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BOUNDS FOR VANDERMONDE TYPE DETERMINANTS OF ORTHOGONAL
POLYNOMIALS∗

GERHARD SCHMEISSER†

Abstract. Let (Pn)n∈N0
be a system of monic orthogonal polynomials. We establish upper and lower esti-

mates for determinants of the form

Vn(z1, . . . , zk) := det







Pn(z1) . . . Pn+k−1(z1)
...

...
Pn(zk) . . . Pn+k−1(zk)






.

For the proofs, we have to study the monic orthogonal system (P
[w]
n )n∈N0

obtained by inserting the polynomial

w(x) :=
∏

k

ν=1(x − zν) as a weight into the inner product defining (Pn)n∈N0
. We also express the recurrence

formula for (P
[w]
n )n∈N0

in terms of Vandermonde type determinants.

Key words. Vandermonde type determinants, orthogonal systems, polynomial weights, inequalities.
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1. Introduction and statement of results. First we want to introduce some terminol-
ogy for orthogonal polynomials, referring to [1, 2, 7] for standard results.

We denote by σ an m-distribution, that is, a non-decreasing bounded function σ : R →
R which attains infinitely many distinct values and is such that the moments

µn :=

∫ ∞

−∞

xn dσ(x) (n ∈ N0)

exist. Then there exists a uniquely determined sequence of polynomials

P0(z), P1(z), . . . , Pn(z), . . . ,

called the sequence of monic orthogonal polynomials with respect to dσ(x), with the follow-
ing properties:

(i) each Pn is a monic polynomial of degree n;

(ii) 〈Pn, Pm〉 :=
∫∞

−∞
Pn(x)Pm(x) dσ(x) = 0 for m 6= n.

For any polynomial f , we define the norm

‖f‖ :=

(∫ ∞

−∞

|f(x)|
2

dσ(x)

)1/2

(1.1)

and introduce the numbers

γn := ‖Pn‖
2 (n ∈ N0).(1.2)

The system (Pn)n∈N0
satisfies a recurrence formula

Pn(x) = (x − αn)Pn−1(x) − βn−1Pn−2(x) (n ∈ N),(1.3)
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where P−1(x) ≡ 0, P0(x) ≡ 1, β0 = 1, and

αn =
1

γn−1

∫ ∞

−∞

xP 2
n−1(x) dσ(x) and βn =

γn

γn−1
(n ∈ N);(1.4)

see [7, § 3.2].
It is known that the polynomials Pn (n ∈ N) have only real zeros. Denoting by Jn the

smallest interval containing the zeros of Pn, we introduce the n-th distance function

dn(z) := min
{

|z − ζ| : ζ ∈ Jn

}

(z ∈ C).(1.5)

Since the zeros of consecutive orthogonal polynomials interlace, we have

d1(z) ≥ d2(z) ≥ · · · ≥ dn(z) ≥ · · · ≥ |=z| .

In this paper, we want to estimate the following generalized Vandermonde type determi-
nants:

Vn(z1, . . . , zk) := det







Pn(z1) Pn+1(z1) . . . Pn+k−1(z1)
...

...
...

Pn(zk) Pn+1(zk) . . . Pn+k−1(zk)






.(1.6)

It is easily seen that V0(z1, . . . , zk) is equal to the classical Vandermonde determinant of
z1, . . . , zk. In fact, each polynomial Pm may be written as

Pm(z) = zm +

m−1
∑

µ=0

cmµPµ(z),

with certain constants cmµ. Hence, if we add to each column in (1.6) an appropriate linear
combination of its predecessors, and do it first for the last column, then for the last but one
and so on, we find that

V0(z1, . . . , zk) = det







1 z1 . . . zk−1
1

...
...

...
1 zk . . . zk−1

k






=

∏

1≤`<j≤k

(

zj − z`

)

.(1.7)

There is no simple explicit formula for Vn(z1, . . . , zk) when n ≥ 1, and therefore we are
interested in bounds for these determinants.

It is usually not a big problem to find some upper bound for a determinant. For sake of
completeness, we present the following result.

