
Electronic Transactions on Numerical Analysis.
Volume 15, pp. 106-121, 2003.
Copyright 2003, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

ADVANCING ANALYSIS CAPABILITIES IN ANSYS THROUGH SOLVER
TECHNOLOGY∗

GENE POOLE , YONG-CHENG LIU†, AND JAN MANDEL‡

Abstract. This paper describes substantial improvements in analysis capabilities in a large scale commercial
finite element program made possible by the implementation of solver technology. The ANSYS program is a com-
mercial finite element analysis program, which has been in use for thirty years. The original code, developed around
a direct frontal solver has been expanded over the years to include full featured pre- and post- processing capabili-
ties, which support a comprehensive list of analysis capabilities including linear static analysis, multiple nonlinear
analyses, modal analysis and many other analysis types. The finite element models on which these analyses are
used have continued to grow in size and complexity. This growth in size and complexity has been both enabled by
and dependent on new solver technology along with increased computer memory and CPU resources. Beginning
in 1994, ANSYS added a Jacobi preconditioned conjugate gradient solver (JCG) and subsequently an Incomplete
Cholesky Preconditioned Conjugate Gradient solver (ICCG) to improve thermal analysis capabilities. In recent years
the addition of the Boeing sparse matrix library for modal and static analysis, and a proprietary preconditioned con-
jugate gradient solver as well as additional iterative solvers, to support new CFD capabilities have greatly increased
the number of solver options available in ANSYS. Most recently, in version 5.7, ANSYS has added a new domain
decomposition solver for solving very large structural analysis solutions on distributed MPI-based computer systems
and the newest iterative solver option, an algebraic multi-grid iterative solver (AMG).

This paper will describe implementation considerations for the addition of new solver technology to a large
legacy code, compare resource requirements for the various solver choices and present some comparative results
from several customer generated problems. The AMG solver benefits, both in improved robustness and parallel
processing efficiency, will be described. The paper will also discuss some of the implementation challenges that
have been overcome to add new solver technology to a large existing code. The role of solver technology in meeting
current and future demands of large scale commercial analysis codes will be discussed.

Key words. Finite elements, elasticity, iterative solvers, algebraic multigrid

AMS subject classifications. 65N55, 65F10, 65N30, 65N22

1. Introduction. Over a 30 year history of development, the ANSYS program has
evolved from an original finite element code designed for computers with limited memory
to solve modest problems with several thousand equations to the current software system
which is routinely used to solve problems with hundreds of thousands to several million
equations. ANSYS software is a family of engineering analysis tools including DesignSpace,
ANSYS/Professional and ANSYS/MultiPhysics. These analysis tools are used to model, an-
alyze and simulate systems in structural, thermal, mechanical, computational fluid dynamics,
electromagnetics, and other applications. The solution of linear systems of equations is the
dominant computational step for most, if not all, analyses of very large finite element mod-
els in ANSYS. This paper describes solver technology improvements in ANSYS which have
enabled the growth in analysis capabilities.

The outline of the paper is as follows. First, some motivating factors for solver improve-
ments are discussed. Then a chronological description of solver improvements in ANSYS
is given followed by a more detailed description of the newest iterative solver added to AN-
SYS, the AMG solver, an algebraic multigrid solver. Next, implementation considerations
are discussed in the context of integrating new solver technology into an existing program.
Results demonstrating ANSYS solver usage and relative performance are presented. Finally,
a summary and discussion of future solver directions is given.

∗ Received May 22, 2001. Accepted for publication October 20, 2001. Recommended by John Ruge.
† ANSYS, Inc., 275 Technology Drive, Canonsburg, PA 15317
‡Department of Mathematics, University of Colorado at Denver, Denver CO 80217-3364.

106

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 107

2. Motivation for solver improvements. The changes to ANSYS equation solvers have
been motivated by several factors, which often compete for attention. Larger memory in com-
puter systems coupled with greatly improved automatic meshing capabilities has increased
the detail and size of finite element models routinely analyzed in recent years. These models
lead to linear systems of equations that are now typically over 100,000 degrees of freedom
(DOFs). The software capability exists to generate even larger models with millions of de-
grees of freedom but solver limitations often limit the practicality of such large systems.

Time to solution is a second competing demand on solver resources. No matter how large
the linear systems become, engineers desire turnaround time of minutes rather than days for
solution of routine problems. Most users expect interactive response while analyses that run
overnight or longer are confined to the largest most challenging problems.

Computer hardware changes also produce competing demands on solver resources. Though
memory sizes and disk capacity have both increased dramatically in recent years, the growth
has not always been sufficient to meet the demands of the largest problems, particularly for
direct methods. This problem is still most acute for desktop NT workstation users who are
usually limited to 2 Gbytes of user address space and often are given systems with well under
2 Gbytes of real physical memory. In addition, large capacity disks on NT workstations are
available but are often so much slower than the processors that the largest jobs are completely
I/O dominated. While it is routine today to find computer processors capable of computing
hundreds of Mflops to even Gflop performance on computational kernels, delivering sustained
peak performance to solve the problems of large-scale application codes remains a challenge
for hardware and software developers.

In addition to problem size growth, response time and hardware changes, robust and
comprehensive analysis capabilities also motivate solver improvements. For example, large
modal analyses were in the past limited by computer resource requirements. Solution tech-
niques such as the Guyan Reduction method solved the larger problem by forming a reduced
system, solving the smaller linear system and expanding the results back to approximate
the solution of the full model. Solver improvements and increased computer resources have
enabled modal solution of the full model improving accuracy and robustness. Nonlinear anal-
yses, with both material and geometric nonlinearities, with and without contact surfaces often
provide challenges for iterative solvers due to potentially ill-conditioned systems. Continual
improvements in pre-conditioners have extended the usefulness of iterative solvers.

