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UNCERTAINTY PRINCIPLES REVISITED*

KATHI K. SELIGT

Abstract. The Heisenberg uncertainty principle and the uncertainty principle for self-adjoint operators have
been known and applied for decades. Both in quantum mechanics and in time-frequency analysis they play an
important role. In this paper, the uncertainty principle is extended to symmetric operators and to normal operators.
Further, different function spaces are studied in which we obtain a number of uncertainty principles of same type
using various operators.
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1. Introduction. The classical uncertainty principle (UP) was established by Heisen-
berg in [8] bringing a fundamental problem in quantum mechanics to the point: The position
and the momentum of particles cannot be both determined explicitly but only in a proba-
bilistic sense with a certain "uncertainty”. The mathematical equivalent is that a vector in a
Hilbert space and its Fourier transform cannot both be arbitrarily localized. This is the fun-
damental problem in time-frequency analysis, where one would like to have bases of vectors
well-localized in both time and frequency.

Studying this problem on different domains and, hence, in different function spaces, the
same question leads to a variety of answers and peculiarities puzzling at first sight. Recently,
a number of papers has been published including UP’s for periodic functions [9, 11, 15],
functions on the interval [14] and on the sphere [7, 10]. These results provide qualitative and
quantitative tools in order to determine the time-frequency localization of basis functions,
e.g., wavelets, in different function spaces. On the search for the joint root and for the jus-
tification of the term “uncertainty”, the author has been inspired by [1] to take the operator
theoretical approach.

The present paper sheds some light behind the scene by extending the classical UP for
self-adjoint operators to a wider class of operators, namely to symmetric operators and to
normal operators. These issues may be known and, in fact, are not difficult to prove but
were not found in the literature available to us. From these, almost all the UP’s cited above
follow (except for the sphere because of vector-valued operators). Further, this paper tries to
widen the view by proposing the application of this UP to various pairs of operators. It is
not conclusive, by far. Questions like the “natural” choice for the equivalent of the position
and the momentum operators have not been considered here and will be subject of further
investigations. Also, other concepts of UP’s as, e.g., these in [4] could be studied from a
more general point of view.

The paper is organized as follows. First, some notation is introduced. In Section 3, UP’s
are derived for symmetric and normal operators. Section 4 is devoted to higher moments and
higher derivatives for both the real line and the circle. Section 5 deals with ultraspherical
expansions on the interval and UP’s for the related Dunkl and Laplace operators. Finally in
Section 6, UP’s on the sphere are discussed for the surface curl gradient and, for the first time,
for the surface gradient which seems to be more appropriate.
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2. Notation. Let H be a Hilbert space with inner product (-,-) and with norm || -

| == ¢, ->1/2. Further, let A, B be two (possibly unbounded) linear operators with domains
D(A), D(B) C H and ranges in H. Let

(Af, f)
(£, 1)

denote the (normalized) expectation value of the operator A with respectto f € D(A), and

oa(f) = [(A=7a(N)/I

be the uncertainty or standard deviation of the operator A with respect to f € D(A). Taking
the operator as the lower index and f as variable shall suggest that the operator is usually
fixed in our considerations whereas f varies over the whole domain of the operator. The
variance is, as usual, the square of the uncertainty and can be written as

Taf) =

) = (Af = Ta(F)f. Af —7alD))
A 2
2.1) — laf|? - % — JAFI = Ira (RIS

We will consider non-commuting operators A, B, i.e., those for which AB # BA. We define
the commutator and the anticommutator, respectively, as

[A,B] .= AB—BA, [AB], = AB+BA,

both with domain D(AB) N D(BA). For not-necessarily commuting operators, their covari-
ance with respect to a function f is given by

covap(f) = 3{[A = 7a(N)], B = r5(I]+f. f)

— WA B, ) — malP) s (DU ) = HA, Bt gy — ALIUBLS)

rfn

I being the identity operator.