PROPOSITION 1.1. Let z1, . . . , zk ∈ C. Then, with the preceding notations,

|Vn(z1, . . . , zk)| ≤



γnγn+1 · · · γn+k−1

k
∏

j=1

(

∆n+k(zj) − ∆n(zj)
)





1/2

,(1.8)

where

∆m(z) :=















1

γm−1

(

P ′
m(z)Pm−1(z) − Pm(z)P ′

m−1(z)
)

if z ∈ R

1

γm−1
·
=
{

Pm(z)Pm−1(z)
}

=z
if z ∈ C \ R

(m ∈ N).
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Moreover, for any z ∈ C,

1

γm−1
min

1≤µ≤m

∣

∣

∣

∣

Pm(z)

z − xµ

∣

∣

∣

∣

2

≤ ∆m(z) ≤
1

γm−1
max

1≤µ≤m

∣

∣

∣

∣

Pm(z)

z − xµ

∣

∣

∣

∣

2

,(1.9)

where x1, . . . , xm are the zeros of Pm.

Lower estimates for determinants in general and for our Vandermonde type determinants
in particular are much more delicate. We shall establish a lower bound for the modulus of

Vn+1(z1, . . . , zk)

Vn(z1, . . . , zk)
.(1.10)

Used repeatedly for n, n − 1, n − 2, . . . and combined with (1.7), it allows us to estimate
|Vn+1(z1, . . . , zk)| for n ∈ N0 from below. Here we admit that some (or all) of the points
z1, . . . , zk may coalesce. In this case, we define the quotient (1.10) by continuous continua-
tion. More precisely, if zj0 = zj1 = · · · = zj`

, then we replace the polynomials in the j1-st,
j2-nd, . . . , j`-th row in (1.6) by their first, second, . . . , `-th derivative.

As usual, we shall denote by bxc the largest integer not exceeding x. We are now ready
for presenting the main result.

THEOREM 1.2. Let (Pn)n∈N0
be a sequence of monic orthogonal polynomials with as-

sociated intervals Jn, constants γn, and distance functions dn (n ∈ N) as specified in (1.2)–
(1.5). Let w(x) =

∏k
j=1(x − zj) be a real polynomial which has no zero in Jn+bk/2c+1.

Denote by m1 and m2 the number of zeros (counted according to their multiplicities) in the
left and the right component of R \ Jn+bk/2c+1, respectively, Define

m :=







0 if m1 and m2 are both even,
1 if exactly one of the numbers m1 and m2 is odd,
2 if m1 and m2 are both odd,

and ` := (k − m)/2. Suppose that

dn+bk/2c+1(zj) ≥ r (j = 1, . . . , k),

with r > 0. Then, for the determinants (1.6),

∣

∣

∣

∣

Vn+1(z1, . . . , zk)

Vn(z1, . . . , zk)

∣

∣

∣

∣

≥
rm

γn

∑̀

j=0

(

`

j

)

γn+`−j r2j .(1.11)

Remark 1. Note that m = 0 if w(x) does not change sign on R. Furthermore, when
m = 0, then the right-hand side of (1.11) remains positive even if r → 0. Therefore (1.11)
holds with a positive lower bound even if w(x) has zeros on Jn+bk/2c+1 provided that their
multiplicities are even and m = 0. However, if w(x) changes sign on Jn+bk/2c+1, then the
left-hand side of (1.11) may vanish, and so we cannot have a non-trivial lower bound.

The proof of Theorem 1.2 will show that (1.11) can be refined by working with individual
bounds rj instead of r such that dn+bk/2c+1(zj) ≥ rj for j = 1, . . . , k.

Remark 2. At the conference in Inzell (3rd Workshop ‘Orthogonal Polynomials, Ap-
proximation, and Harmonic Analysis’, April 2000), Michael Skrzipek gave a lecture on the
inversion of Vandermonde type matrices of orthogonal polynomials. Theorem 1.2 includes a
sufficient condition for invertibility.
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Remark 3. The proof of Theorem 1.2 rests on repeated application of Lemmas 2.2 and
2.3 given in § 2 below. In the proofs of these lemmas, all considerations are based on equa-
tions. It is only at the end that a lower bound is deduced from a mean value. We can as well
deduce an upper bound from that mean value and establish an inequality analogous to (1.11),
but in the opposite direction. More precisely, we can proceed as follows. Analogously to
(1.5), we define

Dn(z) := max
{

|z − ζ| : ζ ∈ Jn

}

(z ∈ C).