Many of these motivating factors produce competing demands for the solvers. Increasing
problem size, while reducing or maintaining analysis time to solution, is an obvious example.
Solver changes that reduce memory usage may also increase disk usage and time to solution.
Iterative solvers may provide a faster method to solve linear systems, but are neither as robust
as direct solvers nor as accurate in all cases for modal analyses. The competing demands are
satisfied in a large-scale code by adding an array of high performance solvers. The collection
of solvers becomes the enabling engine for robust solution methods to meet the analysis
demands.

3. Description of linear solvers in ANSYS. This section describes chronologically the
addition of solver technology to the ANSYS program. A brief description of each solver is
given along with a discussion of the factors motivating each solver addition and the analysis
capabilities improved by each solver change.

3.1. ANSYS frontal solver. The original solver used in ANSYS is the frontal solver, a
direct Cholesky factorization algorithm [5, 6]. This direct factorization method was designed
for computers with very limited memory but remained an efficient direct method for many
years. The frontal solution is combined with element assembly in a manner that requires only

ETNA
Kent State University
etna@mcs.kent.edu

108 Advancing Analysis Capabilities in ANSYS

the current active front to be in memory at any time during factorization. However the limi-
tations of frontal solvers for very large problems are very well known. Memory requirements
for the frontal solver are O(max wavefront2/2) and the total number of floating point op-
erations increase as n× rms wavefront3. Here rms wavefront refers to average, or root
mean square, bandwidth. The disk storage requirements for the frontal solver also become
prohibitive as the model size grows. The factored matrix disk file will be n×rms wavefront
in double precision words. For example, a 100,000 DOF matrix with an rms wavefront of
5,000 would require 500 million double precision (DP) words or approximately 4 Gbytes.
A 1 million DOF matrix with an rms wavefront of 15,000 would require over 114 Gbytes!
These memory and disk requirements for the frontal solver clearly demonstrate the need to
reduce both in order to solve routine ANSYS analyses. The computational kernels for the
frontal solver are very efficient on most computer architectures and run at near peak perfor-
mance with modest optimizations. However, the number of floating point operations required
for this algorithm becomes prohibitive even at sustained flop rates of several hundred Mflops
(million flops per second) to a few Gflops (billion flops per second).

3.2. Iterative solvers added to ANSYS. Iterative solvers offer a potential advantage
over direct factorization based solvers for two main reasons. First, since linear systems in
finite element applications typically have well under 100 non-zeros per row and can take ad-
vantage of symmetric storage schemes, the disk storage requirements are far less than for
direct solvers. Indeed, in most cases the entire sparse linear system and preconditioner is in
memory. More importantly, the computational cost for iterative solvers grows linearly with
problem size, provided the iterative method converges independently of the size of the prob-
lem. Iterative solvers were introduced to the ANSYS program with a Jacobi preconditioned
conjugate gradient solver (JCG) used primarily for thermal analyses. The thermal elements
have a single thermal degree of freedom per node and the matrices are very well conditioned.
The initial JCG implementation used a sparse matrix file formed from the frontal assembly
process. This process allowed existing element assembly and solution logic to remain rela-
tively unchanged and at the same time benefitted from the algorithmic improvements from
the iterative JCG solver. The JCG iterative method is the simplest in a class of preconditioned
conjugate gradient methods. It is not, however, robust enough to replace the frontal solver. In
many structural analysis problems the JCG method fails to converge.

Subsequent to the JCG solver several standard preconditioned conjugate gradient meth-
ods were added including ICCG, ILU, BICG and GMRES. Real and complex versions of
each iterative solver are implemented in ANSYS and are used in a variety of analysis types in-
cluding thermal/fluid coupled field analyses, acoustic/thermal analyses and electro-magnetic
analyses. All of these early iterative solvers used the frontal solver assembly process with
a sparse matrix file interface. While each of the iterative solvers performs well on selected
problems, none of these initial solvers were robust enough to replace the frontal solver for
general structural analysis applications. NOTE: ILU, BICG and GMRES real or complex
solvers are accessed through a single equation solver label, ICCG, for simplicity of input.

3.3. ANSYS PowerSolver. The use of iterative solvers in ANSYS took a dramatic step
forward in 1995 in version 5.1. A new element based preconditioned conjugate gradient
method (PCG) was added to ANSYS that is robust and runs as a true “black-box” iterative
solver [11]. The solver is licensed from Computational Applications and Systems Integration
(CA&SI) and includes a sparse matrix assembly process featuring efficient use of memory
and I/O resources. Details of the preconditioner are proprietary. The general form of the
preconditioner is based on the underlying physics of the problem and is provably good for
all problems where the matrix arises from the discretization of a continuous problem. While
the size of the preconditioner varies, it is generally smaller than the input matrix and also

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 109

saves memory by using single precision for the preconditioner. Further memory savings are
possible for certain commonly used elements by using an element by element matrix-vector
multiplication implementation, thereby eliminating the requirement to store the assembled
stiffness matrix. This solver is referred to as the PowerSolver, or PCG method, within AN-
SYS. It can be used on many structural analysis applications and is particularly effective for
models using shell elements. It is, however, sensitive to some forms of ill-conditioning caused
by poor aspect ratios in solid elements and is also sensitive to ill-conditioning caused by the
use of shell elements attached to solid elements. The PowerSolver combines the benefits of
linear scaling of solution time as problem size increases, robust preconditioning, and greatly
reduced I/O and has replaced the frontal solver as the most often used solver in many cases,
particularly on NT computers with limited I/O performance.

