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PRECONDITIONING STRATEGIES FOR 2D FINITE DIFFERENCE MATRIX
SEQUENCES ∗

STEFANO SERRA CAPIZZANO† AND CRISTINA TABLINO POSSIO‡

Abstract. In this paper we are concerned with the spectral analysis of the sequence of preconditioned matrices
{P−1

n An(a, m1,m2, k)}n, where n = (n1, n2), N(n) = n1n2 and where An(a, m1, m2 , k) ∈ R
N(n)×N(n)

is the symmetric two-level matrix coming from a high–order Finite Difference (FD) discretization of the problem














(−1)k

(

∂k

∂xk

(

a(x, y)
∂k

∂xk
u(x, y)

)

+
∂k

∂yk

(

a(x, y)
∂k

∂yk
u(x, y)

))

= f(x, y) on Ω = (0, 1)2 ,
(

∂s

∂νs
u(x, y)

)
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= 0 s = 0, . . . , k − 1 on ∂Ω,

with ν denoting the unit outward normal direction and where m1 and m2 are parameters identifying the precision
order of the used FD schemes. We assume that the coefficient a(x, y) is nonnegative and that the set of the possible
zeros can be represented by a finite collection of curves. The proposed preconditioning matrix sequences correspond
to two different choices: the Toeplitz sequence {An(1, m1,m2, k)}n and a Toeplitz based sequence that adds to
the Toeplitz structure the informative content given by the suitable scaled diagonal part of An(a, m1,m2, k). The
former case gives rise to optimal preconditioning sequences under the assumption of positivity and boundedness of
a. With respect to the latter, the main result is the proof of the asymptotic clustering at unity of the eigenvalues of
the preconditioned matrices, where the “strength” of the cluster depends on the order k, on the regularity features of
a(x, y) and on the presence of zeros of a(x, y).

Key words. finite differences, Toeplitz and Vandermonde matrices, clustering and preconditioning, spectral
distribution.
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1. Introduction. The numerical solution of elliptic boundary value problems is
of interest in several classical applications including elasticity problems and nuclear and
petroleum engineering [41]. In particular, high order (k > 1) elliptic differential equations
arise when modelling problems of plane elasticity (k = 2), when considering the vibration
of a thin beam (k = 3), when dealing with shell analysis (k = 4), etc. [1]. In these contexts
the weight function a(x, y) can be continuous or discontinuous, but it is strictly positive and
therefore the ellipticity of the continuous problem is guaranteed. Conversely, when dealing
with problems arising in mathematical biology and mathematical finance, or when computing
special functions, the strict ellipticity is sometimes lost and indeed the function a(x, y) can
have isolated zeros generally located at the boundary of the definition domain. Therefore,
in the differential problem we simply assume that a(x, y) ≥ 0, where the set of the zeros is
represented by (at most) a finite collection of curves.

In preceding works we have considered these types of problems by focusing our attention
on Finite Element methods [35] and the Finite Differences (FD) of minimal order of accuracy
[27, 30] or on the one-dimensional case [33]. The resulting symmetric positive definite linear
systems are solved by using Preconditioned Conjugate Gradient (PCG) algorithms, where the
chosen preconditioners ensure the “optimality” of the method [3] and even a “clustering” [38]
of the preconditioned spectra at unity [27].

This paper is addressed to high–order FD formulae for the approximation of the quoted
two-dimensional differential problem. The motivation is given by the increased accuracy
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when the related solution is regular enough. Even though the diminished sparsity of the re-
sulting linear system has been considered a serious drawback for the practical application
of these methods, here we propose different ways to overcome this difficulty. Both theoret-
ical and practical comparisons prove that the new proposal is more effective than classical
techniques such as matrix algebra preconditioning [7, 19, 20, 21] or incomplete LU factor-
ization preconditioning [15, 2]. More precisely, we study some Toeplitz and Toeplitz based
preconditioners for matrices An(a,m1,m2, k) coming from a large class of high–order FD
discretizations of differential problems of the form














(−1)k
(

∂k

∂xk

(

a(x, y)
∂k

∂xk
u(x, y)

)

+
∂k

∂yk

(

a(x, y)
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= 0 s = 0, . . . , k − 1 on ∂Ω,

(1.1)
where the parameter m1 identifies the precision order of the FD scheme used for approxi-
mating the operator ∂k/∂xk and m2 identifies the precision order of the FD scheme used for
approximating the operator ∂k/∂yk.

The Toeplitz based preconditioner is devised as

Pn(a) = D1/2
n (a)An(1,m1,m2, k)D

1/2
n (a),

where Dn(a) is a suitably scaled diagonal part of An(a,m1,m2, k) and An(1,m1,m2, k)
is the symmetric positive definite (SPD) Toeplitz matrix obtained when a(x, y) ≡ 1. In
this paper, we first derive asymptotic expansions concerning the preconditioned matrices
P−1
n (a)An(a,m1,m2, k) in terms of related Toeplitz structure. Then we analyze in detail

the sequence of matrices {P−1
n (a)An(a,m1,m2, k)}n in order to prove the clustering at

unity of the related spectra and to obtain an asymptotic estimate of the number of outliers.
These results are used to understand the asymptotic behavior of the PCG techniques when
the Toeplitz based preconditioners are applied. In fact, by using the Axelsson and Lindskog
Theorems [3], we deduce a somehow accurate upperbound on the number of PCG iterations
required in order to reach the solution within a preassigned accuracy η. In many cases the
number of iterations is bounded by a constant independent of the size of the involved matrices.
In this way, the solution of a system with coefficient matrix given by An(a,m1,m2, k) is re-
duced to the solution of a few linear systems of diagonal type and of two-level band-Toeplitz
type. The existence of numerical procedures ad hoc for the computation of the solution of
two-level band-Toeplitz linear systems (see [12] and [26, 24]) makes the proposed precondi-
tioning techniques very attractive in the context of differential boundary value problems.

The paper is organized as follows. In Section 2 we give preliminary results concerning
the FD matricesAn(a,m1,m2, k). Section 3 is devoted to defining and analyzing the Toeplitz
preconditioner and the spectral properties of the related preconditioned sequence of matri-
ces. In section 4 we address the clustering analysis of the preconditioned matrix sequence
{Pn(a)}n and the derivation of some estimates regarding the number of outliers. In Section
5 we study the spectral distribution of the latter preconditioned matrix sequences and we deal
with the irregular case in which a(x, y) is assumed just L∞(Ω). Section 6 is devoted to the
study of some numerical experiments concerning the PCG method for An(a,m1,m2, k) and
a specialized multigrid technique for An(1,m1,m2, k) (see [31]) and to a comparison with
the previous literature. Some concluding remarks in Section 7 end the paper.

2. The discretized 2D problem. In this section we analyze the main structural and
spectral properties of the two-level band matrices associated with high–order FD formulae.
The main result is the dyadic representation theorem that allows one to give a spectral char-
acterization of high–order FD matrix sequences.
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2.1. High–order FD matrices. Let us consider a 2D elliptic problem of the form
(1.1). The FD discretization is performed over a sequence of equispaced 2D grids U1 × U2,
Ui = {Ui,ni

}, where Ui,ni
, i = 1, 2 are (ni + 2)-dimensional grids on [0, 1]. More precisely,

U1,n1 = {xr = rh1 : h1 = (n1 + 1)−1, r = 0, . . . n1 + 1},
U2,n2 = {yt = th2 : h2 = (n2 + 1)−1, t = 0, . . . n2 + 1}.

In a previous paper [32], we highlighted some general features of high–order FD formulae
for the discretization of the differential operator dk/dxk by using q (q ≥ k + 1) equis-
paced mesh points. This can be easily generalized to the multivariate case through tensorial
arguments. Therefore, we briefly give the essential notation and the key properties neces-
sary to define and to analyze the arising FD matrices. As template we consider the case
of the discretization of (∂ku(x, y)/∂xk)|(x,y)=(xr,yt). We assume that this discretization
formula involves m = bq/2c mesh points less than xr, m = bq/2c greater than xr, plus
the point xr if q is odd. More precisely, if q = 2m + 1 the mesh points are defined as
xj = xr + jh, j = −m, . . . ,m, while if q = 2m as xj = xr + (j − 1/2)h, j = 1, . . . ,m
and xj = xr + (j + 1/2)h, j = −m, . . . ,−1.

Let c ∈ R
q be the coefficient vector defining an FD formula that has an order of accuracy

ν under the assumption of a proper regularity of the function u(x, y), namely

∂k

∂xk
u(x, y)|(x,y)=(xr,yt) = h−k

∑

j

cju(xj , yt) +O(hν).

Such a coefficient vector can be obtained as the solution of a Vandermonde-like linear system
[32]. Moreover, as in the univariate case (we refer to Lemma 2.2 in [32]) the maximal order
FD formula with respect to q mesh points exhibits some specific features due to the structural
properties of Vandermonde matrices.

LEMMA 2.1. Let c ∈ Rq be the coefficient vector related to a maximal order FD formula
discretizing ∂k/∂zk, k ≥ 1 by using q (q ≥ k+ 1) equispaced mesh points. Then c is unique
and its entries are rational, c is symmetric i.e. cj = cq+1−j for every j or antisymmetric
i.e. cj = cq+1−j for every j according to whether the quantity k(mod 2) equals 0 or 1 and,
finally, the order of accuracy ν equals q − k + 1 if k + q is odd and equals q − k if k + q is
even.

Now, in order to deal with symmetric FD matrices we leave the operator in “divergence
form” and we discretize the inner and the outer partial derivatives separately. For the sake of
computational convenience, here we limit ourselves to the case where both the inner and the
outer operator are discretized by means of FD formulae of maximal order of accuracy. On the
other hand, we may discretize the operators ∂k/∂xk and ∂k/∂yk by means of two different
FD formulae. The reason for such a choice can be found in different regularity properties of
the solution with respect to the space variables x and y.

Since the FD discretization of the quoted 2D problem is a trivial generalization of the
1D case, we refer to [32] for any detail concerning the discretization process. Hereafter, we
simply report the final expressions of the resulting FD matrix sequence.

DEFINITION 2.2. Let h1 = (n1 + 1)−1 and h2 = (n2 + 1)−1 be the discretization step-
sizes with respect to the x and y space variables respectively. The symbolAn(a,m1,m2, k) ∈
R
N(n)×N(n), N(n) = n1n2 and n = (n1, n2), denotes the n-th symmetric two-level matrix

discretizing the problem (1.1) through the FD formula of maximal order of accuracy ν1 re-
lated to the coefficient vector c ∈ Rq1 (m1 = bq1/2c) for both the inner and the outer partial
derivative with respect to x and the FD formula of maximal order of accuracy ν2 related
to the coefficient vector d ∈ Rq2 (m2 = bq2/2c) for both the inner and the outer partial
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derivative with respect to y. Due to the comparison between the computational cost and the
order of accuracy, we always consider qi, i = 1, 2 odd when k is even and vice versa. When
m1 = m2 = m we write in short An(a,m, k).