A (not necessarily bounded) densely defined linear operator A in a Hilbert space H is
said to be symmetric if D(A) C D(A*)and Af = A*f for f € D(A). Equivalently, A is
symmetric if and only if (Af, g) = (f, Ag) forall f,g € D(A). IfD(A) = D(A*), then A
is self-adjoint. We call A normal if A is closed and densely defined, and if A*A = AA*.
Then we have D(A) = D(A*) and | Af]|| = ||A* f|| for every f € D(A). Hence, an operator
is self-adjoint if and only if it is both symmetric and normal.

EXAMPLE 1 (see [4, Corollary 1.35]) The standard operators in the context of un-
certainty principles are the position operator A defined by Af(x) = «f(x) and the im-
pulse operator B = —id/dx. Their commutator is [A, B] = I, the “imaginary” identity
operator. One can show that, with D(A) = {f € L*(R) : [2?f(z)]*dz < oo} and
D(B) = {f € ACjoc(R) N L*(R) : [|f'(x)]* dz < oo}, both operators are self-adjoint.

EXAMPLE 2 (see [9, Section 5]) On the torus, the choice A f(x) = z f(x) for periodic
functions f € L3 would yield an unexceptable dependence of 74(f) and o4 (f) on the
choice of the integration bounds. Here, we have to take the position operator Af(x) =
e'® f(x) instead. Then we have A* f(z) = e~ f(z). Hence, A is a unitary operator, with
D(A) = L%.. The commutator with B = —id/dx being self-adjoint on D(B) = {f €
ACsy : fle L3 }is[A, Bl = —A.
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3. UP'sfor symmetric and normal operators. In the literature we usually find un-
certainty principles only for self-adjoint operators (see e.g. [3, Theorem 1.34]). This is a
restriction that is sometimes painful. On the one hand, unbounded symmetric operators can
have different (or no) self-adjoint extensions where D(A) = D(A*), and these domains are
often difficult to determine. On the other hand, certain function spaces require a normal but
non-symmetric position operator.

Therefore, we start proving a more general theorem where the two operators in question
can be either symmetric or normal (or both), also allowing a pair of one symmetric and one
normal operator.

THEOREM 3.1. If A, B : H — 'H are symmetric or normal then

3.1) 1A =a)fIlI(B=b)fll = 3l{A,BIf. f)l,
(3.2) I(A=a)fI I(B=b)fll = 3/([A—al,B-bI]f f)l,

forall f € D(AB)ND(BA) and all a,b € C. Equality is attained if and only if there exist
constants ¢y, ca, d1,dz2 € Cwith (Jei| + |d1])(|e2| + |dz2|) > 0 such that

(33) Cl(A* — E)f = dl(B — b)f and CQ(A — a)f = dQ(B* — B)f,

and, additionally, either at least one of the constants is zero, or d;/c; = +ds /& with the
plus in case of (3.2) and the minus in case of (3.1), respectively.

Proof . For any linear operator A and any a € C, the adjointof A—al is A* —al. Under
the assumptions of the theorem, we have that

(3.4) (A" =a)fl = [(A=a)fl,  I(B*=b)fll=(B-0bfl.
Let us denote

C. = ([A=a,B-Yf. f) = ([ABIf. f),

Cy = ([A—a,B-bl4f, [).
For both of these, it follows that
(B=0)f, (A" —a)f)| + {(A—a)f,(B" — 5)_f>|
(A" =a)fII(B=b)fll + (A= a)fII(B* = b)f]

using Cauchy-Schwarz-Bunjakovski inequality. Now, (3.4) yields (3.1) and (3.2).
Equality is attained for the second inequality (3.6) if and only if (3.3) holds for con-
stants ¢y, co,d1,de € C with |e1] + |d1] > 0 and |eo| + |d2] > 0. If all these con-

stants are nonzero then from (3.4) we obtain ‘%’ = |22|, and equality in (3.5) means that

(3.5) |Cx|

<
(3.6) <

doyoda|— |du|y @‘ Hence, we have & = 422 where the plus stands in case of C'_ and
C1 () c1 () C1 Cc2

the minus in case of C_ . If at least one of the constants is zero, then equality in (3.5) follows
trivially. d

As far as equality is concerned, note that the case that (at least) one of the constants
c1,¢2,d1,ds is zero means that f is in the kernel of at least one of the operators (A —
al),(A* —al), (B — bl),(B* — bl). If (A —a)f = 0 then f is an eigenvector of A and
a = 74(f) is the corresponding eigenvalue.