3.4. Sparse direct methods in ANSYS. New and improved modal analysis capabili-
ties were added in ANSYS 5.3 by incorporating the Boeing Computer Services (BCS) block
Lanczos solver [1]. This state-of- the-art Lanczos solver includes a sparse matrix direct
solver and features an efficient implementation, which is mathematically robust and uses I/O
and memory adaptively to fit the problem size to existing memory resources. An interface
was developed within ANSYS, which allowed the sparse direct solver to be used as an alter-
native to the frontal solver. The BCS sparse solver has all the advantages of robust solution of
linear systems by direct methods and is now used in ANSYS as the default direct solver. The
computational kernels in the BCS solver have been optimized for most hardware platforms
using calls to the BLAS3 matrix-matrix routine DGEMM and BLAS2 matrix-vector routine
DGEMV. Complex and non-symmetric versions of this solver are also available in ANSYS.
The current implementation of this solver uses the frontal assembly interface in most cases
but sparse assembly options are also available and are under development. Sparse assem-
bly will reduce potential memory limitations for very large problems which occur using the
frontal assembly process, particularly for problems which contain hundreds or thousands of
constraint equations while also reducing matrix assembly time.

3.5. Latest iterative solvers in ANSYS 5.7. Two new iterative solvers were added to
ANSYS 5.7 that offer new parallel capabilities and further improvement of robustness in pre-
conditioning. The domain decomposition solver (DDS), a distributed memory parallel solver
based on the FETI method [2, 3], solves very large problems on large single-image shared
memory machines running MPI as well as loosely coupled networks of workstations and
clusters running MPI in an NT or Unix environment. The domain solver operates seamlessly
from an ANSYS execution by communicating via a file interface. Linear scaling of the do-
main solver has been observed on UNIX and NT platforms. Further parallelization is planned
for future releases to enable scaling of the entire solution time. The current implementation
of DDS uses a skyline solver within the subdomains.

A second parallel iterative solver has been added in ANSYS 5.7 that gives improved
convergence for ill-conditioned problems and better parallel scaling. The new parallel it-
erative solver is a multi-level algebraic multi-grid solver (AMG). The AMG solver uses a
sparse matrix assembly interface with direct elimination of constraint equations discussed in
Section 5.3. The efficient sparse assembly coupled with a robust and parallel preconditioner
combine to offer substantial improvements over the PCG solver in many cases.

4. Description of the AMG solver. The AMG solver in ANSYS is the Smoothed Ag-
gregation Algebraic Multigrid method, with the specific selection of algorithm components
guided by powerful heuristics. The implemented method exploits a number of opportunities
for applying computational effort in parts of the problem to achieve fast convergence for hard
problems. The actual algorithms used are selected automatically. The result is a powerful

ETNA
Kent State University
etna@mcs.kent.edu

110 Advancing Analysis Capabilities in ANSYS

adaptive method that is lean and fast on easy problems and tough though justifiably expen-
sive on hard ones.

The implemented algorithm is based on the method of Vaněk, Mandel, and Brezina [15],
with further improvements by Vaněk and Mandel, not published previously. For theoretical
analysis of convergence of a simple version of the algorithm, see [14]. See [10, 15] for a
motivation and justification of the construction of the prolongation matrix P . The construc-
tion of P by smoothed aggregation was introduced by Vaněk [12, 13] for the case of scalar
problems and generalized to elasticity by Vaněk, Mandel, and Brezina [15]. The choice of the
smoothing blocks to follow dominant directions is similar as in a method by Mandel for p-
version finite elements with high aspect ratios [9, 8]. The general scheme for using heuristics
to selectively apply computational power to parts of the problem to build a preconditioner is
from the work of Mandel on p-version elements [8, 7].

4.1. Basic multilevel scheme. The system to be solved is Ax = b with A a real, n× n,
symmetric, positive definite matrix. The AMG algorithm as implemented in ANSYS requires
the input of the matrix A, the load vector b, the n×6 matrix of rigid body modes Z, the node-
degree of freedom adjacency, and the Cartesian coordinates of the nodes. The rigid body
modes are calculated by ANSYS from the definition of the elements, and satisfy the equation
(AZ)i = 0 except at degrees of freedom i constrained by boundary conditions.

The overall algorithm is Preconditioned Conjugate Gradients, with preconditioning given
by one multigrid cycle. A two-level multigrid algorithm is used as follows. Lower case greek
letters ω, ρ, σ,. . . , are parameters. The core of the algorithm is n × m matrix P , m < n,
called a prolongation. The space IRm is called the coarse space, and IRn is fine space.

ALGORITHM 4.1. Input: f , x0. Output: x.
1. x← x0 (initial approximation)
2. x← x− S(Ax− f) (pre-smoothing)
3. r = P T (b−Ax) (coarsening the residual)
4. solve (P T AP)y = r (coarse grid problem)
5. x← x + σPy (coarse correction)
6. x← x− ST (Ax− f) (post-smoothing)

The coarse grid problem (P T AP)y = r in step 4 is solved directly by a direct skyline
solver if it is small enough, or iteratively by µ iterations of Algorithm 4.1 with zero initial
approximation, using another yet smaller coarse space and zero initial approximation. The
cases µ = 1, 2 are known as the V -cycle and W -cycle, respectively. The mapping M : f 7→
x, defined by such multilevel algorithm with x0 = 0, is used as the preconditioner. It is well
known and easy to see that M is symmetric and, for a suitable choice of σ, positive definite.

4.2. Prolongation. The prolongation P is constructed so that Range Z ⊂ Range P
except near boundary constraints, and the norm of P T AP is small while the norm of P is
about one. First a tentative prolongation P̂ is constructed using the matrix of rigid body
modes Z as follows. The set of all degrees of freedom is divided into mutually disjoint
aggregates,

{1, . . . , n} = A1 ∪ . . . ∪ Am.