It is worthwhile stressing that the considered high–order FD formulae work with some
extra points not belonging to Ω. So, for mathematical consistency, we need to define the
coefficient a(x, y) over the set Ω∗ = (−ε1, 1+ε1)×(−ε2, 1+ε2), where εi, i = 1, 2 are some
positive quantities. Therefore, when we write a(x, y) ∈ Cs(Ω) it is understood that a(x, y)
is simply defined in Ω∗, while the regularity is required in Ω. The only needed assumption
is that min(x,y)∈Ω a(x, y) ≤ a(x, y) ≤ max(x,y)∈Ω a(x, y) holds for any (x, y) ∈ Ω∗. More
precisely, for any fixed n1 and n2, when considering the x-derivatives, the function a(x, y) is
sampled on the 2D grid Ũ1,n1 × (U2,n2\{0, 1}), while, when considering the y-derivatives,
a(x, y) is sampled on the 2D grid (U1,n1\{0, 1})× Ũ2,n2 , where

Ũ1,n1 =

{

x̃i =

{

ih1, i = 1−m1, n1 +m1 if q1 = 2m1 + 1
(i+ 1/2)h1, i = 1 −m1, n1 +m1 − 1 if q1 = 2m1

}

,(2.1)

and

Ũ2,n2 =

{

ỹj =

{

jh2, j = 1 −m2, n2 +m2 if q2 = 2m2 + 1
(j + 1/2)h2, j = 1 −m2, n2 +m2 − 1 if q2 = 2m2

}

.(2.2)

Finally, let us denote by xr+s the quantity xr + sh1 and by yt+s the quantity yt + sh2.
By virtue of the symmetric property only the lower triangular entries are reported in the
following.
Case k odd (q1 = 2m1, q2 = 2m2): As a consequence of Lemma 2.1, we are dealing
with two antisymmetric coefficient vectors c = (−cm1 , . . . , −c1, c1, . . . , cm1) ∈ Rq1 and
d = (−dm2 , . . . , −d1, d1, . . . , dm2) ∈ Rq2 . So according to Definition 2.2 we have

(An)s,s =
1

h2k
1





m1
∑

j=1

(

a
(

xr−j+ 1
2
, yt

)

+ a
(

xr+j− 1
2
, yt

))

c2j





+
1

h2k
2





m2
∑

j=1

(

a
(

xr , yt−j+ 1
2

)

+ a
(

xr, tt+j− 1
2

))

d2
j



 ,

(An)s,s−p =
1

h2k
1





m1−p
∑

j=1

(

a
(

xr−p−j+ 1
2
, yt

)

+ a
(

xr+j− 1
2
, yt

))

cjcj+p

−

p
∑

j=1

a
(

xr−j+ 1
2
, yt

)

cjcp+1−j



 if p = 1, . . . ,m1 − 1,

(An)s,s−p = −
1

h2k
1





m1
∑

j=p+1−m1

a
(

xr−j+ 1
2
, yt

)

cjcp+1−j



 if p = m1, . . . , 2m1 − 1,

(An)s,s−n1p =
1

h2k
2





m2−p
∑

j=1

(

a
(

xr , yt−p−j+ 1
2

)

+ a
(

xr, yt+j− 1
2

))

djdj+p

−

p
∑

j=1

a
(

xr, yt−j+ 1
2

)

djdp+1−j



 if p = 1, . . . ,m2 − 1,
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(An)s,s−n1p = −
1

h2k
2





m2
∑

j=p+1−m2

a
(

xr, yt−j+ 1
2

)

djdp+1−j



 if p = m2, . . . , 2m2 − 1.

Case k even (q1 = 2m1+1, q2 = 2m2+1): As a consequence of Lemma 2.1, we are dealing
with two symmetric coefficient vectors c = (cm1 , . . . , c1, c0 c1, . . . , cm1) and d = (dm2 ,
. . . , d1, d0 d1, . . . , dm2). So according to Definition 2.2 we have

(An)s,s =
1

h2k
1



a(xr, yt)c
2
0 +

m1
∑

j=1

(a(xr−j , yt) + a(xr+j , yt))c
2
j





+
1

h2k
2



a(xr , yt)d
2
0 +

m2
∑

j=1

(a(xr, yt−j) + a(xr , tt+j))d
2
j



 ,

(An)s,s−p =
1

h2k
1





m1−p
∑

j=1

(a(xr−p−j , yt) + a(xr+j , yt))cjcp+j +

p
∑

j=0

a(xr−j , yt)cjcp−j





if p = 1, . . . ,m1 − 1,

(An)s,s−p =
1

h2k
1





m1
∑

j=p−m1

a(xr−j , yt)cjcp−j



 if p = m1, . . . , 2m1,

(An)s,s−n1p =
1

h2k
2





m2−p
∑

j=1

(a(xr , yt−p−j) + a(xr, yt+j))djdp+j +

p
∑

j=0

a(xr, yt−j)djdp−j





if p = 1, . . . ,m2 − 1,

(An)s,s−n1p =
1

h2k
2





m2
∑

j=p−m2

a(xr, yt−j)djdp−j



 if p = m2, . . . , 2m2.

These defining relations have been used in Appendix A in [34] in the evaluation of the asymp-
totic expansion of the matricesAn(a,m1,m2, k). We recall that these asymptotic expansions
are essential for the spectral analysis of the second type of proposed preconditioned matrix
sequences.

2.2. The dyadic representation theorem. By using the dyadic representation the-
orem in the 1D case (Theorem 3.5 of [32]) and the Kronecker structure of the matrices
An(a,m1,m2, k), the following representation theorem clearly follows.

THEOREM 2.3. Let An(a,m1,m2, k) be the FD matrix according to Definition 2.2. The
following dyadic representation holds true

An(a,m1,m2, k) =
1

h2k
1

∑

i,t

a(x̃i, yt)(et ⊗ c[i])(et ⊗ c[i])T

+
1

h2k
2

∑

r,j

a(xr, ỹj)(d[j] ⊗ er)(d[j] ⊗ er)
T ,

with (x̃i, yt) ranging in Ũ1,n1×(U2,n2\{0, 1}) and (xr , ỹj) ranging in (U1,n1\{0, 1})×Ũ2,n2

according to Eqs. (2.1) and (2.2). Here, et denotes the tth canonical vector of Rn2 , er de-
notes the rth canonical vector of Rn1 . The vector c[i] ∈ Rn1 equals [0, . . . , 0, c, 0, . . . , 0]T ,
where c ∈ Rq1 is the FD formula coefficient vector whose first entry is at position i−dq1/2e+
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1, according to the univariate case. The vector d[j] ∈ Rn2 equals [0, . . . , 0,d, 0, . . . , 0]T ,
where d ∈ Rq2 is the FD formula coefficient vector whose first entry is at position
j − dq2/2e + 1. If the starting location (or the final location) of the vector c lies outside
the vector c[i], then the outgoing entries are simply neglected (see [32] for more details). The
same holds for the vector d[j].

Theorem 2.3 can be used to provide a link between the zeros of the nonnegative function
a(x, y) and the rank of each matrix An(a,m1,m2, k).

THEOREM 2.4. Let An(a,m1,m2, k) be the FD matrix according to Definition 2.2
and let a(x, y) be a nonnegative function. For any t such that yt ∈ (U2,n2\{0, 1}) let
I+(a, 1)[t] = {i : a(x̃i, yt) > 0} and, for any r such that xr ∈ (U1,n1\{0, 1}) let
I+(a, 2)[r] = {j : a(xr, ỹj) > 0}. Suppose that vectors {c[i] : i = 1, . . . , n1 + q1 − 1}
strongly generate Rn1 in the sense that each subset {c[ik] : 1 ≤ i1 < i2 < · · · < in1 ≤
n1 + q1 − 1} is a basis for Rn1 . Analogously, suppose that the vectors {d[j] : j =
1, . . . , n2 + q2 − 1} strongly generate Rn2 . Then

rank(An(a,m1,m2, k))≥max

{

n2
∑

t=1

min{n1,#I
+(a, 1)[t]},

n1
∑

r=1

min{n2,#I
+(a, 2)[r]}

}

Proof. It is a straightforward consequence of Theorem 2.3.
REMARK 2.5. As a consequence of Theorem 2.4 and under its assumptions, the matrices

An(a,m1,m2, k) are positive definite if a(x, y) is positive. In the case where a(x, y) has
zeros, we have positive definiteness if the set of the zeros is given by a finite number of curves
with a finite number of intersections with horizontal and vertical lines (this finite number is
required to be less than some universal constant that can be explicitly calculated using the
inequalities given in Theorem 2.4). On the other hand, if there exists an open set where a(x, y)
vanishes, then the matrices An(a,m1,m2, k) are singular for any n1, n2 large enough.

3. The Toeplitz preconditioning sequence. When a(x, y) ≡ 1, the matrices of
{An(a,m1,m2, k)}n enjoy a two-level Toeplitz structure. Here, we are interested in apply-
ing the results on the preconditioning through the concept of equivalent functions, where, for
instance, the constant function a(x, y) ≡ 1 is equivalent to any strictly positive and bounded
function a(x, y). We indicate the equivalence relation by the symbol ∼ with the natural
meaning that g1 ∼ g2 if and only if the two functions (or sequences) have the same definition
domain D and there exist two positive constants c and C such that cg1(x) ≤ g2(x) ≤ Cg1(x)
for any x ∈ D.

As a consequence of Theorems 2.3, 2.4 and of the relation a(x, y) ≡ 1, we deduce the
following optimality result, where, in the context of the preconditioning, a sequence {Pn}n
of positive definite matrices is an optimal preconditioning sequence for the sequence {An}n
if and only if there exists an n̄ such that for any n ≥ n̄ all the eigenvalues of P−1

n An belong
to a positive bounded universal interval independent of n [4, 3].

THEOREM 3.1. If a(x, y) is strictly positive then the Toeplitz sequence {An(1,m1,
m2, k)}n is an optimal sequence of preconditioners for the matrix sequence {An(a,m1,
m2, k)}n and k2(An(a,m1,m2, k)) ∼ k2(An(1,m1,m2, k)), where k2 denotes the spectral
condition number. If a(x, y) is nonnegative and the matrices An(a,m1,m2, k) are positive
definite then, for n large enough, k2(An(a, m1,m2, k)) ≥ Ck2(An(1,m1,m2, k)) with C
a universal constant independent of n.

Proof. We refer to [32] for an analogous result.
The following claim now takes into account the presence of zeros in the function a(x, y)

and explains why the matrix sequence {An(1,m1,m2, k)}n is not an optimal precondition-
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ing sequence. Clearly, if a(x, y) is strictly positive then the matrices An(a,m1,m2, k) are
positive definite, otherwise we refer to Remark 2.5.

THEOREM 3.2. If the coefficient a(x, y) ≥ 0 belongs to C(Ω), with min a(x, y) = 0 and
the matrices An(a,m1,m2, k) are positive definite, then the spectra of the preconditioned
matrices

{A−1
n (1,m1,m2, k)An(a,m1,m2, k)}n

belong to the interval (0, C], C being the maximum of a(x, y) on Ω; otherwise the spectra
belong to the interval [0, C]. Moreover, in the first case the lower bound is sharp in the sense
that the smallest eigenvalue of the preconditioned matrix tends to zero as n tends to infinity.

Proof. First, for the sake of simplicity, we assume that the function a(x, y) has a unique
zero located at (x, y) = (0, 0). ¿From Theorem 2.3, it follows that for any x ∈ Rn

x
TAn(a,m1,m2, k)x ≤ Cx

TAn(1,m1,m2, k)x, C = max
Ω

a(x, y),

so that, by virtue of the positive definiteness of the matrices An(1,m1,m2, k), we infer that

λmax(A
−1
n (1,m1,m2, k)An(a,m1,m2, k)) ≤ C.