ETNA

Kent State University
etna@mcs.kent.edu

168 K. K. SELIG

For symmetric operators and real numbers a, b, the inequalities can be united thereby
sharpening each other. A special case of this was given in [1, formula (15.87)].
THEOREM 3.2. If A and B are symmetric operators in a Hilbert space H, then

GDIA=a)fI [(B=0)f]l = %\/|<[A7B]f7f>‘2+|<[A_GJ7B_bﬂ+f7f>|25

forall f € D(AB) N D(BA) and all a,b € R. Equality holds if and only if (4 — a)f and
(B — b) f are scalar multiples of one another.
Proof . In the proof of Theorem 3.1, we replace inequality (3.5) by the exact value

(B =b)f,(A=a)f)] = V(S(B=b)f,(A—a)f)?+ R(B—-b)f,(A—a)f))?
and realize that

2R((B=b)f,(A=a)f) =((B=b)f,(A=a)f)+((A-a)f,(B-D)f)
([A—al,B=bIl f, 1),

23((B=b)f,(A=a)f) = (A Blf,f). O

So far, we have stated inequalities for arbitrary numbers a,b. They can be used if we
consider the case of equality and wish to have a variety of solutions. Or, we can ask for
which a, b the left-hand side of the functional inequalities (3.1), (3.2) and (3.7) is minimized.
In our case, the minimum of ||(A — a) f|| is, for all f, the uncertainty of A, namely when a is
the orthogonal projection of Af to f, i.e.,

winaf —af| = |lar = SLE 1| = g - ant = oa).
COROLLARY 3.3. If A, B are symmetric or normal operators in a Hilbert space 7, then
(38) oa(f)os(f) > 1A, BIf, )
and
(3.9) oa(f)op(f) = covan(f),

forall f € D(AB)ND(BA), f #0.

Both (3.8) and (3.9) include uncertainties and, thus, can be called uncertainty principles. They
state that the product of uncertainties of two (symmetric or normal) operators in a Hilbert
space is bounded from below by the expectation values of their commutator (the “classical”
UP) and their anticommutator. The other way round, we have an estimate for the latter ones
from above in form of the uncertainty product including the simple fact that the covariance is
bounded from above by the square root
of the product of variances. Both directions can be improved for symmetric operators

as follows from Theorem 3.2, squaring and subtracting the one or the other term from the
right-hand side as the case may be.

COROLLARY 3.4. If A and B are symmetric operators in a Hilbert space H, then

(3.10) oa(f) os(f) = 53 [A BIf, HI? + 4covi5(f)

forall f € D(AB) N D(BA), f # 0. Equality holds if and only if (A — 74(f))f and
(B —15(f))f are scalar multiples of one another.
Note that the right-hand side in (3.10) is greater or equal to

(A= ra(INS (B =75(INI = (AL, BS) = ta(H75(HIFIP]-
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4. UP'son thereal line and on the circle. Applying (3.8) to the operators from Ex-
ample 1 we get the classical Heisenberg UP on the real line (see [2, Section 2.8] for the two
common versions). Example 2 yields an UP for 27-periodic functions (see [11, Theorem
2.1]; for an asymptatic connection between the two see [12]). In both cases, in principle, op-
erator A yields an expectation value which is known as first (trigonometric) moment, whereas
B stands for the first derivative. An obvious generalization gives uncertainty principles for
higher moments and higher derivatives.