For each aggregate Ai, Zi is the matrix obtained from Z by setting all rows with indices
outside of Ai to zero, and orthonormalizing the resulting matrix. The tentative prolongation
is then

P̂ = [Z1, . . . , Zm],

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 111

and the prolongation P is obtained by smoothing,

P = (I − ωDA)P̂ ,

where ω ≤ 4/(3λmax(DA)), D is a block diagonal matrix where each block Di corresponds
to a node and Di is equal to the inverse of the corresponding diagonal block in A, or Di = 0.
The choice of Di = 0, which avoids smoothing the prolongation for selected nodes, was
presented and justified in the work of Brezina, Heberton, and Vaněk reported in [4].

4.3. Smoothing. The smoother S is Gauss-Seidel with overlapping blocks, that is, a
multiplicative Schwarz method. The method is defined by an ordered covering of the set of
degrees of freedom by smoothing blocks,

{1, . . . , n} = S1 ∪ . . . ∪ Sk .

In the following algorithm, an array with set argument means an array section.
ALGORITHM 4.2. Input f , x0. Output: x.

1. x← x0

2. for all j = 1, . . . , k, x(Sj)← (A(Sj ,Sj))
−1[(f −Ax)(Sj)]

Algorithm 4.2 defines the smoother S in step 2 of Algorithm 4.1 by the equation

x = x0 − S(Ax0 − f).

The smoother ST in Step 6 of Algorithm 4.1 is obtained by passing though the smoothing
blocks in Algorithm 4.2 in reverse order.

If the smoothing blocks are mutually disjoint, Algorithm 4.2 becomes the block Gauss-
Seidel method. Parallelism is achieved by a multi-color generalization of the red-black Gauss-
Seidel.

The smoothing blocks may be the same as the aggregates, they may be aggregates en-
larged by one layer of nodes, or they may be constructed independently of Aj as chains of
nodes in numerically dominant directions, or by a combination of these approaches.

4.4. Heuristics. The choice of the various parameters of the method and the aggregates
and smoothing blocks is done by heuristic algorithms guided by numerical sensors that use
the nodal coordinates as well as the entries of A. The algorithms range from simple threshold
decisions to graph theoretical algorithms and neural networks. Specific heuristics used in the
code include the following:

1. The strength of connection between two nodes is calculated from geometry using the
distance between the nodes and their distance from other neighbors. Alternatively,
numerical strength of connection is computed from global matrix data in a standard
manner as the spectral norm of off-diagonal blocks after symmetric block scaling
that changes the diagonal blocks to identity matrices.

2. The aggregates are grown preferably in the direction of strong connections.
3. Smoothing blocks are chosen to be the same as aggregates and adaptively enlarged

by a layer of nodes if the condition of the submatrix corresponding to the aggregate
is high and if the increase in block size is not too large.

4. Another smoothing step may be added, with smoothing blocks determined as con-
nected components of the graph of strong connections. The threshold for the connec-
tion strength is decreased until a limit on the complexity of the smoother is reached.

5. If a node has very strongly connected neighbors, Di = 0 is chosen in the prolongator
smoother.

ETNA
Kent State University
etna@mcs.kent.edu

112 Advancing Analysis Capabilities in ANSYS

6. The choice of algorithms and their parameters is governed by a neural network.
The inputs to the neural network are global characteristics of the problem, such as
problem size, number of degrees of freedom per node, average number of neigbors
of a node, maximal anisotropy of the geometry, etc. The neural network was trained
on a large set of industrial problems.

Generally, the heuristics strive to control the number of iterations at the cost of more memory
use and more cpu time per iteration. For hard problems, the smoothing blocks dominate the
memory usage.

5. Implementation considerations. The integration of new solver technology into ex-
isting codes presents many challenges. This section describes some of the implementation
considerations related to adding new solver technology to the ANSYS program. The de-
tails described are not exhaustive but they do illustrate the kinds of changes made within the
ANSYS program in order to add new solver technology to the program.

5.1. Interface and data structures. The initial consideration for adding any solver to
an existing program is the solver interface and data structure. ANSYS, like many exist-
ing commercial finite element codes, was originally designed around an out-of-core frontal
solver. The assembly of the linear system was combined with the factorization of the same
matrix in such a way to avoid ever assembling the entire matrix in memory. In contrast to this
approach, most solvers accept as input the assembled linear system, usually in a sparse matrix
format. The implementation challenge is not switching to sparse assembly, a well known pro-
cess, but uncoupling an integrated element computation, assembly and solution process that
has been modified over many years of development to support many special analysis options
and paths into a more modular process which supports multiple solver formats. The initial
method for new solver interfacing in ANSYS was to leave the frontal assembly process func-
tioning and add a sparse file interface for iterative methods. The PCG solver added in version
5.3 included a finite element interface that accepted element matrices and boundary condi-
tions, including multi-point constraint equations. The elements were then assembled to form
a node-blocked sparse matrix data structure used by the PCG solver. This approach proved
to be much more efficient, particularly as problem size grows. A third approach is to develop
a true sparse matrix assembly path which directly assembles sparse matrices into a sparse
column format. This approach is also used in ANSYS and is currently under development.

In addition to issues related to matrix assembly, the actual data structures used by the
various solvers are important. Increasingly, standard sparse matrix structures with sparse
column or row storage are not sufficient. Sophisticated iterative solver preconditioners often
require information about the association of matrix equations with nodes and/or elements in
the finite element model, and the vectors of rigid body modes. Node blocking of the sparse
matrix data structures is also used to improve cache performance and reduce integer storage
of row and column locations for sparse matrices and is also used to reduce the cost of equation
reordering. A straightforward association of user defined nodes in the finite element model
with equations in the assembled linear systems is often required but is most often left as an
implementation detail.