Now, the limit relation concerning the smallest eigenvalue can be easily proved by consider-
ing the Rayleigh quotient for x equal to the first vector e1 of the canonical basis of Rn. In
fact, we have

λmin(A
−1
n (1,m1,m2, k)An(a,m1,m2, k)) ≤

e
T
1 An(a,m1,m2, k)e1

eT1 An(1,m1,m2, k)e1
,

which is O(ωa(h)), h = max{(n1 + 1)−1, (n2 + 1)−1} and so tends to zero as n tends to
infinity. More can be said if we know further information on the behavior of a(x, y) in a
neighbourhood J of (0, 0). If a(x, y) ∼ ‖(x, y)‖t2 for some t > 0 in J , then

λmin(A
−1
n (1,m1,m2, k)An(a,m1,m2, k)) = O(ht).

Clearly, the vector e1 is chosen according to the assumption that the zero is located at (x, y) =
(0, 0); otherwise it is enough to consider a suitable vector within the canonical basis of Rn.
In the case of more than one zero, but under the assumption of positive definiteness of the
matrices An(a,m1,m2, k), the proof is unchanged.

Now, the proposed preconditioning technique is of practical interest if the solution of a
linear system whose matrix is given by An(1,m1,m2, k) can be efficiently computed. We
remark that {An(1,m1,m2, k)}n is a sequence of two-level band Toeplitz matrices with
asymptotic ill-conditioning, due to the zero of order 2k of the generating function at (0, 0).
Under the assumption that n1 ∼ n2, the classical band solvers (based on Gaussian elim-
ination) require O((N(n))2) arithmetic operations (ops) [15]. The methods based on the
“correction” in two-level algebras as circulants, τ , etc. cost O((N(n))3/2) ops [13]. Finally,
in some cases it has been proved that the cost of the multigrid approach is O(N(n)) ops [12].
In particular, the optimality of the (V-cycle) multigrid method has been proved for k ≤ 2
[17], while the optimality of the two-grid method has been proved recently for any k [31].

Finally, we want to highlight some specific link between the matrix sequence
{An(1,m1,m2, k)}n and the Toeplitz matrix sequences generated by 2π–periodic integrable
functions. We recall that the symbol Tq(f), with f ∈ L1((−π, π],C), denotes the unilevel
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Toeplitz matrix (generated by f ) whose coefficient along the sth diagonal is given by the sth

Fourier coefficient of f

as =
1

2π

∫ π

−π

f(x)e−isxdx, i
2 = −1, |s| ≤ q − 1 ∈ N.

The definition of two-level (and multilevel) Toeplitz matrix is straightforward through the
Fourier coefficient of a bivariate (multivariate) function and can be found in [38].
As a preliminary step we need some results related to the univariate version of problem (1.1).
Let us denote by ∆̂n(m, k) the scaled unilevel Toeplitz matrices obtained in the discretization
of the univariate problem by considering the maximal order FD formula with respect to q
mesh points for both the inner and the outer derivative.

THEOREM 3.3. [32] The matrices {∆̂n(m, k)}n are Toeplitz matrices generated by
the nonnegative real–valued polynomial pw(x) = |pc(x)|

2, x ∈ (−π, π], where pc is the
polynomial related to the maximal order FD formula coefficient vector c for the discretization
of the operator dk/dxk over q equispaced mesh points (q = 2m if k is odd, q = 2m+ 1 if k
is even), defined as

pc(x) =

{

∑m
j=−m cje

ijx if q = 2m+ 1,
∑−1

j=−m cje
ijx +

∑m
j=1 cje

i(j−1)x if q = 2m.

Therefore, for any n the matrices ∆̂n(m, k) are symmetric positive definite and their spectral
condition number is asymptotically greater than Cn2k, with C universal constant. Finally, if
the zeros of |pc(x)|2 not located at x = 0 are of order at most 2k, then the spectral condition
number of {∆̂n(m, k)}n is asymptotic to n2k.

This statement can be generalized to the bivariate case, by making use of the following
notion of sparsely vanishing matrix sequence.

DEFINITION 3.4. A sequence of matrices {Xn}n, withXn ∈ Cdn×dn and dn < dn+1, is
said to be sparsely vanishing if there exists a nonnegative function x(s) with lims→0 x(s) = 0
so that for any ε > 0 there exists nε ∈ N such that for any n ≥ nε

1

dn
#{i : σi(Xn) ≤ ε} ≤ x(ε),

where {σi(Xn)}, i = 1, . . . , dn denotes the complete set of the singular values of Xn.
It is understood that if the matrices are all Hermitian the definition holds with a more special
characterization since σi(Xn) = |λi(Xn)|, where {λi(Xn)} denotes the complete set of the
eigenvalues of Xn.

The quoted definition makes direct reference to the notion, first introduced by Tyrtysh-
nikov [37], of sparsely vanishing Lebesgue-measurable functions as those functions whose
set of zeros has zero Lebesgue measure [10]. In fact, a matrix sequence {Xn}n spectrally
distributed as a sparsely vanishing function is sparsely vanishing in the sense of Definition
3.4 (we refer to Proposition B.1 in [36]).

DEFINITION 3.5. The symbol ∆n(m1,m2, k) ∈ R
N(n)×N(n) denotes the FD matrix

obtained according to Definition 2.2 when a(x, y) ≡ 1 and by setting hi = (ni + 1)−1 =
h/αi, i = 1, 2 with αi absolute positive integer constants.

THEOREM 3.6. Let ∆n(m1,m2, k) be the FD matrix according to Definition 3.5. Then

∆n(m1,m2, k) = h−2kTn
(

α2k
1 |pc(x)|

2 + α2k
2 |pd(y)|2

)

,

where Tn
(

α2k
1 |pc(x)|

2 + α2k
2 |pd(y)|2

)

, n = (n1, n2), is the two-level band Toeplitz matrix
generated by the nonnegative real-valued polynomial α2k

1 |pc(x)|
2 + α2k

2 |pd(y)|2 and where
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|pc(x)|
2 and |pd(y)|2 are the polynomials defined as in Theorem 3.3. Therefore, the matrices

∆n(m1,m2, k) are symmetric positive definite for any value of the dimension N(n) and
their spectral condition number is asymptotically greater than C[N(n)]k, with C universal
constant. In addition, if the zeros of |pc(x)|2 and |pd(y)|2 not located at x = 0 nor at y = 0
are of order at most 2k, then the spectral condition number is asymptotic to [N(n)]k. Finally,
the matrix sequence {∆n(m1,m2, k)}n is sparsely vanishing.

Proof. When a(x, y) ≡ 1, by virtue of the dyadic representation Theorem 2.3, we have
that

∆n(m1,m2, k) = h−2k
1

∑

i,t

(ete
T
t ) ⊗ (c[i]cT [i]) + h−2k

2

∑

r,j

(d[j]dT [j]) ⊗ (ere
T
r ),

and according to the properties of the Kronecker product we find that

∆n(m1,m2, k) = h−2k
(

In2 ⊗ Tn1

(

α2k
1 |pc(x)|

2
)

+ Tn2

(

α2k
2 |pd(y)|2

)

⊗ In1

)

,

the last being a two-level Toeplitz matrix. A direct comparison with the entries defin-
ing the two-level Toeplitz matrix generated by the nonnegative real-valued polynomial
α2k

1 |pc(x)|
2 + α2k

2 |pd(y)|2 proves the claim. Now, at (x, y) = (0, 0) the generating bi-
variate polynomial shows a zero of order 2k due to the consistency condition [32]. Since
n1 ∼ n2, by invoking the results of [6, 28], it follows that the spectral condition number
of the matrices ∆n(m1,m2, k) is asymptotically greater than C[N(n)]k for some positive
C. With the assumption that the other zeros (if any) of |pc(x)|

2 and |pd(y)|2 are of or-
der at most 2k, then the spectral condition number of {∆n(m1,m2, k)}n is asymptotic to
[N(n)]k, again as a consequence of the analysis given in [6, 28]. Finally, the polynomial
p(x, y) = α2k

1 |pc(x)|
2 +α2k

2 |pd(y)|2 is sparsely vanishing since it is not identically zero and
consequently the Lebesgue measure of its zeros is zero [10]. Moreover, {Tn(p)}n distributes
as pwith regard to the eigenvalues by Tyrtyshnikov’s theorem [38]. Therefore, by Proposition
B.1 of [36], since the matrix sequence distributes as a sparsely vanishing function, we infer
that {Tn(p)}n is sparsely vanishing in the matrix sense given in Definition 3.4.

4. The Toeplitz based preconditioning sequences. The second proposed precondi-
tioning matrix sequence is devised in order to introduce a special improvement with respect to
the previous Toeplitz preconditioning sequence, also giving effective results in the case where
a(x, y) shows a finite number of zeros. These preconditioning sequences can be constructed
by coupling the previously considered Toeplitz sequence with the suitable scaled main di-
agonal of the matrices {An(a,m1, m2, k)}n, the aim being to introduce more informative
content from the original linear system into the preconditioner, while keeping the additional
computational cost as low as possible. It is clear that the cost of solving a linear system
with Pn(a,m1,m2, k) as coefficient matrix is substantially the same as the one of solving a
Toeplitz system. The additional cost is in fact just the one of multiplying a constant number
of diagonal matrices by a vector.

DEFINITION 4.1. Assume hi = h/αi, i = 1, 2 with αi positive integer constants.
Let Ân(a,m1,m2, k) = h2kAn(a, m1,m2, k) with An(a,m1,m2, k) ∈ RN(n)×N(n) be-
ing the symmetric two-level matrix given in accordance with Definition 2.2. Moreover
let ∆̂n(m1,m2, k) = h2k∆n(m1,m2, k) with ∆n(m1,m2, k) ∈ RN(n)×N(n) being the
symmetric two-level Toeplitz matrix given in Definition 3.5. Finally, we define {P̂n(a)}n,

P̂n(a) = D̂
1/2
n (a)∆̂n(m1,m2, k)D̂

1/2
n (a) the Toeplitz based preconditioning matrix se-

quence where D̂n(a) = diag(Ân(a,m1,m2, k))/∆, with ∆ > 0 being the main diagonal
entry of the positive definite Toeplitz matrix ∆̂n(m1, m2, k).

PROPOSITION 4.2. If the coefficient a(x, y) is strictly positive, then {P̂n(a)}n is a se-
quence of well-defined symmetric positive definite matrices. The same holds true, at least for
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n large enough, in the case where a(x, y) is a nonnegative function whose zeros are given by
a finite number of curves intersecting any horizontal or vertical line only a finite number of
times.

Proof. For any r and t, the functions a1[t](x) = a(x, yt) and a2[r](y) = a(xr, y)
have at most a finite number of isolated zeros. Since the discretization of the operators
(−1)k∂k/∂xk(a(x, yt)∂

k(·)/∂xk) and (−1)k∂k/∂yk(a(xr , y)∂
k(·) /∂yk) leads to matri-

ces such that each diagonal entry is a positive linear combination of evaluations of a1[t](x)
and a2[r](y), respectively, over a constant number of asymptotically close points, it follows
that the generic diagonal entry is positive for n1 and n2 large enough. Therefore, D̂n(a) is
positive definite and this ends the proof.

4.1. The strictly elliptic case.

4.1.1. Asymptotic expansion of preconditioned matrices. First we introduce and
analyze an auxiliary matrix sequence {Â∗

n(a,m1,m2, k)}, that is used to deduce the cluster-
ing properties of the preconditioned matrix sequence {P̂−1

n (a)Ân(a, m1,m2, k)}.