First, we look at H = L?(RR) and take

Apf(z) = 2"f(x) and Byf(z) = (—id/dz)" f(x)

for arbitrary fixed k,¢ € N, with D(A;) = {f € L*(R) : [2%|f(x)]*dz < oo} and
D(By) = {f € L*(R)nC*[R) : f¥) € L?(R)}. Their commutator is

min(k,£)

A Bl@) =~ 3 (1) s ).

n

Obviously, A; and B, are symmetric operators. (Clearly, we could specify the domains of
self-adjointness for both of them.) So, from Corollary 3.3 we obtain
COROLLARY 4.1. For f € D(AB¢) N D(ByAy), the uncertainty principle

(|(.)kf||2 _ M)<|f<e>”z B |<f(£)7f>|2)

I1f1% I1f1%
min(k,£) 2
1 A3 )
> 1 1;2::1 (n)m«)k SR

holds.

In’H = L2, we consider
Anf(x) = €™ f(z) and  Byf(z) = (~id/dz)"f(z)
for any fixed m € Z, ¢ € N, with D(A,,) = L%, and D(B,) = C%,.. The commutator is

L
[Ama Bé]f = _Am Z (i) mnt_nf.
n=1

Since A,, is a unitary operator and B, is symmetric, from Corollary 3.3 we obtain a similar
result as for L2(R).
COROLLARY 4.2. For f € C%_, the uncertainty principle

™ £ BN e WO DEY o 1S (€)oo nggim: pieen
(112 - L= LD (o - WL DD > 2 ;<n>(zm) (e £, f)

2

holds.

Whether these inequalities are known or useful is not clear to the author at the moment.
There might be applications for the one or the other special commutator to be estimated from
above, or to compute a lower bound for one variance by dividing the inequality by the other
variance, respectively.
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5. UP’s on the interval. For ultraspherical expansions, an UP has been proved by
Rasler and Voit in [14] making use of the Dunkl operator as the angular momentum oper-
ator. Here we give a more general UP for a whole class of “position” operators. Furthermore,
we obtain a similar UP for the Laplace operator. The question of which operators can be con-
sidered as the “natural” position and momentum operators on the interval is not answered,
yet.

We consider the weighted Hilbert space H = L?([0, 7], w, ), for fixed o > —1/2, with
probability measure

I'(2a +2)

_ o3 2a+1 _
dwa(t) = Cq (mnt) dt, Cq — I‘(CY+1—)22204+1 .

The polynomials orthogonal with respect to this measure are the ultraspherical (or Gegen-
bauer) polynomials

t
Pt = 2F1(—n,n+2a+1;0z—|—1;sin2§) = P®%(cost)  (n€Ny).

In order to define appropriate operators A, B in 1, no general theory seems to be avail-
able, at present. In the Heisenberg UP, operator B was a differential operator of first kind
being a root of the Laplace operator, at the same time. Ultraspherical polynomials are solu-
tions of the differential equations Lop'®) = n(n + 2a + 1)p{® , for n € Ny, where the
Laplace operator is defined as

t
Laft) = — [ /() + 20+ 1) 2f/(t
1) = = (10)+ a4 D)
with domain D(L,) = {f € C?[0,7] : f'(0) = f'(x) = 0}. A root (in a generalized
meaning) is given in [14] by the corresponding Dunkl operator

Tuh)t) = F(1) + (a n 1) OSL 1) — f(—1))

2 /) sint

with domain D(T,,) = {f € AC[-m, 7| : f' € L*[—m, 7], f(—n) = f(m)}. Then, iT, is
symmetric (see [14, Lemma 3.1]). This differential-difference operator requires the extension
of the original interval to [—, 7]. As in [14], we define the probability measure

C
dig(t) = 7“ |sin [>T dt
as well as the even extension and the restriction operators

e: L2([0,7),wa) — L*([—m, 7], a), e(f)t) = f(t),
T LQ([_T(JT]?‘DOL) - L2([O,7T],wa), [ f|[0,7r] )

which are isometric isomorphisms between L2 ([0, 7], ws ) and L2 ([—, 7], @4 ) being the sub-
space of even functions. Then, the Dunkl and the Laplace operators are related by

Lof = —r(T3(e(f))  forfeD(La).