5.2. Robust and comprehensive solution. Some of the implementation considerations
for solvers come from the use of a large library of varied elements in many different analysis
types. Special purpose elements such as contact elements and rigid links may be extensively
used in large models and are essential for modeling surfaces which come into contact under
increasing loads or are joined to adjacent assemblies. Special elements that model uniform
pressure within a volume may use Lagrange equation formulations which may require special
treatment both in direct solvers and iterative solvers. While the details of heuristics to handle

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 113

these special elements are proprietary, the changes required to new solvers generally require
modifications in elimination ordering and/or attention to numerical properties of the special
elements.

5.3. Boundary conditions and constraint equations. The definition of boundary con-
ditions for finite element models is essential but can provide another source of implementa-
tion considerations. Standard Neuman and Dirichlet boundary conditions are easily handled,
usually external to the solver at assembly time. Equations corresponding to fixed degrees of
freedom can be eliminated and not assembled into the linear systems or they can be easily
modified by zeroing all but the diagonal coefficients in each equation corresponding to a fixed
degree of freedom.

Constraint equations that are used to couple groups of nodes or enforce some linear com-
bination of displacement conditions between certain degrees of freedom are more difficult.
Many large models are separately meshed assemblies and they rely on constraint equations to
couple the separate assemblies into one global model. Constraint equations are also used ex-
tensively to enforce symmetry boundary conditions. Constraint equations can be imposed by
using a Lagrange equation formulation or by direct elimination of constrained nodes prior to
factorization. The Lagrange formulation causes stability problems for the direct and iterative
methods and the direct elimination approach requires modification of the assembled matrix
prior to solution.

Most solver libraries do not provide an interface for handling constraint equations so the
direct elimination approach must be used or the solver library must be modified. The PCG
solver in ANSYS does provide an interface for constraint equation. The preconditioner for-
mulation includes the information of constraint equations so it is very effective in precondi-
tioning with constraint equations. A sparse implementation of direct elimination of constraint
equations has been developed for the AMG solver and will also be used with the sparse direct
solver interface in ANSYS 6.0.

5.4. Singular systems, ill-conditioning and rigid body modes. A final source of im-
plementation considerations for adding new solvers into existing finite element codes is the
handling of singular systems. Most finite element codes that use a direct factorization method
have developed heuristics for detecting singular systems. In some cases, modifications are
made to the linear systems during factorization to remove the singularities. Most iterative
solvers do not detect these singular systems and have no heuristic to modify the linear systems
appropriately. Direct solvers may provide a means to test the diagonal pivots but code-specific
heuristics are often added to the basic solver.

In simple static analyses, singular systems often occur if the boundary conditions im-
posed by a user fail to constrain all rigid body modes. The singularity in such a case will
most often be detected during matrix factorization as a very small or identically zero diag-
onal coefficient. Continuing factorization with very small pivots will most likely produce
garbage answers, at least in the unconstrained directions, or they may cause floating point
exceptions. In these cases a warning message is often printed and users can change boundary
conditions to remove the problem. Alternatively, when small pivots are detected the linear
system can be modified to effectively remove the column causing the small pivot by con-
straining that degree of freedom. The details of this process vary from code to code and must
be duplicated for any new solver added to the analysis program.

In iterative solvers, singulatities arising from the same rigid body modes may or may not
cause problems for convergence, depending on whether the iterative solution has components
in the rigid body modes. Iterative methods cannot be expected to duplicate the results of direct
methods which heuristically modify small diagonal pivots. Some iterative solver packages

ETNA
Kent State University
etna@mcs.kent.edu

114 Advancing Analysis Capabilities in ANSYS

detect singularities in the formation of the preconditioner. In most cases these solvers do not
make modifications to continue with solution.

Nonlinear analyses may also result in a singular system when the solution is close to
a bifurcation point. In these cases detection of the condition is important but heuristically
modifying the diagonal pivots is not desired. The use of iterative methods in nonlinear anal-
yses may not work when bisection due to matrix singularity is encountered. Within ANSYS,
certain types of singularities are allowed, depending on the physics on the problem. In most
cases monitoring of diagonal pivots during factorization is required with errors and warnings
printed out depending on the analysis type.

Very few linear solver libraries handle all of the above mentioned implementation con-
siderations. At the same time, existing codes which are designed around a single solver archi-
tecture do not provide clean interfaces and data structures for new solvers. Within ANSYS a
steady migration away from the frontal solver assembly/solution loop is in progress. Within
the BCS sparse solver changes have been made to duplicate heuristics that are used with the
frontal solver to detect and report various error conditions that may occur during factorization.
The sparse file interface coupled with frontal assembly that allowed initial implementations of
iterative solvers and the BCS sparse solver library was essential to provide an efficient way to
add new solver technology with minimal code changes. The migration of the solver interfaces
from frontal assembly to a true sparse assembly procedure has greatly improved performance
and reduced memory bottlenecks. Ultimately, a more component based style of programming
should allow greater flexibility and ease of use for new solvers, but the component design will
have to include provisions that match the demands of the large scale applications codes.

6. Results. In this section results are presented from runs using ANSYS 5.7. Tim-
ings from industrial problems and ANSYS test problems are given for several of the solvers
described above. Parallel processing results demonstrate current scalability of solvers in AN-
SYS. All of the parallel processing runs presented in this paper are from non-dedicated multi-
processor systems. The timings demonstrate that routine analyses of finite element models
with several hundred thousand up to a few million equations are now possible in ANSYS
using both direct and iterative solvers.