Then

D1(z) ≤ D2(z) ≤ · · · ≤ Dn(z) ≤ · · · .

Now suppose that in the situation of Theorem 1.2, we have

Dn+bk/2c+1(zj) ≤ R (j = 1, . . . , k).

Then, for the determinants (1.6),

∣

∣

∣

∣

Vn+1(z1, . . . , zk)

Vn(z1, . . . , zk)

∣

∣

∣

∣

≤
Rm

γn

∑̀

j=0

(

`

j

)

γn+`−j R2j .(1.12)

Remark 4. Except for trivial cases, inequality (1.11) is not sharp. In view of Remark 3
and an analysis of the proofs given below, we find that the precision of (1.11) depends on
the length of Jn+bk/2c+1. If this interval is relatively small, then the estimate (1.11) is quite
accurate. If Jn+bk/2c+1 is unbounded as n → ∞, then (1.11) will be less accurate when n is
large, but it will be non-trivial nevertheless.

The proof of Theorem 1.2 will show that the points z1, . . . , zk can be involved succes-
sively as real singles and pairs of conjugates. Therefore the location of these points, relative
to one another, is not crucial for the accuracy of (1.11). This may be surprising since, on the
left-hand side of (1.11), the numerator and the denominator tend to zero as two of the points
z1, . . . , zk approach each other.

If in Theorem 1.2 the hypothesis on w(x) holds for some n ∈ N, then it automatically
holds for all smaller indices n, and m and ` do not change when n is reduced. This al-
lows us to deduce the following lower estimate for |Vn+1(z1, . . . , zk)| by iterating (1.11) and
employing (1.7).

COROLLARY 1.3. Suppose that in the statement of Theorem 1.2 the hypothesis on w(x)
holds for some n ∈ N. Then, introducing the polynomials

φν(x) :=
∑̀

j=0

(

`

j

)

γν+`−j

γν
x2j (ν = 0, . . . , n),

we have

|Vn+1(z1, . . . , zk)| ≥ rm(n+1)
n
∏

ν=0

φν(r)
∏

1≤i<j≤k

|zi − zj |

≥ rm(n+1)
n
∏

ν=0

γν+`

γν

∏

1≤i<j≤k

|zi − zj | .
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For the proof of Theorem 1.2, we shall employ another orthogonal system which reveals
why the determinants Vn(z1, . . . , zk) are of interest.

Let w(x) =
∏k

j=1(x − zν) be a real polynomial which is non-negative on the real line.
Then there exists a uniquely determined sequence of monic orthogonal polynomials

P
[w]
0 (z), P

[w]
1 (z), . . . , P [w]

n (z), . . .(1.13)

with respect to w(x)dσ(x). We want to distinguish all the quantities associated with this
system from those associated with (Pn)n∈N0

by attaching a superscript [w]. Thus

γ[w]
n :=

∫ ∞

−∞

(

P [w]
n (x)

)2

w(x) dσ(x),

J
[w]
n is the smallest interval containing the zeros of P

[w]
n , and d

[w]
n (z) is the distance of z from

J
[w]
n .

In 1858 already, Christoffel had observed (in the case where σ(x) = x) that

w(x)P [w]
n (x) = (−1)k Vn(x, z1, . . . , zk)

Vn(z1, . . . , zk)
(n ∈ N0);(1.14)

see [7, § 2.5], where the result is given for general σ.
When w(x) changes sign on the real line, then w(x)dσ(x) may not be an admissible

differential for defining an inner product in the space of polynomials. But if w(x) is non-
negative on Jn+bk/2c+1, then w(x)dσ(x) is admissible for the subspace Pn consisting of all
polynomials of degree at most n. In fact, for any f, g ∈ Pn, the integral

∫ ∞

−∞

f(x)g(x)w(x) dσ(x)(1.15)

can be calculated by means of the Gaussian quadrature formula [7, § 3.4] whose nodes are the
zeros of Pn+bk/2c+1, and so we need only the restriction of w to Jn+bk/2c+1. Thus we find
that (1.15) defines an inner product on Pn and that the polynomials

P
[w]
0 (z), P

[w]
1 (z), . . . , P [w]

n (z),(1.16)

as given by (1.14), form an orthogonal basis for Pn. Moreover, if the support of dσ(x) is
contained in an interval J (such an interval is called an interval of orthogonality) and w(x) is
non-negative on J , then (1.14) defines an infinite sequence of orthogonal polynomials.