5.1. UP'sfor the Dunkl operator. We will work in H’ = L?([—=, 7], &) for a mo-
ment and require f € H’ to be even. Let h € AC[—m, 7] be fixed, and define the operators
AB: H —-H,

Af = nf,  Bf = —ilaf.
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Their commutator turns out to be

cost

B0 = i (W50 + (ot 5) Sh00 - h-0p(1)

sint
So, for g € L2([—m, 7],@a) , we simply have
[A,Blg = ig T,h.

In order to guarantee h € D(T, ), we have to require h(w) = h(—mn), and then it holds
that D(AB) = D(BA) = D(T,). Clearly, A is a normal operator (allowing complex-valued
“positioning” functions A) and B is symmetric. Due to (3.8) for these operators an UP follows
easily.

THEOREM 5.1. Leta > —1/2. In H' = L?([—7, 7],@a), we have

[(hf, )1

1/2 1
LOEY 101 2 g smah),

(5.1 (Ilhf||2 -

forall f,h € D(T,), f even.
Proof . For even f € D(T,), we have that T, f = f’ is odd. Hence (Bf, f} = 0 and
o(f) = ||f'|| - Then the assertion follows from (3.8). d

Let us consider special cases for h € D(T,). If h is even, then the expectation value can
be reduced to (hf, f) = (r(hf),7(f))w. ,but

(A, BIf, f) = i{fToh, f) = i{W'f, f) = 0,

and so the inequality becomes trivial. For odd &, we have (hf, f) = 0. In general, h =
he + ho , Where h. is the even and h,, the odd part of &, respectively, and (omitting » when
restricting the integration to [0, ], for simplicity)

(5.2) (Wf, 1) = (hefi f) = (hef, floa
(5.3) <.fTaha f> = <fTah07.f> = <fTO(hO7f>UJa

Now, let us look at the result by Résler and Voit. They defined the generalized mean

ralf) = / " cost | F()]2 dua()

and proved the following
THEOREM 5.2. ([14, Theorem 2.2]) Let o > —1/2 and f € L%([0, w],w,) With || f|| =
1. Then

(1= 17a(HP) (Laf, floa = ITa(HI (@ +1)2,

where the constant (« + 1) is optimal.

In fact, we need f € D(L,). Then, this theorem is a special case of Theorem 5.1 for h(t) =
e which yields
[N = eIl = Ifllwa =1,

(he(f),e(f)) = ((cos-)e(f),e(f)) = Ta(f),
(e(/)Tah,e(f)) = 2(a+1)((cos-)e(f), e(f)) = 2(a+1)7a(f).
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Moreover, since

T29() = o'(0) + Qo+ )iy () (9 € D(T2)

is even, for even g, and since T, is symmetric we have, for f € D(L,,),
(Laf, Noa = (((Ta)e(f)se(fae = [Tac(HIZ, = 1112, -

If we use h(t) = sint instead, then Theorem 5.1 yields
COROLLARY 5.3. Leta > —1/2and f € D(L,). Then

[(sin ) fl12,. (Lafs flwa = (@+1)°72(f),
and
160 ) fllow [/ lwa = (@+D)1alf),

the latter being valid also for f € AC([0, 7]).

For real-valued functions f, these inequalities are sharper than the one in Theorem 5.2 due to

A=l = NI = 7alMFI* = [l(cos: = 7a(F)FII* + [I(sin ) fII* -

But in general, this is just another example of uncertainty principles in L2([0, 7], wq ).