DEFINITION 4.3. Set Â∗
n(a,m1,m2, k) = D̂

−1/2
n (a)Ân(a,m1,m2, k)D̂

−1/2
n (a),

where Ân(a,m1,m2, k) and D̂n(a) are defined according to Definition 4.1.
PROPOSITION 4.4. If the coefficient a(x, y) is strictly positive and belongs to C

2(Ω),
then the matrices Â∗

n(a,m1,m2, k) can be expanded as

Â∗
n(a,m1,m2, k) = ∆̂n(m1,m2, k) + h2Θn(a,m1,m2, k) + o(h2)En(a,m1,m2, k),

where Θn(a,m1,m2, k) and En(a,m1,m2, k) are symmetric bounded two-level band
matrices. If a(x, y) belongs to C

1(Ω), then Â∗
n(a,m1,m2, k) = ∆̂n(m1,m2, k) +

Θn(a,m1,m2, k), where Θn(a,m1,m2, k) is a two-level band matrix whose elements are
O(hωax

(h)) + O(hωay
(h)). Finally, if a(x, y) belongs to C(Ω), then Â∗

n(a,m1,m2,

k) = ∆̂n(m1,m2, k) + Θn(a,m1,m2, k), where Θn(a,m1,m2, k) is a two-level band
matrix whose elements are O(ωa(h)). Here the matrices Θn(a,m1,m2, k) and En(a,m1,
m2, k) always show the same pattern as ∆̂n(m1,m2, k) and the symbol ωf (·) denotes the
modulus of continuity of a function f .

Proof. Due to the symmetry of the matrices Â∗
n(a,m1,m2, k) it is enough to consider

the nonzero coefficients (Â∗
n)s,s−v related to the lower triangular part. Let us denote by

(Ân)
[r,t]
s,s−v the entry of the matrix Ân(a,m1,m2, k) at position (s, s − v) related to the dis-

cretization of the continuous operator at the grid point (x, y) = (xr , yt). Let us denote by
∆̂

[i]
s = ∆̂

[i]
s (mi, k) the entry along the main diagonal of the unilevel Toeplitz matrix ∆̂(mi, k)

i = 1, 2 and as ∆̂
[i]
s−v = ∆̂

[i]
s−v(mi, k) the entry along the vth subdiagonal. Clearly, the fol-

lowing equalities are true:

∆̂s,s(m1,m2, k) = α2k
1 ∆̂

[1]
s (m1, k) + α2k

1 ∆̂
[2]
s (m2, k),

∆̂s,s−v(m1,m2, k) = α2k
1 ∆̂

[1]
s−v(m1, k),

∆̂s,s−n1v(m1,m2, k) = α2k
2 ∆̂

[2]
s−v(m2, k).

Let us denote by ∆ the main diagonal entry of the two-level Toeplitz ma-
trix, i.e. ∆ = ∆̂s,s(m1,m2, k). Finally, set f [r,t] = f(xr, yt), f

[r,t]
z =

(∂f(x, y)/∂z)|(x,y)=(xr,yt), f
[r,t]
zz = (∂2f(x, y)/∂z2)|(x,y)=(xr,yt), where z ∈ {x, y}. Now,

the coefficients of the matrix Â∗
n = Â∗

n(a,m1,m2, k) are defined as

(Â∗
n)s,s−t = ∆ (Ân)s,s−t

/

√

(Ân)s,s(Ân)s−t,s−t .
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Case k odd:
For v = 0, we simply have (Â∗

n)s,s = ∆, so that (Θn)s,s = (En)s,s = 0.
For v = 1, . . . 2m1 − 1, we set p = v and we have

(Â∗
n)s,s−p = ∆ (Ân)

[r,t]
s,s−p

/
√

(Ân)
[r,t]
s,s (Ân)

[r−p,t]
s,s .

Now, by considering Taylor’s expansions centered at (x∗, y∗) = (xr−p/2, yt) according to
Proposition A.1 in [34] and under the assumption of strict positiveness of the coefficient
a(x, y), we infer that

(Â∗
n)s,s−p

=
∆

[

a[r−
p
2

,t]α2k
1 ∆

[1]
s−p

+h2a
[r−

p
2

,t]
xx αp+o(h2)

]

√

[

a[r−
p
2

,t](α2k
1 ∆

[1]
s +α2k

2 ∆
[2]
s )+ha

[r−
p
2

,t]
x βp+h2(a

[r−
p
2

,t]
xx γp+a

[r−
p
2

,t]
yy ηp

]

+o(h2)

· 1
√

[

a[r−
p
2

,t](α2k
1 ∆

[1]
s +α2k

2 ∆
[2]
s )−ha

[r−
p
2

,t]

x βp+h2(a
[r−

p
2

,t]

xx γp+a
[r−

p
2

,t]

yy ηp

]

+o(h2)

=

[

α2k
1 ∆

[1]
s−p

+h2a
[r−

p
2

,t]
xx α∗

p+o(h2)

]

√

[

1+ha
[r−

p
2

,t]
x β∗

p+h2(a
[r−

p
2

,t]
xx γ∗

p+a
[r−

p
2

,t]
yy η∗p

][

1−ha
[r−

p
2

,t]
x β∗

p+h2(a
[r−

p
2

,t]
xx γ∗

p+a
[r−

p
2

,t]
yy η∗p

]

+o(h2)

=

[

α2k
1 ∆

[1]
s−p+h2a

[r−
p
2

,t]

xx α∗

p+o(h2)

]

√

1+h2

(

2

(

a
[r−

p
2

,t]

xx γ∗

p+a
[r−

p
2

,t]

yy η∗p

)

−

(

a
[r−

p
2

,t]

x β∗

p

)2)

+o(h2)

= α2k
1 ∆

[1]
s−p +

(

α∗
pa

[r−p

2 ,t]
xx − 1

2∆
[1]
s−p

(

2
(

a
[r−p

2 ,t]
xx γ∗p + a

[r−p

2 ,t]
yy η∗p

)

−
(

a
[r−p

2 ,t]
x β∗

p

)2
))

h2 + o(h2),

so that

(Θn)s,s−p = α∗
pa

[r−p

2 ,t]
xx −

1

2
∆

[1]
s−p

(

2
(

a
[r−p

2 ,t]
xx γ∗p + a

[r−p

2 ,t]
yy η∗p

)

−
(

a
[r−p

2 ,t]
x β∗

p

)2
)

.

For v = n1, . . . , n1(2m2 − 1), we set p = v/n1 and we deduce that

(Â∗
n)s,s−n1p = ∆ (Ân)

[r,t]
s,s−n1p

/
√

(Ân)
[r,t]
s,s (Ân)

[r,t−p]
s,s .

Again by considering Taylor’s expansions centered at (x∗, y∗) = (xr, yt−p/2) according
to Proposition A.1 in [34] and under the assumption of strict positiveness of the function
a(x, y), we prove in the same way that

(Â∗
n)s,s−n1p =

∆

[

a[r,t−
p
2

]α2k
2 ∆

[2]
s−p

+h2a
[r,t−

p
2

]
yy ψp+o(h2)

]

√

[

a[r,t−
p
2

](α2k
1 ∆

[1]
s +α2k

2 ∆
[2]
s )+ha

[r,t−
p
2

]
y ρp+h2(a

[r,t−
p
2
]

xx δp+a
[r,t−

p
2
]

yy φp

]

+o(h2)

· 1
√

[

a[r,t−
p
2

](α2k
1 ∆

[1]
s +α2k

2 ∆
[2]
s )−ha

[r,t−
p
2

]

y ρp+h2(a
[r,t−

p
2
]

xx δp+a
[r,t−

p
2
]

yy φp

]

+o(h2)

= α2k
2 ∆

[2]
s−p +

(

ψ∗
pa

[r,t− p

2 ]
yy − 1

2∆
[2]
s−p

(

2
(

a
[r,t−p

2 ]
xx δ∗p + a

[r,t− p

2 ]
yy φ∗p

)

−
(

a
[r,t−p

2 ]
y ρ∗p

)2
))

h2 + o(h2),
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so that

(Θn)s,s−n1p = ψ∗
pa

[r,t−p
2 ]

yy −
1

2
∆

[2]
s−p

(

2
(

a
[r,t− p

2 ]
xx δ∗p + a

[r,t−p
2 ]

yy φ∗p

)

−
(

a
[r,t− p

2 ]
y ρ∗p

)2
)

,

and the claimed result follows.

Case k even:
Since, by virtue of Proposition A.2 in [34], the same type of asymptotic expansions hold true
for the coefficients of the matrix Ân(a,m1,m2, k), the result follows in the same manner
and with analogous defining relations with respect to the entries of the matrix Θn. When
the function a(x, y) has less regularity, the claimed result is an easy consequence of the
preceding steps where the Taylor expansions are stopped according to the regularity of
a(x, y).

4.1.2. Optimality properties of preconditioned matrices. In the special case k = 1
and when the function a(x, y) is strictly positive and belongs to C

2(Ω), it is possible to prove
the optimality of the devised preconditioner sequence according to the fact that the spectra of
the preconditioned matrices belong for any n to a positive interval well separated from zero.

THEOREM 4.5. If k = 1, the coefficient a(x, y) is strictly positive and belongs to
C

2(Ω), and the order of the zeros of the related Toeplitz generating polynomial α2
1|pc(x)|

2 +
α2

2|pd(y)|2 does not exceed 2, then the spectra of the sequence of preconditioned matrices
{P̂−1

n (a)Ân(a,m1,m2, k)}n belong to the interval [d1, d2], with di positive universal con-
stants well separated from zero.

Proof. Due to a similarity argument of P̂−1
n (a)Ân(a,m1,m2, k) and ∆̂−1

n (m1,m2,
k)Â∗

n(a,m1,m2, k) we analyze the sequence {∆̂−1
n (m1,m2, k)Â

∗
n(a,m1,m2, k)}n. By the

assumptions and by Proposition 4.4 we have

Â∗
n(a,m1,m2, k) = ∆̂n(m1,m2, k) + h2Θn(a,m1,m2, k) + o(h2)En(a,m1,m2, k),

so that

∆̂−1
n (m1,m2, k)Â

∗
n(a,m1,m2, k) =

= In + ∆̂−1
n (m1,m2, k)(h

2Θn(a,m1,m2, k) + o(h2)En(a,m1,m2, k)).

By the hypothesis on the order of the zeros of α2
1|pc(x)|

2 + α2
2|pd(y)|2 we infer that there

exists a constant C so that ‖∆̂−1
n (m1,m2, k)‖2 ≤ Ch−2 [6, 28]. Therefore, by standard

linear algebra, we know that

λmax(∆̂
−1
n (m1,m2, k)Â

∗
n(a,m1,m2, k)) ≤ ‖∆̂−1

n (m1,m2, k)Â
∗
n(a,m1,m2, k)‖2

≤ ‖In‖2 + ‖∆̂−1
n (m1,m2, k)(h

2Θn(a,m1,m2, k)

+o(h2)En(a,m1,m2, k))

≤ 1 + C‖Θn‖2 + o(1).

Conversely, for obtaining a bound from below for λmin(∆̂−1
n (m1,m2, k)Â

∗
n(a,m1,m2, k))

we consider the inverse matrix [Â∗
n(a,m1,m2, k)]

−1∆̂n(m1,m2, k) and we apply Proposi-
tion 4.4 to get

[

Â∗
n(a,m1,m2, k)

]−1

∆̂n(m1,m2, k) =

= In −
[

Â∗
n(a,m1,m2, k)

]−1

(h2Θn(a,m1,m2, k) + o(h2)En(a,m1,m2, k)).
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Since a(x, y) is positive, we deduce that

‖[Â∗
n(a,m1,m2, k)]

−1‖2 ≤ (max
Ω

a(x, y))(min
Ω
a(x, y))−1‖∆̂−1

n (m1,m2, k)‖2

≤ C(max
Ω

a(x, y))(min
Ω
a(x, y))−1h−2,

so that

λmin(∆̂−1
n (m1,m2, k)Â

∗
n(a,m1,m2, k)) ≥

(1 + C(max
Ω

a(x, y))(min
Ω
a(x, y))−1‖Θn‖2 + o(1))−1.