If, in the previous paragraph, w(x) is non-positive on Jn+bk/2c+1 (respectively, on
J), then the polynomials (1.16) (respectively, those in (1.13) with unrestricted n), exactly
as defined by (1.14), form a sequence of monic orthogonal polynomials with respect to
−w(x)dσ(x).

In order to establish the recurrence formula for the system (P
[w]
n )n∈N0

, we need a mod-
ification of the determinants Vn(z1, . . . , zk). We denote by V ∗

n (z1, . . . , zk) the determinant
obtained from Vn(z1, . . . , zk) by replacing the index n of the polynomials in the first column
by n − 1, that is,

V ∗
n (z1, . . . , zk) = det







Pn−1(z1) Pn+1(z1) . . . Pn+k−1(z1)
...

...
...

Pn−1(zk) Pn+1(zk) . . . Pn+k−1(zk)






.(1.17)
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THEOREM 1.4. Let (Pn)n∈N0
be a monic orthogonal system satisfying a recurrence

formula

Pn(x) = (x − αn)Pn−1(x) − βn−1Pn−2(x) (n ∈ N)

with P−1(x) ≡ 0 and P0(x) ≡ 1. Let J be an interval of orthogonality, and suppose that
w(x) =

∏k
j=1(x − zj) is a real polynomial that does not change sign on J . Then

P [w]
n (x) = (x − α[w]

n )P
[w]
n−1(x) − β

[w]
n−1P

[w]
n−2(x) (n ∈ N)(1.18)

with P
[w]
−1 (x) ≡ 0, P

[w]
0 (x) ≡ 1, and

α[w]
n = αn + βn−1

V ∗
n−1(z1, . . . , zk)

Vn−1(z1, . . . , zk)
− βn

V ∗
n (z1, . . . , zk)

Vn(z1, . . . , zk)
,(1.19)

β[w]
n = βn

Vn+1(z1, . . . , zk) Vn−1(z1, . . . , zk)
(

Vn(z1, . . . , zk)
)2 (n ∈ N).(1.20)

Note that β
[w]
0 is not needed and may therefore be arbitrarily defined.

While (1.19) and (1.20) give explicit representations for α
[w]
n and β

[w]
n , Gautschi [3]

proposed an algorithm for a recursive computation of these quantities. However, as far as the
computation of the polynomials P

[w]
n (x) is concerned, Skrzipek [6] pointed out that the use of

the recurrence formula (1.18) may have disadvantages. He proposed an alternative approach.

In [5], we have proved several inequalities for γ
[w]
n and ‖P

[w]
n ‖; see [5, Lemmas 3–

5]. They imply further inequalities for Vn(z1, . . . , zk) and its modifications. Some of these
inequalities are sharp.

2. Lemmas. Continuing in using the notations of § 1, we shall prove the following aux-
iliary results.

LEMMA 2.1. Let Pn and Pn+1 be consecutive monic orthogonal polynomials, and
denote by x1, . . . , xn+1 the zeros of Pn+1. Then

Pn(z)

Pn+1(z)
=

n+1
∑

ν=1

λν

z − xν
where λν > 0 (ν = 1, . . . , n + 1)(2.1)

and

n+1
∑

ν=1

λν = 1 .(2.2)

Proof. For (2.1), see [7, p. 47, Theorem 3.3.5]). Multiplying both sides of the equation
in (2.1) by z and letting z → ∞, we readily conclude that (2.2) holds.

LEMMA 2.2. Let N ∈ N and w(x) = x − ξ with ξ ∈ R \ JN+1. Then

J [w]
n ⊂ Jn+1(2.3)
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and

γ[w]
n ≥ γndn+1(ξ)(2.4)

for n = 0, . . . , N.