Two other similar UP’s in view of higher moments (cp. Section 4) follow from Theorem
5.1 taking h(t) = sin2t and h(t) = e2*, respectively. Among other interpretations they
provide further lower bounds for || f/|... -

COROLLARY 5.4. Leta > —1/2and f € AC([0,7]). Then

1502 fllo 1 lon = S Ta(sin2), fos |
and
1/2
(1712, = d(cos2) £, 2 /IFI2,) 112, = 31U Talsin2), fo|
with

[{(fTa(sin2:), flu,| = |4(a+ 1) (cos ) fIIZ, — 2(sin-) fI2,
|2a + DIIFIIE, + (20 + 3){(cos 2) f, fa, |-

Proof . Due to (5.3), for both h(t) = sin 2t = 2sint cost and h(t) = e, we have on
the right-hand side of (5.1)

[{e(N)Tah,e(F)] = 4l +1){(cos )2 f, fu, = 2((sin-)*f, fu,|

from which the two forms in the assertion can be easily deduced. The rest follows from (5.2)
and Theorem 5.1. O
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Last but not least, let us look at B as an operator in H = L?([0, 7],w,) itself. When
dealing with even functions f € D(T,), we had T,f = f’. Hence, let Bf = if’. For
f,9€D(B) = {feC0,x]: f(0)= f(x) =0}, integration by parts gives us

(Bf.g) = i / " P90 dwalt)

cost——

“i [T HO@T + (ot )EG0) dent)

and so the adjoint is B* f(t) = i(f'(t) + (2a + 1)$2L f(t)). Thus, except for « = —1/2,

operator B is not normal since (BB* — B*B)f = (2« + 1) f(t)/sin? t. Hence, we cannot
directly gain our results for the first derivative in  without the “detour” via H'.

5.2. UP'sfor the Laplace operator. In view of higher derivatives as in Section 4, we
want to consider the Laplace operator L,, in H = L%([0, 7], w, ). Let

Af:hf7 Bf:L(!fa

where h € D(L,) = {f € C?[0,x] : f'(0) = f'(w) = 0} is fixed. The commutator is in
this case

[A7B]f = hLaf_La(hf) = zf/h/_fLah-

Again, Corollary 3.3 provides an uncertainty principle for these operators.
THEOREM 5.5. Leta > —1/2. InH = L2([0, 7], w4 ), We have

e WD) (15, e MESLDEY 5 L :
(s = CLIEY (zagi - MELDEY > Lierw - sran .

forall f,h € D(Ly).
Proof . Since A is normal and B is symmetric, we can apply (3.8) to the operators A, B
defined above. O

This choice of the operators is questionable. Let us look at the following example. For
real-valued f and h(t) = e?* or h(t) = p(t), k € Z, n € Ny, the right-hand side vanishes,
i.e.,

<2f/h’/_fLOth’7f> = 07

with the exception (2ike™ f' — fL_q,0e™, f) = ik((—=1)*f2(x) — f3(0))/x. So, for
these operators A and real-valued functions the UP’s above become trivial.

6. UP’s on the sphere. We consider the unit sphere S ¢ R? and the Hilbert space
H = L?(S?). In[10], Narcowich and Ward gave an UP on the sphere using the multiplication
with the surface variable n € S? as position operator and the angular momentum operator
Q = —iL* = —in x V* as momentum operator where V* denotes the surface gradient and
L* the surface curl gradient. Note that both are roots of the Laplace-Beltrami operator A*
of the unit sphere in the sense that

A* — L*L* — v*v*
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which is the tangential part of the Laplace operator in R3
0? 0? 0? 92 20

1
A= —S+-—5+-—5 = —+—-—— +A".
on? +377§ +377§ or? +7’8r+7’2

See [6] for more details. Let || - ||gs denote the Euclidean norm in R3 .

THEOREM 6.1. ([10, Theorem 5.1]) If f(n) is a twice-continuously differentiable complex-Jj
valued function on S2, and if

Lo dst = 1.

[ il doto.
S2

and w; = jé QS 7) do()

2

Tf

then

(6.1) ITsllRs < (1= ll7¢llzs)vara(f),

where

wara(f) = [ 10 = wp s dota).

For real-valued functions, another proof can be found in [5, Theorem 1.3.1].