Observe that the preceding result in the special case where m1 = m2 = 1 was stated in
[27]. However, in the proof of Theorem 4.1 in [27] there is a flaw, so the preceding result also
provides a rigorous proof of the quoted theorem.

4.1.3. Clustering properties of preconditioned matrices. First, we give some defi-
nitions of clustering properties.

DEFINITION 4.6. Let {Pn}n be a preconditioning matrix sequence for the sequence
{An}n with An, Pn ∈ Cdn×dn and dn < dn+1. Suppose that for any fixed n and for any
ε > 0 all the singular values of P−1

n (An − Pn) belong to [0, ε) except for No(ε, n) outliers.
If No(ε, n) = o(dn) then the Weak Clustering property holds, while if No(ε, n) = O(1) then
the Strong Clustering property holds. We call the Weakest Strong Clustering property the limit
case when lim

ε→0
lim
n→∞

No(ε, n) = 0. More precisely, this case occurs when for any Cε > 0 so

that No(ε, n) ≤ Cε holds definitely, supε Cε = ∞ is found. If, for any n, the matrices An
and Pn are Hermitian and the matrices Pn are positive definite, then the previous clustering
properties are in the sense of eigenvalues.

Notice that the case where supε Cε = C ∈ R+ is characterized by a “true superlinear”
behavior of the PCG method, in the sense that for n going to infinity the number of the
iterations decreases to a value close to dCe. When the Weakest Strong Clustering is obtained,
then the PCG method is optimal [3] in the sense that we generally observe a number of
iterations which is constant with respect to n. (This behavior also characterizes the case
where all the eigenvalues belong to a fixed interval bounded away from zero.)

A preliminary result on clustering properties makes direct use of the following lemma.
LEMMA 4.7. [30] Consider two sequences {An}n and {Bn}n, whereAn, Bn ∈ C

dn×dn

and dn < dn+1. If the sequence {Bn}n is sparsely vanishing (with Bn nonsingular at least
definitely) and for any ε > 0 there exists a sequence {Dn(ε)}n, where Dn(ε) ∈ Cdn×dn , so
that ‖An −Bn −Dn(ε)‖2 ≤ ε with rank(Dn(ε)) ≤ εdn, then the Weak Clustering property
holds.

THEOREM 4.8. If the coefficient a(x, y) is strictly positive and belongs to C(Ω), then
for any ε > 0 all the eigenvalues of the preconditioned matrix

P̂−1
n (a)Ân(a,m1,m2, k)

lie in the open interval (1−ε, 1+ε) except for o(N(n)) outliers [Weak Clustering property].
Proof. Due to the similarity between P̂−1

n (a)Ân(a,m1,m2, k) and ∆̂−1
n (m1,m2, k)

Â∗
n(a,m1,m2, k), we can analyze the spectra of the latter. By virtue of Theorem 3.6, the se-

quence {∆̂n(m1,m2, k)}n is sparsely vanishing and the considered matrices are nonsingular
for any n. Therefore, by recalling Proposition 4.4, Lemma 4.7 applies with Dn ≡ 0 for any
n, so that the claimed result follows.
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In the special case k = 1, a stronger result can be obtained, by making use of the follow-
ing technical lemma.

LEMMA 4.9. Let {εn} be a sequence decreasing to zero (as slowly as we want) and let
us assume that the polynomial p(x, y) = α2

1|pc(x)|
2+α2

2|pd(y)|2, generating the Toeplitz se-
quence {∆̂n(m1,m2, 1)}n, is such that at least one between |pc(v)|

2 and |pd(v)|2 is strictly
positive for v 6= 0 (mod 2π). Then,

#
{

i : λi

(

∆̂n(m1,m2, 1)
)

<
⌈

ε−1
n

⌉

h2
}

= O
(⌈

ε−1
n

⌉)

.

Proof. Under the given assumption we have p(x, y) = 0 if and only if (x, y) = (0, 0).
Moreover, the consistency condition implies that p(x, y) ∼ x2 + y2 on the whole defi-
nition domain. Therefore, by the transitivity of the relation ∼, it follows that p(x, y) ∼
4 − 2 cos(x) − 2 cos(y).

Let Sn be the real space of the N(n) ×N(n) Hermitian matrices. Since
Tn : L1((−π, π]2,R) → Sn is a linear positive operator, it is easy to check that each
λj(Tn(·)) is a homogeneous monotone functional [14]. Therefore, if f ∼ g over (−π, π]2 it
ensues that

λj(Tn(f)) ∼ λj(Tn(g))),(4.1)

with uniform asymptoticity constants independent of j and n. Now, the eigenvalues of Tn(4−
2 cos(x) − 2 cos(y)) are explicitly known [5] and are given by 4 − 2 cos(sπ/(n1 + 1)) −
2 cos(tπ/(n2 + 1)) with 1 ≤ s ≤ n1 and 1 ≤ t ≤ n2 so that a straightforward calculation
leads to

#
{

i : λi (Tn(4 − 2 cos(x) − 2 cos(y))) <
⌈

ε−1
n

⌉

h2
}

= O
(⌈

ε−1
n

⌉)

.

The use of relation (4.1) concludes the proof.
THEOREM 4.10. Let us consider k = 1 and any choice of m1,m2 such that the

assumptions of Lemma 4.9 hold true for the polynomial generating the Toeplitz sequence
{∆̂n(m1,m2, 1)}n. If the coefficient a(x, y) is strictly positive and belongs to C

2(Ω), then
for any sequence {εn} decreasing to zero (as slowly as we want) and for any ε > 0, there ex-
ists n̄ such that for any n > n̄ (with respect to the partial ordering of N2),N(n)−O

(⌈

ε−1
n

⌉)

eigenvalues of the preconditioned matrix P̂−1
n (a)Ân(a,m1,m2, k) belong to the open inter-

val (1 − ε, 1 + ε) [Weakest Strong Clustering property].
Proof. It is exactly the same proof of Theorem 5.6 in [33]. The key fact to be used is the

statement of Lemma 4.9 in place of Lemma 5.5 in [33].
Now, the fact Â∗

n(a,m1,m2, k) = ∆̂n(m1,m2, k) + O(h2), proved in Proposition 4.4
in the case a(x, y) ∈ C2(Ω), is in some sense exceptional because it is produced by the
cancellation ofO(h) terms in the expression of Â∗

n(a,m1,m2, k)− ∆̂n(m1,m2, k). Indeed,
in the case k > 1 or when k = 1, but the assumptions of Lemma 4.9 are violated or a(x, y)
does not belong to C2(Ω), we loose the Weakest Strong Clustering property. Nevertheless,
we are able to characterize the asymptotic behavior of the function describing the number
of outlying eigenvalues. More precisely, under the assumption that the template problem
(1.1) has been discretized so that the error matrix Â∗

n(a,m1,m2, k) − ∆̂n(m1,m2, k) has a
spectral norm bounded byO(ht), with t a positive real value, we infer an estimate concerning
the number of outlying eigenvalues as a function of t, but also depending on the “spectral
difficulty” of the problem represented by the parameter k.

THEOREM 4.11. Assume that Â∗
n(a,m1,m2, k) = ∆̂n(m1,m2, k) + O(ht), with t

a positive real value and assume that the nonnegative polynomial generating the Toeplitz
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sequence {∆̂n(m1,m2, k)}n has a unique zero at (x, y) = (0, 0). If the coefficient a(x, y)
is strictly positive and belongs to C(Ω), then for any εn = o(h2−t/k) decreasing to zero and
for any ε > 0 there exists n̄ such that for any n > n̄ at least N(n) −O

(⌈

ε−1
n

⌉)

eigenvalues

of the preconditioned matrix P̂−1
n (a)Ân(a,m1,m2, k) lie in the open interval (1−ε, 1+ε).

Proof. Let τn(p) be the two-level τ correction of the Toeplitz matrix ∆̂n(m1,m2, k)
generated by the polynomial p (see [5] for details). By [31] it is known that there exists
a constant c > 0 independent of n such that λ(τ−1

n (p)∆̂n(m1,m2, k)) ≥ c with λ(X)
denoting the generic eigenvalue of a square matrix X . Since τn(p) and ∆̂n(m1,m2, k) are
both positive definite, it follows that the preceding eigenvalue inequality can be read in terms
of a Rayleigh quotient inequality, namely

cxHτn(p)x ≤ x
H∆̂n(m1,m2, k)x, ∀x ∈ C

N(n).

This means that the matrix ∆̂n(m1,m2, k) − cτn(p) is nonnegative definite, so that by
the homogeneous monotonicity of the eigenvalues it follows that, for any j, cλj(τn(p)) ≤

λj(∆̂n(m1,m2, k)). Therefore, we have

#
{

i : λi

(

∆̂n(m1,m2, k)
)

<
⌈

ε−1
n

⌉

ht
}

≤ #
{

i : λi (τn(p)) < c−1
⌈

ε−1
n

⌉

ht
}

.(4.2)

As in Lemma 4.9, we now exploit the exact knowledge of the eigenvalues of τn(p) which are
given by the sampling of p over the points (sπ/(n1 + 1), tπ/(n2 + 1)), 1 ≤ s ≤ n1, 1 ≤
t ≤ n2. The key point is that, by the consistency condition and by the assumption, p has a
unique zero of order 2k so that the small eigenvalues of τn(p) behave like h2k(j2 + q2)k. At
this point we follow the same lines as in Theorem 5.7 in [33] and we apply inequality (4.2)
in order to complete the proof.

Notice that the growth of the order k of the differential problem leads to a deterioration
of the “strength” of the cluster, so that in order to obtain a better clustering for higher or-
der problems, it is necessary to increase the order of approximation of ∆̂n(m1,m2, k) by
Â∗
n(a,m1,m2, k). Moreover, up to positive constants, the number of the outliers in the two-

dimensional case is the square of the number of outliers of the one-dimensional case. This
is part of a more general fact. Actually, if a d-dimensional elliptic problem is considered,
then the number of outliers will grow as the d-th power of the number of outliers of the
one-dimensional case. To see this it is enough to follow the proof of Theorem 4.11 in d di-
mensions, with the natural assumption that the d-variate polynomial p has a unique zero at
the origin.

4.2. The degenerate elliptic case.

4.2.1. Clustering properties of preconditioned matrices. The reason of the very
fast PCG convergence observed when we consider the preconditioning matrix sequence
{P̂n(a)}n with respect to the case of the basic Toeplitz preconditioning matrix sequence
{∆̂n(m1,m2, k)}n is explained in the following theorem.