6.1. Single processor solver comparisons. Table 6.1 contains a comparison of the PCG
and AMG iterative solvers for a set of 37 ANSYS test problems. The first 16 problems in
Table 6.1 are faster using AMG than PCG. Several problems show dramatic improvements
for the AMG solver over PCG. These are problems using elements with high aspect ratios,
such as aspec50 big, solidCE 20, solidCE 30, etc. or problems which combine shell and
solid elements. For example, shbeamsolid 20, shbeamsolid 40, and shellsolid 32, etc. For
these problems the AMG solver delivers substantial improvements for iterative solvers in
ANSYS. On the other hand, shell dominated models are still faster using the PCG solver,
see for example, cyli 100 and cyli 400. The PCG solver also uses less memory than AMG.
Generally, AMG will use about 30 percent more memory than the PCG solver in practice.
For more difficult problems the AMG preconditioner automatically changes, requiring more
memory, but generally resulting in dramatically improved convergence compared to the PCG
solver.

Table 6.2 shows timings for several runs using a parameterized wing model. This model
is a solid model of a structure resembling an airplane wing shape. Solid brick elements are
used to extrude a 3-D mesh from a 2-D cross sectional auto-meshed region. The model
therefore has some characteristics of a solid model where dense meshes of solid elements
dominate. This type of mesh produces uniformly shaped elements which can result in very
fast convergence for iterative methods. The times in Table 6.2 compare the AMG and PCG
iterative solver with the sparse direct solver, denoted SPAR. Both problem size and an aspect

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 115

ratio parameter are varied to show the effects of problem size and matrix ill-conditioning on
the relative performance of the AMG, PCG and SPAR solvers. The problem sizes vary from
134K DOFs to 489K DOFs. The aspect ratio parameters vary the element sizes from nearly
cube shaped elements for Aspect = 1 to uniformly increased elongated elements for higher
values of Aspect. For this problem both iterative solvers are faster than the direct solver for
the well-conditioned problems. The times clearly increase at an expected higher rate for the
sparse solver as the problems grow in size as compared to the iterative solvers. However,
as the problems become more ill-conditioned the PCG solver time increases to eventually
exceed the sparse solver time. Even for the largest problem the PCG solver is slower than the
direct solver due to poor convergence.

6.2. Parallel processing solver comparisons. Table 6.3 shows parallel processing per-
formance for a 245K DOF model of the wing model with varying aspect ratios as in Table 6.2.
All three solvers run in parallel on an HP 4-processor L-Class system but the AMG solver
scales the best for these runs. The SPAR times shown use a new parallel implementation of
the sparse solver factorization routines available in ANSYS 5.7.1 on HP and IBM systems.

Table 6.4 shows timings for the same wing model used in Tables 6.2 and 6.3 comparing
memory usage, convergence rates and parallel processing performance for the SPAR, AMG,
PCG and the domain decomposition based solver, DDS. A 488K DOF model size was used
in these runs. All of the runs were made on a large SGI O2000 server in a non-dedicated
environment. The DSS solver was run using MPI distributed memory processing. The times
shown are for the equation solution time only. For this job the AMG solver is the fastest
solver. The DDS solver achieves the best scaling on this job and shows even better paral-
lel performance for larger problems. The shared memory parallel implementations used for
SPAR, AMG, and PCG are effective up to around 4 processors but do not scale higher due to
both I/O bottlenecks as well as memory bandwidth limitations of shared memory machines.
While this example gives a simple comparison of three shared memory parallel solvers with
the domain decomposition based solver, it does not provide conclusive data on the relative
merits of the two approaches.

The multi-level AMG preconditioner is much more effective than the PCG method for the
ill-conditioning caused by elongated elements. The PCG iterations increase more than four-
fold when the aspect ratio is increased while the AMG preconditioner automatically refines,
using more memory but requiring only four additional iterations. The cost of the iterations
for AMG clearly increases for the more ill-conditioned problem as well.

Memory requirements for each solver show that the memory requirements for the PCG
and SPAR solver are nearly identical while the AMG solver requires about twice as much
memory for this example and increases additionally when the more ill-conditioned problem
uses a more expensive preconditioner. The DDS solver requires much more memory but is
generally used in a distributed computer environment where the memory requirements are
spread out across the available computer resources. Reducing the total memory requirement
for the DDS solver is currently an area of research within ANSYS. Domain decomposition
solvers are designed to exploit the availability and power of large numbers of processors. The
increased memory requirement for domain based solvers is characteristic of solvers which
are designed for scalable performance on large numbers of processors.

While the wing model is an example problem contrived to easily scale mesh density,
problem size and aspect ratios, Table 6.5 is a similar sized problem from an industrial cus-
tomer. The 590k DOF model comes from an auto-meshed complex 3-D geometry that pri-
marily combines tetrahedron-shaped elements with several thousand contact elements. Many
industrial problems are well-conditioned and perform well for the iterative methods used in
ANSYS, but this problem is a difficult problem for iterative solvers. At the same time, the

ETNA
Kent State University
etna@mcs.kent.edu

116 Advancing Analysis Capabilities in ANSYS

more dense 3-D geometry proves very efficient for the SPAR direct solver. For this problem,
the sparse direct solver is much faster than either PCG or AMG. The AMG preconditioner
is again an improvement over PCG for this problem and shows much better parallel scaling
as well. The DDS solver was unable to solve this industrial problem because of the use of
contact elements in the model which are not supported for DDS in ANSYS 5.7.