Proof. By (1.14),

w(x)P [w]
n (x) = Pn+1(x) −

Pn+1(ξ)

Pn(ξ)
Pn(x) (n = 0, . . . , N).(2.5)

Now let x1, . . . , xn+1 be the zeros of Pn+1 in increasing order. Then

w(xν )P [w]
n (xν) = −

Pn+1(ξ)

Pn(ξ)
Pn(xν) (ν = 1, . . . , n + 1).

Since the polynomials Pn and Pn+1 are monic and their zeros interlace, we have

sgn Pn(xν) = (−1)n+1−ν (ν = 1, . . . , n + 1).(2.6)

Taking into account that w(x) does not change sign on JN+1, we find that

sgn P [w]
n (xν) = (−1)n−ν sgn

Pn+1(ξ)

w(x1)Pn(ξ)
(ν = 1, . . . , n + 1).

Hence the zeros of P
[w]
n and Pn+1 interlace, and this implies (2.3).

The polynomials P
[w]
0 , . . . , P

[w]
N are orthogonal with respect to ±w(x)dσ(x), the sign

depending on the sign of w(x) on JN+1. In any case,

γ[w]
n =

∣

∣

∣

∣

∫ ∞

−∞

(

P [w]
n (x)

)2

w(x) dσ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

−∞

w(x)P [w]
n (x)Pn(x) dσ(x)

∣

∣

∣

∣

.

Substituting (2.5) into the right-hand side, we readily find that

γ[w]
n = γn

∣

∣

∣

∣

Pn+1(ξ)

Pn(ξ)

∣

∣

∣

∣

.(2.7)

Now, by Lemma 2.1,
∣

∣

∣

∣

Pn(ξ)

Pn+1(ξ)

∣

∣

∣

∣

≤
1

min1≤ν≤n+1 |ξ − xν |
≤

1

dn+1(ξ)
,

and so (2.4) follows from (2.7).

While in Lemma 2.2 w(x) was linear, we now establish a corresponding result for a
quadratic w(x).

LEMMA 2.3. Let N ∈ N and w(x) = (x − ζ1)(x − ζ2), where either ζ2 = ζ1 or
ζ1, ζ2 ∈ R \ JN+2. Then

J [w]
n ⊂ Jn+1 (n = 0, . . . , N).(2.8)

If, in addition, ζ1 and ζ2 do not lie in different components of R \ JN+2, then

γ[w]
n ≥ γn+1 + γn dn+1(ζ1) dn+1(ζ2) (n = 0, . . . , N).(2.9)
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Proof. We shall prove the lemma under the additional hypothesis that ζ1 6= ζ2. An
extension to ζ1 = ζ2 will be achieved by continuous continuation, as we have explained in
the paragraph following (1.10).

Using the notation (1.17), we deduce from (1.14) by Laplace expansion (with respect to
the first row) of the determinant in the numerator that

w(x)P [w]
n (x) =

Vn+1(ζ1, ζ2)

Vn(ζ1, ζ2)
Pn(x) −

V ∗
n+1(ζ1, ζ2)

Vn(ζ1, ζ2)
Pn+1(x) + Pn+2(x).(2.10)

Now let x1, . . . , xn+1 be again the zeros of Pn+1 in increasing order. It follows from the
recurrence formula (1.3) and from (1.4) that

Pn+2(xν) = −
γn+1

γn
Pn(xν) (ν = 1, . . . , n + 1).

Hence (2.10) gives

w(xν )P [w]
n (xν) = Pn(xν)

(

Vn+1(ζ1, ζ2)

Vn(ζ1, ζ2)
−

γn+1

γn

)

(ν = 1, . . . , n + 1).

The term in parentheses must be different from zero since P
[w]
n would have n + 1 zeros

otherwise. Recalling (2.6), we easily conclude that the zeros of P
[w]
n and Pn+1 interlace.

This shows that (2.8) holds.

Now we want to estimate γ
[w]
n from below. Clearly

γ[w]
n =

∫ ∞

−∞

(

P [w]
n (x)

)2

w(x) dσ(x) =

∫ ∞

−∞

w(x)P [w]
n (x)Pn(x) dσ(x).