THEOREM 4.12. If the coefficient a(x, y) belongs to C(Ω) and is nonnegative with a
finite number of zeros, then for any ε > 0 all the eigenvalues of the preconditioned matrix
P̂−1
n (a)Ân(a,m1,m2, k) lie in the open interval (1 − ε, 1 + ε) except for o(N(n)) outliers

[Weak Clustering property].
Proof. Due to the similarity between P̂−1

n (a)Ân(a,m1,m2, k) and ∆̂−1
n (m1,m2, k)

Â∗
n(a,m1,m2, k), we can analyze the spectra of the latter matrix sequence. First, for the sake

of simplicity, we consider the case when a(x, y) has a unique zero located at (x, y) = (0, 0).
For any mesh point (xr, yt) such that the involved sampling of the coefficient a(x, y) are well
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separated from (x, y) = (0, 0), by virtue of Proposition 4.4, we find that

(Â∗
n(a,m1,m2, k))s,s±v = (∆̂n(m1,m2, k))s,s±v + (Θn(a,m1,m2, k))s,s±v ,(4.3)

where ‖Θn(a,m1,m2, k)‖2 = O(ωa(h)). Now, for any positive ε, due to the continuity
of a and to the assumption on the zeros, it follows that there exists δ = δε so that the set
{(x, y) ∈ Ω∗ : a(x, y) < δ} is contained in a finite union of balls B, whose Lebesgue
measure is bounded by ε/4. Therefore, we consider a correction matrix Dn involving only
those rows for which at least one associated mesh point is such that the evaluation of a is less
than δ. Since the relationships

#{{(i, t) : a(x̃i, yt) < δ} ∪ {(r, j) : a(xr , ỹj) < δ}} ≤ #{{(i, t) : a(x̃i, yt) ∈ B} ∪

{(r, j) : a(xr , ỹj) ∈ B}}

=
2N(n)

m{Ω∗}
m{B}+O([N(n)]1/2)

≤ N(n)(ε+ o(1))/2

are true, we deduce that rank(Dn) ≤ εN(n). Therefore, Lemma 4.7 applies as in Theorem
4.8 and the claimed result follows. Notice that the presence of a zero in different position
moves the position of the nonzero part of Dn along the diagonal, but does not change its
asymptotic rank. In addition, the proof is unchanged in the case of presence of a finite number
of zeros (or in the general case where the zeros are a Peano-Jordan measurable set with zero
Lebesgue measure).

¿From Theorem 4.12, we deduce that almost all the eigenvalues of the preconditioned
matrices are clustered at unity except for o(N(n)) outliers. This is not completely satisfac-
tory, but is very good when compared with the results obtained by considering the purely
Toeplitz preconditioning sequence.

5. General results on distribution and clustering. The aim of this section is to give
general results on the approximation of Â∗

n(a,m1,m2, k) by ∆̂n(m1,m2, k) in the spirit of
the ergodic Theorems proved by Szegö. Let us first recall the following definition

DEFINITION 5.1. Two sequences {An}n and {Bn}n, An, Bn ∈ C
dn×dn , dn < dn+1

are said to be equally distributed in the sense of the eigenvalues if and only if, for any real-
valued continuous function F with bounded support we have

lim
n→∞

d−1
n

dn
∑

i=1

(F (λi(An)) − F (λi(Bn)) = 0.

THEOREM 5.2. Let {Â∗
n(a,m1,m2, k)}n and {∆̂n(m1,m2, k)}n be defined according

to Definitions 4.3 and 4.1. If the coefficient a(x, y) is strictly positive and belongs to C(Ω),
then

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k)‖

2
F = N(n) · O(ω2

a([N(n)]−1/2)),

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k)‖2 = O(ωa([N(n)]−1/2)),

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k)‖tr = N(n) · O(ωa([N(n)]−1/2)),

where ωa is the modulus of continuity of a(x, y). If the coefficient a(x, y) belongs to C(Ω)
and is nonnegative with a finite number of zeros, then there exists a matrix sequence {Dn}n,
with rank(Dn) = o(N(n)), such that

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k) −Dn‖

2
F = o(N(n)),

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k) −Dn‖2 = o(1).
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The latter result, in view of Theorem 2.1 in [38] and of the Cauchy interlacing Theorem,
tell us that the eigenvalues of the two symmetric matrix sequences {Â∗

n(a,m1,m2, k)}n
and {∆̂n(m1,m2, k)}n are equally distributed according to Definition 5.1. But each matrix
∆̂n(m1,m2, k) is the N(n) ×N(n) Toeplitz matrix generated by p(x, y) = α2k

1 |pc(x)|
2 +

α2k
2 |pd(y)|2 and therefore, by taking into account the Szegö ergodic formula [38], for any

real-valued continuous function F with bounded support we have

lim
n→∞

1

N(n)

N(n)
∑

i=1

F (λi(Â
∗
n(a,m1,m2, k))) =

1

(2π)2

∫ π

−π

∫ π

−π

F (p(x, y))dxdy,

i.e. the matrix sequence {Â∗
n(a,m1,m2, k)}n is spectrally distributed as p(x, y).

Moreover, it is worth pointing out that equation (1.1) requires that the coefficient a(x, y)
belongs to C

k(Ω), so that a refined analysis seems to be just an academic exercise. How-
ever, when we consider the “weak formulation” [8], the problem (1.1) is transformed into
an integral problem. Therefore, in this sense, the given analysis becomes again meaning-
ful. Concerning this fact, in the case where the coefficient a(x, y) belongs to L∞(Ω), the
application of the Lusin Theorem [25] allows one to prove the following result as a simple
generalization of Theorem 5.3 in [30].

THEOREM 5.3. Let {∆̂n(m1,m2, k)}n and {Â∗
n(a,m1,m2, k)}n be defined according

to Definitions 4.1 and 4.3, but where the coefficients a(xi, yj) should be replaced by mean
value on the domain Ii × Ij = [xi, xi+1] × [yj , yj+1] in the sense that a(xi, yj) means
N(n)

∫

Ii×Ij
a(x, y)dxdy. If the coefficient a(x, y) belonging to L∞(Ω) is nonnegative and,

at most, sparsely vanishing, then for any ε > 0 there exists a matrix sequence {Dn(ε)}n,
with rank(Dn) ≤ εN(n) and n large enough, such that

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k) −Dn‖

2
F ≤ c1(ε)N(n),

‖Â∗
n(a,m1,m2, k) − ∆̂n(m1,m2, k) −Dn‖2 ≤ c2(ε),

with limε→0 max{c1(ε), c2(ε)} = 0 and n large enough. In addition, the number of out-
liers of the sequence of preconditioned matrices {P̂−1

n (a)Ân(a,m1,m2, k)}n is generically
o(N(n)), while if a(x, y) is not sparsely vanishing then the preconditioners P̂n(a) are not
well defined or the preconditioned matrices have not clustered eigenvalues.

6. Numerical experiments and comparison with the literature. This section is di-
vided into three parts. In the first part, Subsection 6.1, we report and discuss some numerical
experiments concerning the PCG method with our preconditioners and with classical pre-
conditioners. Moreover, we heuristically extend our technique to the case of more general
domains (L and T shaped). The numbers are very encouraging and seem to suggest that the
theoretical analysis of the previous sections should be generalizable to these more interesting
cases as well. In the second part, Subsection 6.2, we compare the theoretical and the nu-
merical results obtained in this paper with the existing literature. Finally, in Subsection 6.3,
we complete the picture of the whole numerical procedure with some numerical evidences
concerning the optimality of a multigrid technique for the ill-conditioned multilevel Toeplitz
case (see [12, 31]). Indeed our preconditioning reduces the nonconstant semi-elliptic case to
the solution of two-level Toeplitz structures for which we propose the use of a specialized
multigrid technique.

6.1. PCG numerical results. We first present in Tables 7.1, 7.2, and 7.3 the number
of PCG iterations required to obtain ‖rs‖2/‖b‖2 ≤ 10−7 for increasing values of the matrix
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dimension N(n) = n1n2, where n1 = n2 and rs denotes the residual at the s-th step. The
data vector b is made up of all ones. In [34] we also considered the case of random data
uniformly distributed on the interval [0, 1] and the results were absolutely similar. The test
functions a are listed in the first column, the preconditioners are given in the heading by D̂ =
D̂n(a), ∆̂ = ∆̂n(m1,m2, k), IC the incomplete Choleski factorization, and P̂ = P̂n(a).
Finally, the pair (k,m) varies among (1, 3), (2, 2) and (3, 2) withm1 = m2 = m. Moreover,
in Tables 7.4, 7.5, and 7.6 we give the total number of outliers (and the related percentage) of
P̂−1
n (a)Ân(a,m1,m2, k) with respect to a cluster at unity with radius δ = 0.1. In addition,

between round brackets, we report also the number of outliers less than 1− δ.
Concerning the preconditioners D̂ and IC, Tables 7.1, 7.2, and 7.3 prove that the asso-

ciated PCG methods are never optimal. In particular, the number of iterations in the case of
the diagonal preconditioning grows linearly as the dimensionN(n) for all the considered test
functions; for the classical incomplete Choleski preconditioning we observe that the number
of iterations is proportional to the square root of N(n). The case of the two Toeplitz based
preconditioners, ∆̂n(m1,m2, k) and P̂n(a), is quite different and needs a more detailed anal-
ysis.

In Tables 7.1, 7.2, and 7.3, we observe that the number of PCG iterations is practically
constant when the preconditioner is ∆̂n(m, k) or P̂n(a) and the coefficient a is strictly pos-
itive. This independence with regard to n fully agrees with the spectral clustering theorems
proved in this paper and with spectral analysis of {∆̂−1

n (m, k)Ân(a,m, k)} given in [29].
The presence of jumps or discontinuities of a or of its derivatives does not spoil the per-

formances of the associated PCG methods when ∆̂n(m, k) or P̂n(a) are used as precondi-
tioners (see [27] for more details on this). The case of highly oscillating coefficient a slightly
deteriorates the performances of the second preconditioner P̂n(a) so that it becomes substan-
tially equivalent to the Toeplitz preconditioner. This is obvious since the matrix D̂n(a) (the
diagonal part of Ân(a,m, k)) is given by equispaced samples of a(x, y). Therefore, D̂n(a)
cannot be in general a faithful representation of a when a oscillates too much with regard
to the grid parameter h. This phenomenon was also noticed in [27] with regard to similar
problems where (k,m) = (1, 1).

It should be noticed that a certain growth of the number of outliers predicted by Theorem
4.11 for the preconditioned matrix P̂−1

n (a)Ân(a,m, k) in the case where k > 1 and a > 0,
is not observed in Tables 7.5 and 7.6. Probably, it is possible to prove something more.

In the case of k = 1, the qualitative improvement given by the Strong Clustering property
is just theoretical and “redundant” from a practical point of view since, for the case where
a is positive and regular, the optimality of our PCG iterations follows from the fact that
each eigenvalue of P̂−1

n (a)Ân(a,m, k) belongs to [d1, d2] with d1 and d2 universal positive
constants (Theorem 4.5).

If a is essentially positive, then the presence of a countably infinite number of jumps of
a (as in the last four test functions) does not spoil the performances of the associated PCG
methods when ∆̂n(m, k) or P̂n(a) are used as preconditioners according to the results of
Theorem 5.3. Finally notice the similarity of these results with respect to the case where a is
smooth [27].

When zero belongs to the essential range of a or a is unbounded, it is immediate to
observe that the only working preconditioner is P̂n(a). Also this result agrees with the the-
oretical expectations of this paper. In this case, as shown in Tables 7.4, 7.5, and 7.6, the
number of outlying eigenvalues grows very slowly (it seems only logarithmically withN(n))
and this behavior is much better when compared with the theoretical results. Therefore, we
think that the analysis presented in Theorem 4.12 can be substantially refined. In particular,
the theoretical tools introduced in [37] and [10] could be used in this context. Concerning the



ETNA
Kent State University 
etna@mcs.kent.edu

S. Serra Capizzano and C. Tablino Possio 19

preconditioner ∆̂n(m, k) it is worthwhile observing that the case where a has zeros is much
worse when compared to the case of a unbounded. This is in accordance with the analysis
of Axelsson and Lindskog that showed that “small” outliers slowdown the convergence much
more than “big” outliers. Other numerical experiments confirming the preceding observations
are reported in [34] and in [27] for the case (k,m) = (1, 1).