Finally, Table 6.6 demonstrates the scaling of solver time that is possible with the domain
decomposition based DDS solver. The 3.5 million DOF problem was run on a 32 processor
SGI Origin system using 12 Gbytes of memory. The DDS solver offers a scalable solution for
problems where direct methods are no longer feasible due to the size requirements for disk
storage of the factored matrix or the prohibitive time for factorization.

These results demonstrate that with current solver technology in ANSYS many prob-
lems in the range of 500k DOFs to over 1 million DOFs can be solved on existing hardware
systems in times from a few minutes to a few hours. The improvements in iterative solver
convergence and parallel processing performance have advanced this capability. Sparse direct
methods are still competitive with iterative methods, even at these large problem sizes, due
to an implementation which uses I/O efficiently to reduce memory requirements combined
with very effective equation reordering technology that reduces factorization operations and
storage requirements. The domain decomposition solver offers a solution for the very largest
problems that will scale to use larger numbers of available systems as an alternative to an
expensive multi-processor system with very large memory. The use of the domain decom-
position solver will continue to grow as a truly scalable solver option is developed in the
ANSYS program that will allow parallel processing of the total solution process in ANSYS.

7. Summary and future solver directions. This paper has described the evolution of
solvers in ANSYS from a single direct frontal solver to a collection of direct and iterative
solvers. The addition of new solver technology has extended the capabilities of ANSYS by
increasing the size of linear systems that can be solved within acceptable time limits using ex-
isting computer resources. The implementation of new solver technology has been described
and results from some example problems have been presented.

Future solver improvements in ANSYS will seek to continue to extend the capabilities
for larger simulations. One goal of solver improvements is to incorporate iterative solver
technology into a robust eigensolver capable of solving models with several million degrees
of freedom and above. The current block Lanczos solver is robust and capable of solving
large models up to a few million degrees of freedom. Finite element models with 10 million
degrees of freedom which use direct factorization solvers would most likely require hundreds
of Gbytes of file storage and require prohibitively large memory and execution time, even at
today’s achievable Gflop performance. In addition to extending the maximum job size limits
with new solver technology, ANSYS will continue to reduce minimum memory requirements
for existing solvers through refinement of the solver interfaces. This important goal extends
the capability of routine analyses on existing workstations, particularly workstations that are
limited to 2 Gbytes or less of total address space.

REFERENCES

[1] C. C. ASHCRAFT, R. GRIMES, J. G. LEWIS, B. PEYTON, AND H. SIMON, Progress in sparse matrix
methods for large linear systems on vector supercomputers, International Journal of Supercomputer Ap-
plications, 1 (1987), pp. 10–30.

[2] C. FARHAT, J. MANDEL, AND F.-X. ROUX, Optimal convergence properties of the FETI domain decompo-
sition method, Comput. Methods Appl. Mech. Engrg., 115 (1994), pp. 367–388.

[3] C. FARHAT AND F.-X. ROUX, An unconventional domain decomposition method for an efficient parallel
solution of large-scale finite element systems, SIAM J. Sci. Stat. Comput., 13 (1992), pp. 379–396.

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 117

[4] C. HEBERTON, Eulerian-Lagrangian Localized Adjoint Method and Smoothed Aggregations Alge-
braic Multigrid, PhD thesis, University of Colorado at Denver, May 2000. http://www-
math.cudenver.edu/graduate/thesis/heberton.ps.gz.

[5] B. M. IRONS, A frontal solution program for finite element analysis, International Journal of Numerical
Methods in Engineering, 56 (1970), pp. 5–23.

[6] P. C. KOHNKE, ed., ANSYS Engineering Analysis System Theoretical Manual, Swanson Analysis Systems,
Inc., Houston, PA, 1989.

[7] J. MANDEL, Adaptive iterative solvers in finite elements, in Solving Large Scale Problems in Mechanics. The
Development and Application of Computational Solution Methods, M. Papadrakakis, ed., J. Wiley &
Sons, London, 1993, pp. 65–88.

[8] , Intelligent block iterative methods, in FEM Today and the Future, J. Robinson, ed., Robinson and
Associates, Okehampton, Devon EX20 4NT, England, 1993, pp. 471–477. Proceedings of the 7th World
Congress on Finite Elements, Monte Carlo, November 1993.

[9] , Iterative methods for p-version finite elements: Preconditioning thin solids, J. Comput. Meth. Appl.
Mech. Engrg., 133 (1996), pp. 247–257.

[10] J. MANDEL, M. BREZINA, AND P. VANĚK, Energy optimization of multigrid bases, Computing, 62 (1999),
pp. 205–228.

[11] E. L. POOLE, M. HEROUX, P. VAIDYA, AND A. JOSHI, Performance of iterative methods in ANSYS on
CRAY parallel/vector supercomputers, Computer Systems in Engineering, 3 (1995), pp. 251–259.

[12] P. VANĚK, Acceleration of convergence of a two level algorithm by smoothing transfer operators, Appl.
Math., 37 (1992), pp. 265–274.

[13] , Fast multigrid solver, Appl. Math., 40 (1995), pp. 1–20.
[14] P. VANĚK, M. BREZINA, AND J. MANDEL, Convergence analysis of algebraic multigrid based on smoothed

aggregation, Numer. Math., 88 (2001), pp. 559–579.
[15] P. VANĚK, J. MANDEL, AND M. BREZINA, Algebraic multigrid based on smoothed aggregation for second

and fourth order problems, Computing, 56 (1996), pp. 179–196.