Substituting (2.10) into the right-hand side, we readily find that

γ[w]
n = γn

Vn+1(ζ1, ζ2)

Vn(ζ1, ζ2)
.(2.11)

Employing the recurrence formula (1.3), we obtain that

Vn+1(ζ1, ζ2) = det

(

Pn+1(ζ1) Pn+2(ζ1)
Pn+1(ζ2) Pn+2(ζ2)

)

= det

(

Pn+1(ζ1) (ζ1 − αn+2)Pn+1(ζ1) − βn+1Pn(ζ1)
Pn+1(ζ2) (ζ2 − αn+2)Pn+1(ζ2) − βn+1Pn(ζ2)

)

=
(

ζ2 − ζ1

)

Pn+1(ζ1)Pn+1(ζ2) +
γn+1

γn
Vn(ζ1, ζ2) .

Hence (2.11) may be rewritten as

γ[w]
n = γn+1 + γn

(ζ2 − ζ1)Pn+1(ζ1)Pn+1(ζ2)

Vn(ζ1, ζ2)
.(2.12)

Using Lemma 2.1 for a partial fraction decomposition of Pn/Pn+1, we find that

Vn(ζ1, ζ2)

Pn+1(ζ1)Pn+1(ζ2)
=

Pn(ζ1)

Pn+1(ζ1)
−

Pn(ζ2)

Pn+1(ζ2)
=
(

ζ2 − ζ1

)

n+1
∑

ν=1

λν

(ζ1 − xν)(ζ2 − xν)
.
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Since ζ1, and ζ2 are either a pair of conjugate zeros or a pair of real zeros lying in the same
component of R\JN+2, we see that the last sum is a mean value of positive terms. Therefore

Vn(ζ1, ζ2)

(ζ2 − ζ1)Pn+1(ζ1)Pn+1(ζ2)
≤

1

dn+1(ζ1)dn+1(ζ2)
.

Combining this estimate with (2.12), we obviously obtain (2.9).

3. Proofs of the results in § 1.
Proof of Proposition 1.1. Let A = (aµν) be a matrix in Cn×n. Then, by an inequality

of Hadamard [4, p. 418, Theorem 13.5.3] applied to the transpose of A,

|det A| ≤

n
∏

µ=1

(

n
∑

ν=1

|aµν |
2

)1/2

.

This estimate can be generalized. If D ∈ Cn×n is a non-singular diagonal matrix with
diagonal entries d1, . . . , dn, then det(D−1AD) = det A, and therefore

|det A| ≤
1

|d1 · · · dn|

n
∏

µ=1

(

n
∑

ν=1

|aµνdν |
2

)1/2

.

This shows that Vn(z1, . . . , zk) may be estimated as

|Vn(z1, . . . , zk)| ≤



γnγn+1 · · · γn+k−1

k
∏

j=1

(

n+k−1
∑

ν=n

1

γν
|Pν(zj)|

2

)





1/2

.(3.1)

By the Christoffel–Darboux formula (see [7, p. 43, (3.2.3) and (3.2.4)])

m−1
∑

ν=0

1

γν
|Pν(z)|

2
=















1

γm−1

(

P ′
m(z)Pm−1(z) − Pm(z)P ′

m−1(z)
)

if z ∈ R,

1

γm−1
·
Pm(z)Pm−1(z) − Pm(z)Pm−1(z)

z − z
if z ∈ C \ R.

But this is the quantity ∆m(z), defined in Proposition 1.1. Thus (3.1) gives (1.8).
Employing Lemma 2.1, we can avoid the distinction between real and non-real z in the

definition of ∆m(z). In fact, let x1, . . . , xm be the zeros of Pm, and let λ1, . . . , λm be the
coefficients in the partial fraction decomposition of Pm−1/Pm according to Lemma 2.1.