Furthermore, it is worth stressing that the cases k = 1, k = 2 and k = 3 are substantially
identical from the point of view of the preconditioner P̂n(a) and this indicates that high order
differential problems can be successfully handled by using the proposed techniques and that
P̂n(a) is a robust preconditioner with regard to the parameter k.

Further extensions. Finally we briefly show that our technique can be extended to the
case where the elliptic operator is defined on a more general domain. We consider three cases:
a square domain Q = (0, 1)2, a basic L shaped domain L = Q\Q′ where Q′ = (0, 1/2]2,
and a basic T shaped domain T = Q\(R1 ∪ R2) with R1 = (0, 1/2] × (0, 1/4] and R1 =
(0, 1/2]×[3/4, 1). The considered coefficient functions include elliptic (a(x, y) = 1+x+y),
elliptic oscillating a(x, y) = sin2(7(x + y)) + 1, semielliptic (a(x, y) = (1 − x + y)p,
p = 1, 2) and discontinuous (a(x, y) = exp(x+y)Ch{x+y≤2/3}+(2−(x+y))Ch{x+y>2/3})
examples. The parameters are the basic ones k = 1 and m1 = m2 = 1 and the symbol ChX
denotes the characteristic function a set X . Looking at Table 7.8, it is interesting to observe
that there is no dependence of the iteration count on the domain and, strangely enough, in the
semielliptic case with coefficient a(x, y) = (1−x+ y)2 we observe that our preconditioning
technique leads to just one iteration of the PCG method for n1 = n2 large enough. In addition
in these examples we considered much higher dimensions in order to show that our technique
(in combination with a multigrid one, see Table 7.7) is really faster than a usual incomplete
Choleski factorization (refer to Table 7.9). Moreover, these larger dimensions allow one to
appreciate the superlinearity of the proposed preconditioning technique which leads, in many
cases, to a decrease of the number of iterations as n1 = n2 increases (elliptic and semielliptic
smooth examples).

6.2. Comparison with the literature. The present paper generalizes the analysis of
Toeplitz based preconditioners in many senses. Any order k of the differential operators in
(1.1) can be included, all precision orders of the FD formulas are allowed, i.e., all parameters
m1 and m2 can be used.

Therefore, the results of the preceding sections can be viewed as the final point of the
research work started in [27] and [33]. Moreover, this analysis has been helpful in order to
extend the technique in the case of Finite Element matrices where the presence of various
types of geometrical elements makes the study much more intricate (see [35]).

Now, regarding problem (1.1), and in order to make a short, but informative, comparison
with well-established techniques in the literature, we analyze the following three cases:
a.1) a > 0 and a ∈ C2([0, 1]2),
a.2) a > 0 and ∞ > sup a ≥ inf a > 0,
a.3) a ≥ 0 with at most isolated zeros and a piecewise continuous.

The PCG methods based on preconditioners from incomplete LU and Choleski factoriza-
tions [23, 9, 16] and from the circulant algebra [7, 18, 21] are sublinear, i.e., require a number
of iterations O([N(n)]β) with positive β. This is true even in the case a.1 where a is positive
and smooth as we observed in the Numerical Experiments subsection.

On the other hand the PCG methods defined by using separable preconditioners [11] and
the multigrid algorithms [17, 22, 40] are optimal in the sense reported in Section 3 in the
cases a.1 and a.2, but not in the case a.3. On the contrary, our technique is superlinear in
the case a.1 (therefore also optimal) and assure a “weak” clustering in the cases a.2 and a.3.
This property does not guarantee theoretically the optimality, but the numerous numerical
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experiments performed in the previous subsection and in [30, 32, 33] suggest a convergence
rate independent of the size N(n).

Finally, with regard to the cases a.1 and a.2, we want to stress some interesting features
of our technique in comparison with a pure multigrid strategy. The preconditioner P̂n(a)
reduces the nonconstant elliptic and semi-elliptic case to the constant elliptic case, i.e., to two-
level Toeplitz positive definite structures. For this specific elliptic problem we propose the
use of specialized multigrid strategies costing O(N(n)) arithmetic operations, where N(n)
is the size of algebraic problem (see, e.g., [12, 31] for multigrid techniques applied to positive
definite multilevel Toeplitz structures and [39, 40] for multigrid techniques applied to elliptic
differential problems). For instance, the algorithm in [31] can be implemented in a very
optimized way since at each level of the recursion of a single multigrid iteration we only
need O(1) parameters that identify the actual coefficient matrix. In this way the matrix is
never explicitly formed except at the lowest level where the dimension is really small (see the
Subsection 6.3). In conclusion, the message is that our hybrid PCG-multigrid technique can
solve semi-elliptic problems as well and can save both in computation and in memory. Of
course, the latter feature is of crucial interest when huge dimensions are required.

6.3. Multigrid numerical results. Here, for the sake of completeness, we report the
number of multigrid iterations in order to solve two-level Toeplitz linear systems where the
coefficient matrix takes the form

An(1,m1,m2, k),

and where the pair (k,m) varies among (1, 1), (2, 1), (2, 2) and (3, 2) with m1 = m2 = m.
As it is clearly shown in Table 7.7, the considered multigrid technique is optimal with respect
to the size N(n), since the number of iterations stabilizes to a given constant depending
only on m and k. In addition, we observe a negligible dependency on the bandwidth m
and a sublinear growth with regard to the order of the differential operator 2k. We recall
that the related systems are quite ill-conditioned and, in actuality, the condition number of
An(a,m1,m2, k) is asymptotic to [N(n)]k (refer to [6, 28]) so that a certain deterioration
with respect to the parameter k should be expected.

7. Conclusive remarks. To conclude, in this paper, we have discussed the asymp-
totic distributional properties of the spectra of Toeplitz–based preconditioned matrices arising
from FD discretization of the differential problems of the form (1.1). We proved that the gen-
eral clustering of the spectra holds for a(x, y) ranging from the good case in which it is
regular and strictly positive to the bad case where a(x, y) is only L∞(Ω) and sparsely van-
ishing. Moreover, the results indicate that a possible weak deterioration of the convergence
properties of the associated PCG methods occurs when the parameter k and/or the order of the
zeros of a(x, y) increases. Finally we stress that the discussed results concern 2D differential
problems. This choice is motivated by a requirement of notational simplicity. However, there
is no difficulty in extending the whole analysis to the case of an arbitrary number of dimen-
sions since the basic tools such as the multidimensional Szegö formula [38] or the extremal
behavior [6, 28] of multilevel Toeplitz sequences are available in the relevant literature.
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k = 1 m = 3 n1 + 1 = n2 + 1
10 20 30

a(x, y) D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂

1 + x + y 32 12 12 3 66 21 13 3 100 30 13 3
exp(x + y) 33 12 18 3 68 21 21 4 100 31 22 4
sin2(7(x + y)) + 1 33 13 10 10 69 22 10 11 104 32 11 11
1 +

√
x + y, 1 if x + y < 0 32 12 9 3 65 21 10 3 99 30 10 3

|x − 1
2
| + |y − 1

2
| + 1

2
15 12 10 5 37 20 12 5 59 27 13 5

x + y 34 13 21 4 70 22 31 4 106 32 38 4
(x + y)2 35 13 39 4 73 22 88 4 110 32 137 3
(x + y)3 35 13 62 5 74 22 207 5 112 33 400 5
(x + y)4 36 13 86 6 75 23 421 6 113 33 — 6
|x − 1

2
| + |y − 1

2
| 15 12 14 6 37 18 23 7 57 27 30 7

(x − 1
2
)2 + (y − 1

2
)2 15 11 15 6 38 19 45 6 60 27 73 7

exp(x + y) if x + y ≤ 2
3

34 13 16 7 71 22 19 9 106 31 19 11
4 + x + y if x + y > 2

3
exp(x + y) if x + y ≤ 2

3
34 13 21 6 71 22 31 7 106 32 38 8

2 − (x + y) if x + y > 2
3

⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 31 12 9 6 64 20 12 7 96 30 13 8

1 if x or y ≤ 0

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 31 12 7 5 63 21 8 6 96 30 8 6

1 if x or y ≤ 0

(x + y)

(

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

34 13 18 5 68 21 26 6 106 31 32 6

if x, y > 0, 1 if x or y ≤ 0

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y 35 13 12 6 73 23 15 8 114 34 17 9

if x, y > 0, 1 if x or y ≤ 0

TABLE 7.1
Number of PCG iterations in the case k = 1, m1 = m2 = 3.

- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, available from the authors by
request.

[37] E. TYRTYSHNIKOV, Circulant preconditioners with unbounded inverses, Linear Algebra Appl., 216 (1995),
pp. 1–23.

[38] , A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra
Appl., 232 (1996), pp. 1–43.

[39] P. VANEK, J. MANDEL, AND M. BREZINA, Algebraic Multigrid by smoothed aggregation for second and
fourth order elliptic problems, Computing, 56 (1996), pp. 179–196.

[40] P. VANEK, J. MANDEL, AND M. BREZINA, Two-level algebraic Multigrid for the Helmholtz problem, Con-
temp. Math., 218 (1998), pp. 349–356.

[41] R. S. VARGA, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.



ETNA
Kent State University 
etna@mcs.kent.edu

S. Serra Capizzano and C. Tablino Possio 23

k = 2 m = 2 n1 + 1 = n2 + 1
10 20 30

a(x, y) D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂

1 + x + y 56 23 13 3 206 64 14 4 448 130 14 4
exp(x + y) 55 23 19 3 205 64 23 3 448 131 24 4
sin2(7(x + y)) + 1 57 23 10 11 207 64 11 14 456 132 12 14
1 +

√
x + y, 1 if x + y < 0 56 23 9 4 206 64 10 4 446 130 11 4

|x − 1
2
| + |y − 1

2
| + 1

2
15 21 10 5 67 62 13 6 147 123 14 7

x + y 58 23 23 5 212 65 35 5 462 129 44 5
(x + y)2 58 24 41 5 214 66 96 6 470 134 149 6
(x + y)3 59 24 66 5 217 67 224 5 465 135 434 5
(x + y)4 59 24 90 5 219 68 447 4 479 138 – 4
|x − 1

2
| + |y − 1

2
| 15 21 14 7 67 59 25 9 146 121 33 11

(x − 1
2
)2 + (y − 1

2
)2 15 20 15 7 67 57 47 9 146 118 76 10

exp(x + y) if x + y ≤ 2
3

58 23 18 9 211 65 20 13 469 134 21 17
4 + x + y if x + y > 2

3
exp(x + y) if x + y ≤ 2

3
57 24 23 8 213 66 35 10 469 133 43 12

2 − (x + y) if x + y > 2
3

⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 56 25 11 10 214 68 16 15 476 136 18 21

1 if x or y ≤ 0

d 1
x e

1+d 1
xe

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 54 23 8 7 207 65 10 10 458 132 10 11

1 if x or y ≤ 0

(x + y)

(

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

56 23 18 7 211 65 25 10 469 130 31 12

if x, y > 0, 1 if x or y ≤ 0

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y 84 31 14 12 324 94 20 19 698 194 25 27

if x, y > 0, 1 if x or y ≤ 0

TABLE 7.2
Number of PCG iterations in the case k = 2, m1 = m2 = 2.
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k = 3 m = 2 n1 + 1 = n2 + 1
10 20 30

a(x, y) D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂ D̂ IC ∆̂ P̂

1 + x + y 63 31 13 4 280 142 14 4 795 380 15 4
exp(x + y) 62 31 20 3 276 142 24 4 796 377 25 4
sin2(7(x + y)) + 1 63 31 10 15 284 142 12 22 807 380 12 26
1 +