ETNA
Kent State University
etna@mcs.kent.edu

118 Advancing Analysis Capabilities in ANSYS

ANSYS Test problems
Using shell, solid and beam elements

with different aspect ratios and geometries
Problem AMG (sec) PCG (sec)

1 BoxDS 555.5 1145.1
2 Ibeam 329.1 478.4
3 aspec50 124.6 1165.8
4 aspec50 big 406.6 2738.2
5 carrier1 770.8 819.5
6 casing3 217.8 286.8
7 runbig 58.5 85.6
8 runbig2 60.1 88.1
9 shbeamsolid 20 68.7 590.9

10 shbeamsolid 40 730.9 3875.7
11 shellsolid 32 484.0 1938.6
12 shellsolid 40 860.8 4080.5
13 solidCE 20 34.4 1541.5
14 solidCE 30 155.1 4541.3
15 solidCP 30 131.6 214.3
16 solidCP 40 307.1 483.8
17 beamj 217.5 153.3
18 carrier2 1166.3 1021.9
19 cyli 260.1 46.7
20 cyli 100 128.7 10.5
21 cyli 400 1911.3 290.7
22 heat1 66.1 27.6
23 nb30 117.6 69.8
24 plane02 500 207.8 136.9
25 plane42 1000 121.7 107.3
26 rcoarse2 115.5 95.2
27 s92 100 296.4 210.6
28 s92 130 794.5 543.1
29 s92 80 148.4 102.9
30 sh63 200 68.7 45.3
31 sh63 400 371.9 206.6
32 solid70b 100 80.2 34.5
33 solid87 123.1 58.8
34 solid92 366.4 237.3
35 voll2 2788.4 2592.5
36 ycoup3 405.1 346.7
37 ycoup5 523.8 518.9

TABLE 6.1
Comparison of AMG and PCG Iterative solvers for ANSYS test problems

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 119

Linear Static Analysis Using Wing Model
Mesh refined to show effects of increasing

problem size and element aspect ratio

Aspect
Solver Ratio Degrees of Freedom

134K 245K 489K
SPAR 303 1147 3633
AMG 1 98 204 817
AMG 10 133 325 1191
AMG 25 171 414 1484
PCG 1 126 289 952
PCG 10 365 649 1787
PCG 25 1532 1895 4691
- HP L-Class 4 550 Mhz Processors, 4 Gbytes memory

- Times are for linear solution time in seconds

- Increasing aspect uniformly elongates elements

TABLE 6.2
Solver Comparison for Increasing Size Problems

Linear Static Analysis using Wing Model
Mesh refined to show effects of increasing

problem size and element aspect ratio

Aspect 245K DOFs
Solver Ratio Number of Processors

NP=1 NP=2 NP=3
SPAR 1147 909 843
AMG 1 204 152 142
AMG 10 325 225 197
AMG 25 414 288 238
PCG 1 289 244 231
PCG 10 649 564 544
PCG 25 1895 1769 1615
- HP L-Class 4 550 Mhz Processors, 4 Gbytes memory

- PCG CA&SI Iterative solver (ANSYS PowerSolver)

- AMG Algebraic Multigrid solver

- SPAR Boeing Sparse Direct solver 4.0

TABLE 6.3
Parallel Processing Solver Comparison for 245k DOF problem

ETNA
Kent State University
etna@mcs.kent.edu

120 Advancing Analysis Capabilities in ANSYS

Linear Static Analysis Using Wing Model
488K Degrees of Freedom

Solver Memory Iterations Solver Elapsed Time)
Mbytes tol < 10−6) NP=1 NP=4 NP=8

Aspect Ratio Parameter = 1
PCG 246 291 566.9 422.7 378.5
AMG 518 13 203.0 98.3 82.0
DDS 2113 53 547.2 176.0 125.4
SPAR 256 N/A 4392.7 2044.5 1728.2

Aspect Ratio Parameter = 10
PCG 246 1293 1891.1 1524.9 1329.4
AMG 589 17 674.0 312.4 204.3
DDS 1956 259 1739.3 440.2 332.1
SPAR 256 N/A 4392.7 2044.5 1728.2
- Runs made on an SGI O2000 16 300 Mhz Processors, 16 Gbytes Memory

- PCG CA&SI Iterative solver (ANSYS PowerSolver)

- AMG Algebraic Multi-Grid solver

- DDS Domain Decomposition solver

- SPAR Boeing Sparse Direct solver 4.0

TABLE 6.4
Parallel Processing Performance for Iterative Solvers

Large Industrial Example, 590k Degrees of Freedom
Static Analysis with Nonlinear Contact

Solver Memory Iterations Solver Elapsed Time (sec)
Mbytes tol < 10−6) NP=1 NP=2 NP=4 NP=8

PCG 300 5301 8575 7675 6595 6891
AMG 722 200 5265 3831 2638 1884
SPAR 290 N/A 705 600 481 457
- Runs made on an SGI O2000 16 300 Mhz Processors, 16 Gbytes Memory

- PCG CA&SI Iterative solver (ANSYS PowerSolver)

- AMG Algebraic Multi-Grid solver

- SPAR Boeing Sparse Direct solver 4.0

TABLE 6.5
Iterative and Direct Solver comparison of linear system solution time

ETNA
Kent State University
etna@mcs.kent.edu

Gene Poole, Yong-Cheng Liu, and Jan Mandel 121

3.5 Million Dof Example
10-Node tetrahedron element mesh

2020 Subdomains, 12 Gbytes Memory Used

Processors Elapsed Time Speedup
1 18806 1.0
2 9403 2.0
4 5074 3.6
6 3427 5.8
8 2660 7.0

10 2420 7.8
14 1790 10.6
18 1447 13.0
22 1374 13.6
26 1026 18.4
30 901 20.9

- Runs made on a 32-processor SGI O2000

TABLE 6.6
Scalability of Domain Decomposition Solver for linear system solution time