If we set

(6.2) Af(n) = nf(n), Bf(n) = —il*f(n) = —inxV*)f(n),

with D(A) = Hand D(B) = {f € AC(S?): V*f € H® H ® H}, we notice that A, B
are vector-valued operators which do not fit in our scheme in Section 3. In particular, the
commutator is not easily definable. It will have to be studied because it does not suffice to
consider the single operator components Ay, B, : H — H ,fork, ¢ = 1,2, 3, as we will see
in the sequel.
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We define the (normalized) expectation vector of any vector-valued operator B by

1 _
o) = 7 | ToBsm) s,

Then, the variance of such a vector-valued operator can be written, for any f € D(B), as

vars(f) = | (B =Ta(f)f F)lIZs dw(n)
(6.3) = ZH(Be—m NP = ZUB,Z
=1

3
= Y IBIP = I IPITs ()]s -
=1

Furthermore, for our choice of A in (6.2) we have

ZHAkfn? Z [P st = [ il st = 1717,

and hence,

vara(f) = [[fIP(1 = lTa(f)lIZs) -

We can easily prove the following:
THEOREM 6.2. If A, B are vector-valued operators with symmetric or normal compo-
nents Ay, By acting in a Hilbert space H , then

vary(f) varg(f) > iz [([A, Belf, /)7,
e,

Soalh) Yen () = 5 1A B
k ) k.0

for all fe (ﬁkﬂzp(AkBg)) n (ﬂkyg'D(BgAk)).
Proof . Apply (3.8) to each summand of the right-hand side, and then, in the first in-
equality, use (6.3). d

Our operators A and B defined in (6.2) obviously have symmetric components. We

compute
0 —n3 72
[AlvB] = 73 ) [A27B] = 0 ) [A3vB] =1—m]-
=12 m 0
This yields
3 3 3
ST AR BAf H = 2> HAf, O = 201F17D Ira ()]
k=1 k=1 k=1
3

3

S KA BAf, HP = 2> KA HIF = 2 f1*Ima()lRs -

k=1 k=1
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Hence, from Theorem 6.2, we obtain in this case

®.Awara(f) varp(f) = [fI2(1 = ITa(H)lEs) vare(f) = sIFIMITa(H)IE

where the constant in the lower bound is only half of the constant in (6.1). The second
inequality of Theorem 6.2 gives us another inequality, now for uncertainties instead of vari-
ances. Here, as in (6.1), the constant should be optimal.

COROLLARY 6.3. The operators A, B defined in (6.2) satisfy

3
Y o) DY o (f) = 1P Irac(Hl,
k 4 k=1

forall f € D(B).

Note that 7 4(f) is the center of mass of the density | f|?/| f||* distributed around the
sphere and, hence, is located in the unit ball. So, there are a lot of functions f with T 4(f) =0
for which the inequalities above become trivial. The second problem is that, for real-valued

/.
mo(f) = i [ S fn)de(n) = 0,

which raises interpretation problems in terms of frequency localization on the sphere (men-
tioned in [7]).

Alternatively, we propose to consider
(6.5) Af(m) = nf(m),  Bfn) = —iV*f(n)
the components of which are also symmetric and have commutators
[Ag, Belf = if dpye-

From Theorem 6.2 we conclude
COROLLARY 6.4. For A, B defined in (6.5), we have

vara(f) vars(f) = Sf11°

and
Soal) Yon () = S5,
k 4

forall f € D(B).

These inequalities using V* are obviously nontrivial, and their right-hand sides remem-
ber us of the Heisenberg UP. The author suggests studying V* as operator for frequency
analysis. From the discrepancy between (6.1) and (6.4), we can guess that it should be pos-
sible to prove that var 4(f) varyw«(f) > 2| f||*, and that probably this bound is sharp. An
appropriate generalization of the UP’s for vector-valued operators will likely resolve this is-
sue.
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On the other hand, we have Theorem 6.1 and Corollary 6.3 using the angular momentum
operator L* as momentum operator. The role of this operator should be reconsidered within
the framework of time-frequency analysis.

Note that for B in both (6.2) and (6.5) and for f € C*(S?), we have

3

3
STIBefIP = Y (BIf. f) = —(Aff)
/=1

/=1
holding two different lower bounds by Theorem 6.1 and by Corollary 6.4.
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