If z ∈ R, then

γm−1∆m(z) = P ′
m(z)Pm−1(z) − Pm(z)P ′

m−1(z)

= −P 2
m(z)

d

dz

Pm−1(z)

Pm(z)

= P 2
m(z)

m
∑

µ=1

λµ

(z − xµ)2

= |Pm(z)|
2

m
∑

µ=1

λµ

|z − xµ|
2 ,
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and if z ∈ C \ R, then

γm−1∆m(z) =
Pm(z)Pm−1(z) − Pm(z)Pm−1(z)

z − z

=
|Pm(z)|

2

z − z

(

Pm−1(z)

Pm(z)
−

Pm−1(z)

Pm(z)

)

=
|Pm(z)|

2

z − z

(

m
∑

µ=1

λµ

z − xµ
−

m
∑

µ=1

λµ

z − xµ

)

= |Pm(z)|
2

m
∑

µ=1

λµ

|z − xµ|
2 .

Hence for any z ∈ C,

∆m(z) =
1

γm−1

m
∑

µ=1

λµ

∣

∣

∣

∣

Pm(z)

z − xµ

∣

∣

∣

∣

2

,

which gives (1.9) at once.

Proof of Theorem 1.2. First we note that

∣

∣

∣

∣

Vn+1(z1, . . . , zk)

Vn(z1, . . . , zk)

∣

∣

∣

∣

=
γ

[w]
n

γn
.(3.2)

In fact, using (1.14), we see that

γ[w]
n =

∣

∣

∣

∣

∫ ∞

−∞

(

P [w]
n (x)

)2

w(x) dσ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

−∞

w(x)P [w]
n (x)Pn(x) dσ(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

Vn(z1, . . . , zk)

∫ ∞

−∞

Vn(x, z1, . . . , zk)Pn(x) dσ(x)

∣

∣

∣

∣

.

Now, expanding the determinant inside the integral with respect to the first row and paying
attention to the orthogonality of the system (Pn)n∈N0

, we readily obtain (3.2).

In view of (3.2), we have to estimate γ
[w]
n from below. For this we can use Lemmas 2.2

and 2.3 repeatedly, taking advantage of the obvious fact that the operation of attaching a

superscript [w] is multiplicative in the following sense. If w = uv, then P
[w]
n = (P

[u]
n )

[v]

and, consequently, γ [w]
n = (γ

[u]
n )

[v]
.

Obviously, we may factor the polynomial w as

w(x) = p(x)q1(x) · · · q`(x),

where p is a monic real polynomial of degree m such that, if m = 2, then the zeros of p
lie in different components of R \ Jn+bk/2c+1, and where qλ (λ = 1, . . . , `) are monic real
polynomials of degree two, each having either a pair of conjugate zeros or a pair of real zeros
lying in the same component of R \ Jn+bk/2c+1. In particular, each qλ(x) is positive for
x ∈ Jn+bk/2c+1.
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Applying Lemma 2.2 m times, we readily see that

γ[p]
ν ≥ γν rm (ν = 0, . . . , n + `).

Now we define w0(x) := p(x) and

wλ(x) := p(x)q1(x) · · · qλ(x) (λ = 1, . . . , `).

We claim that

γ[wλ]
ν ≥ rm

λ
∑

j=0

(

λ

j

)

γν+λ−jr
2j and d[wλ]

ν (z) ≥ dν+m+λ(z)

(λ = 0, . . . , `; ν = 0, . . . , n + ` − λ).

(3.3)

The inequality for d
[wλ]
ν (z) is an easy consequence of Lemmas 2.2 and 2.3. The inequality

for γ
[wλ]
ν may be proved by induction on λ as follows.
Let ζ1 and ζ2 be the zeros of qλ+1. Using again Lemma 2.3, we conclude that

γ[wλ+1]
ν =

(

γ[wλ]
ν

)[qλ+1]

≥ γ
[wλ]
ν+1 + γ[wλ]

ν d
[wλ]
ν+1(ζ1) d

[wλ]
ν+1(ζ2)

≥ γ
[wλ]
ν+1 + γ[wλ]

ν dν+m+λ+1(ζ1) dν+m+λ+1(ζ2)

≥ γ
[wλ]
ν+1 + γ[wλ]

ν r2 .