√
x + y, 1 if x + y < 0 63 32 10 4 281 142 11 4 803 381 11 4

|x − 1
2
| + |y − 1

2
| + 1

2
16 30 11 6 76 131 14 8 203 362 15 10

x + y 63 32 24 6 286 145 36 6 827 382 46 6
(x + y)2 64 31 44 6 289 145 99 7 834 383 157 7
(x + y)3 65 31 70 6 293 147 236 7 846 382 465 7
(x + y)4 64 30 92 6 293 146 467 6 847 382 – 7
|x − 1

2
| + |y − 1

2
| 16 30 14 8 76 140 26 14 199 375 34 18

(x − 1
2
)2 + (y − 1

2
)2 16 28 15 8 75 138 48 13 197 372 79 16

exp(x + y) if x + y ≤ 2
3

63 32 18 10 285 150 21 19 823 390 22 32
4 + x + y if x + y > 2

3
exp(x + y) if x + y ≤ 2

3
63 30 23 8 289 150 36 14 824 390 46 21

2 − (x + y) if x + y > 2
3

⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 63 33 10 9 284 151 15 18 822 397 18 30

1 if x or y ≤ 0

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 62 33 8 7 271 151 16 16 804 397 10 16

1 if x or y ≤ 0

(x + y)

(

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

63 31 18 7 271 145 37 17 823 385 34 17

if x, y > 0, 1 if x or y ≤ 0

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y 108 33 13 11 496 151 26 27 – 397 24 44

if x, y > 0, 1 if x or y ≤ 0

TABLE 7.3
Number of PCG iterations in the case k = 3, m1 = m2 = 2.
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n1 + 1 = n2 + 1
k = 1 m = 3 10 20 30

1 + x + y 0 0 0
exp(x + y) 0 0 0
sin2(7(x + y)) + 1 17 (8) 28 (12) 28 (12)

17% 7% 3.1%
1 +

√
x + y, 1 if x + y < 0 0 0 0

|x − 1
2
| + |y − 1

2
| + 1

2
1 1 1

1% 0.25% 0.1%
x + y 0 0 0
(x + y)2 0 0 0
(x + y)3 1 1 1

1% 0.25% 0.1%
(x + y)4 2 4 4

2% 1% 0.4%
|x − 1

2
| + |y − 1

2
| 6 (1) 10 (1) 12 (3)

6% 2.5% 1.3%
(x − 1

2
)2 + (y − 1

2
)2 7 (1) 10 (1) 10 (1)

7% 2.5% 1.1%
exp(x + y) if x + y ≤ 2

3
7 (4) 15 (8) 22 (11)

4 + x + y if x + y > 2
3

7% 3.75% 2.4%
exp(x + y) if x + y ≤ 2

3
2 (1) 8 (4) 12 (6)

2 − (x + y) if x + y > 2
3

2% 2% 1.3%
⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 2 10 (2) 17 (1)

1 if x or y ≤ 0 2% 2.5% 1.8%

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 0 3 0

1 if x or y ≤ 0 0% 0.75% 0%

(x + y)

(

d 1
xe

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

if x, y > 0 0 3 0

1 if x or y ≤ 0 0% 0.75% 0%

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y x, y > 0 4 14 (4) 19 (4)

1 if x or y ≤ 0 4% 3.5% 2.1%

TABLE 7.4
Number of outliers of P̂−1

n (a)Ân(a, m1,m2, k) for δ = 0.1 in the case k = 1, m1 = m2 = 3.
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n1 + 1 = n2 + 1
k = 2 m = 2 10 20 30

1 + x + y 0 0 0
exp(x + y) 0 0 0
sin2(7(x + y)) + 1 26 (13) 54 (26) 66 (28)

26% 13.5% 7.3%
1 +

√
x + y, 1 if x + y < 0 0 0 0

|x − 1
2
| + |y − 1

2
| + 1

2
4 7 (1) 7 (1)

4% 1.75% 0.7%
x + y 0 0 0
(x + y)2 1 (1) 1 (1) 1 (1)

1% 0.25% 0.1%
(x + y)3 0 0 0
(x + y)4 0 0 0
|x − 1

2
| + |y − 1

2
| 9 (3) 19 (5) 26 (8)

9% 4.75% 2.8%
(x − 1

2
)2 + (y − 1

2
)2 12 (4) 16 (4) 20 (5)

12% 4% 2.2%
exp(x + y) if x + y ≤ 2

3
10 (7) 23 (13) 37 (22)

4 + x + y if x + y > 2
3

10% 5.75% 4.1%
exp(x + y) if x + y ≤ 2

3
5 (3) 12 (7) 17 (9)

2 − (x + y) if x + y > 2
3

5% 3% 1.8%
⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 12 (9) 39 (27) 60 (36)

1 if x or y ≤ 0 12% 9.75% 6.6%

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 6 (5) 17 (14) 28 (22)

1 if x or y ≤ 0 6% 4.25% 3.1%

(x + y)

(

d 1
xe

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

if x, y > 0 4 (1) 14 (6) 25 (9)

1 if x or y ≤ 0 4% 3.5% 2.7%

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y if x, y > 0 12 (10) 39 (28) 66 (40)

1 if x or y ≤ 0 12% 9.75% 7.3%

TABLE 7.5
Number of outliers of P̂−1

n (a)Ân(a, m1,m2, k) for δ = 0.1 in the case k = 2, m1 = m2 = 2.
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n1 + 1 = n2 + 1
k = 3 m = 2 10 20 30

1 + x + y 0 0 0
exp(x + y) 0 0 0
sin2(7(x + y)) + 1 38 (10) 81 (39) 109 (53)

38% 20.5% 12.1%
1 +

√
x + y, 1 if x + y < 0 0 0 0

|x − 1
2
| + |y − 1

2
| + 1

2
7 (1) 13 (3) 20 (6)
7% 3.25% 2.22%

x + y 1 (1) 1 (1) 1 (1)
1% 0.25% 0.11%

(x + y)2 2 (2) 3 (3) 4 (4)
2% 0.75% 0.44%

(x + y)3 2 (2) 3 (3) 4 (4)
2% 0.75% 0.44%

(x + y)4 1 (1) 2 (2) 3 (3)
1% 0.5% 0.3%

|x − 1
2
| + |y − 1

2
| 15 (5) 33 (13) 49 (21)

15% 8.25% 5.44%
(x − 1

2
)2 + (y − 1

2
)2 15 (5) 33 (13) 49 (21)

15% 8.25% 5.44%
exp(x + y) if x + y ≤ 2

3
13 (8) 32 (17) 50 (26)

4 + x + y if x + y > 2
3

13% 8% 5.55%
exp(x + y) if x + y ≤ 2

3
5 (4) 18 (10) 31 (16)

2 − (x + y) if x + y > 2
3

5% 4.5% 3.44%
⌈

1√
x

⌉

+
⌈

1√
y

⌉

if x, y > 0 10 (5) 39 (21) 86 (42)

1 if x or y ≤ 0 10% 9.75% 9.55%

d 1
x e

1+d 1
xe

+

⌈

1
y

⌉

1+
⌈

1
y

⌉ if x, y > 0 4 (3) 21 (10) 35 (21)

1 if x or y ≤ 0 4% 5.2% 3.88%

(x + y)

(

d 1
x e

1+d 1
x e

+

⌈

1
y

⌉

1+
⌈

1
y

⌉

)

if x, y > 0 3 (1) 23 (5) 37 (16)

1 if x or y ≤ 0 3% 5.75% 4.11%

exp(
⌈

1
x

⌉

/(1. +
⌈

1
x

⌉

)
⌈

1√
y

⌉

+ y if x, y > 0 12 (7) 44 (24) 86 (45)

1 if x or y ≤ 0 12% 11% 9.55%

TABLE 7.6
Number of outliers of P̂−1

n (a)Ân(a, m1,m2, k) for δ = 0.1 in the case k = 3, m1 = m2 = 2.

n1 + 1 = n2 + 1
16 32 64 128 256 512

k = 1, m = 1 1 8 8 8 8 8
k = 2, m = 1 1 13 13 13 13 13
k = 2, m = 2 1 16 16 16 16 16
k = 3, m = 2 1 24 25 25 25 25

TABLE 7.7
Number of multigrid (C-cycle) iterations.
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28 Preconditioning strategies for 2D finite difference matrix sequences

xei = 1 xei random
k = 1, m1 = m2 = 1 n1 + 1 = n2 + 1 n1 + 1 = n2 + 1

16 32 64 128 256 512 16 32 64 128 256 512

a(x, y) = 1 + x + y
Q 3 3 3 3 3 3 3 3 2 2 2 2
L 3 3 3 3 3 3 3 3 2 2 2 2
T 3 3 3 3 3 3 3 3 2 2 2 2
a(x, y) = sin2(7(x + y)) + 1
Q 10 10 10 9 9 8 9 9 9 8 7 6
L 9 9 9 8 8 8 8 8 8 7 7 6
T 9 9 9 9 8 8 9 9 8 7 7 6
a(x, y) = 1 − x + y
Q 4 4 4 4 4 3 4 4 3 3 3 2
L 4 4 4 4 4 3 4 4 3 3 3 2
T 4 4 4 4 4 3 4 4 3 3 3 2
a(x, y) = (1 − x + y)2

Q 2 2 2 2 1 1 2 2 2 1 1 1
L 2 2 2 2 1 1 2 2 2 1 1 1
T 2 2 2 2 1 1 2 2 2 1 1 1
a(x, y) = exp(x + y)
·Ch{x+y≤2/3}
+(2 − (x + y))
·Ch{x+y>2/3}

Q 7 8 9 10 13 15 7 7 9 10 12 15
L 5 5 7 8 9 10 5 5 7 7 9 10
T 7 7 9 10 12 14 6 7 8 9 10 11

TABLE 7.8
Number of PCG iterations in the case k = 1, m1 = m2 = 1, square, L and T shaped domains, with

preconditioner P̂ , exact solution xe of all ones and random.
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xei = 1 xei random
k = 1, m1 = m2 = 1 n1 + 1 = n2 + 1 n1 + 1 = n2 + 1

16 32 64 128 256 512 16 32 64 128 256 512

a(x, y) = 1 + x + y
Q 16 28 53 100 196 371 16 27 48 85 155 294
L 13 23 42 80 154 300 14 24 43 74 133 251
T 15 27 50 95 186 362 14 26 47 87 158 283
a(x, y) = sin2(7(x + y)) + 1
Q 16 29 54 104 202 391 17 30 51 95 165 300
L 13 23 44 83 159 303 14 26 43 74 139 265
T 15 27 52 99 192 367 15 26 47 89 167 290
a(x, y) = 1 − x + y
Q 17 28 53 102 199 387 16 27 49 92 165 302
L 14 27 50 96 186 361 14 24 45 84 159 290
T 15 27 51 96 188 366 14 25 47 87 164 300
a(x, y) = (1 − x + y)2

Q 16 28 52 100 182 353 16 26 49 86 161 302
L 14 26 49 96 186 359 13 25 46 86 160 295
T 14 26 50 95 186 363 14 25 47 88 163 307
a(x, y) = exp(x + y)
·Ch{x+y≤2/3}
+(2 − (x + y))
·Ch{x+y>2/3}

Q 16 28 53 102 199 385 16 29 49 93 171 324
L 13 23 44 84 162 309 14 24 44 76 143 267
T 15 27 51 98 189 370 14 26 47 89 165 298

TABLE 7.9
Number of PCG iterations in the case k = 1, m1 = m2 = 1, square, L and T shaped domains, with IC

preconditioner, exact solution xe of all ones and random.


