in providing more information about the reconstruction, such
as confidence images. We have also demonstrated a useful tool, Twinkle, for visualizing
statistical confidence that we can have in pixel values or in the features they form. The tech-
nique is useful whether the confidence information is in the form of a confidence interval or
a distribution of possible values.
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The major obstacle in constructing valid confidence intervals for images is handling the
boundary conditions in a statistically valid way. We emphasize that this can be easily done
for some images (e.g., the astronomical images) but not for all.
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