Now the induction hypothesis applies and gives

γ
[wλ]
ν+1 + γ[wλ]

ν r2 ≥ rm





λ
∑

j=0

(

λ

j

)

γν+1+λ−jr
2j +

λ
∑

j=0

(

λ

j

)

γν+λ−jr
2j+2





= rm



γν+λ+1 +

λ
∑

j=1

{(

λ

j

)

+

(

λ

j − 1

)}

γν+λ+1−jr
2j + γνr2λ+2





= rm
λ+1
∑

j=0

(

λ + 1

j

)

γν+λ+1−jr
2j .

This completes the proof of (3.3).
Finally, noting that w(x) = w`(x), and combining (3.2) and (3.3), we readily obtain

(1.11).

Proof of Theorem 1.4. Let sgn w(x) =: ε for x ∈ J . It is clear, from the general theory of
orthogonal polynomials, that a recurrence formula of the form (1.18) holds, where, according
to (1.4),

α[w]
n =

ε

γ
[w]
n−1

∫ ∞

−∞

x
(

P
[w]
n−1(x)

)2

w(x) dσ(x)(3.4)

and

β[w]
n =

γ
[w]
n

γ
[w]
n−1

(3.5)
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for n ∈ N.
¿From (3.2) and the discussion of the influence of the sign of w (see § 1), we know that

γ[w]
n = ε(−1)kγn

Vn+1(z1, . . . , zk)

Vn(z1, . . . , zk)
(n ∈ N0),(3.6)

which gives (1.20) at once.

A verification of (1.19) is more sophisticated. In view of (1.14), we may write

x
(

P
[w]
n−1(x)

)2

w(x)= det











Pn−1(x) Pn(x) . . . Pn+k−1(x)
Pn−1(z1) Pn(z1) . . . Pn+k−1(z1)

...
... . . .

...
Pn−1(zk) Pn(zk) . . . Pn+k−1(zk)











(−1)kxP
[w]
n−1(x)

Vn−1(z1, . . . , zk)
.

By the orthogonality of the system (Pn)n∈N0
, we have

∫ ∞

−∞

xPn−1+j(x)P
[w]
n−1(x) dσ(x) =

{

0 if j ≥ 2,
γn if j = 1.

Hence, when we expand the determinant with respect to the first row and calculate α
[w]
n

according to (3.4), we find that

α[w]
n =

ε(−1)k

γ
[w]
n−1

[

Vn(z1, . . . , zk)

Vn−1(z1, . . . , zk)

∫ ∞

−∞

xPn−1(x)P
[w]
n−1(x) dσ(x) − γn

V ∗
n (z1, . . . , zk)

Vn−1(z1, . . . , zk)

]

.

(3.7)
Next, we have to calculate the integral on the right-hand side. By the recurrence formula for
the system (Pn)n∈N0

, we have

xPn−1(x) = Pn(x) + αnPn−1(x) + βn−1Pn−2(x).

This implies that
∫ ∞

−∞

xPn−1(x)P
[w]
n−1(x) dσ(x) = αnγn−1 + βn−1

∫ ∞

−∞

Pn−2(x)P
[w]
n−1(x) dσ(x) .(3.8)

It remains to calculate the integral on the right-hand side. For this, we proceed as follows.
By (1.14),

w(x)P
[w]
n−2(x) = (−1)k Vn−2(x, z1, . . . , zk)

Vn−2(z1, . . . , zk)
.

Multiplying both sides by P
[w]
n−1(x), expanding the Vandermonde type determinant in the

numerator, with respect to the first row, and integrating with respect to dσ(x), we obtain

0 =

∫ ∞

−∞

w(x)P
[w]
n−2(x)P

[w]
n−1(x) dσ(x) =

(−1)k

[

Vn−1(z1, . . . , zk)

Vn−2(z1, . . . , zk)

∫ ∞

−∞

Pn−2(x)P
[w]
n−1(x) dσ(x) − γn−1

V ∗
n−1(z1, . . . , zk)

Vn−2(z1, . . . , zk)

]

,

and so
∫ ∞

−∞

Pn−2(x)P
[w]
n−1(x) dσ(x) = γn−1

V ∗
n−1(z1, . . . , zk)

Vn−1(z1, . . . , zk)
.(3.9)

Finally, combining (3.6)–(3.9), we arrive at (1.19).
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