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ON THE ESTIMATION OF THE @Q-NUMERICAL RANGE OF MONIC MATRIX
POLYNOMIALS*

PANAYIOTIS J. PSARRAKOST

Abstract. For a given g € [0, 1], the g-numerical range of an n x n matrix polynomial P(\) = IA™ +
A1 A™™ oo 4 Ay + Ag isdefined by We(P) = {A € C: y* PNz =0, 2,y € C", 2z = y*y =
1, y*x = g¢}. In this paper, an inclusion-exclusion methodology for the estimation of W, (P) is proposed. Our
approach is based on i) the discretization of a region € that contains W, (P), and ii) the construction of an open
circular disk, which does not intersect W, (P), centered at every grid point u € Q \ W (P). For the cases ¢ = 1
and 0 < ¢ < 1, an important difference arises in one of the steps of the algorithm. Thus, these two cases are
discussed separately.

Key words. matrix polynomial, eigenvalue, g-numerical range, boundary, inner g-numerical radius, Davis-
Wielandt shell.
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1. Introduction and definitions. Let M., be the algebra of all nxn complex matrices,
and suppose that

(1.1) P(A) = IN™ + A A1 4o+ AN+ A

isan n x nmonic matrix polynomial, where 4; € M, (j = 0,1,...,m —1) and X is
a complex variable. One encounters matrix polynomials for instance when studying systems
of ordinary differential equations or difference equations, with constant coefficients. The
suggested references are [5, 11, 19].

For agiven ¢ € [0, 1], the g-numerical range of P()\) in (1.1) is defined by [14, 15]

(1.2) WyP)={ eC:y*"PN)z=0,2z,y e C", 2"z =y*y =1, y*z = ¢}.

Evidently, W, (P) is always closed and contains the spectrum of P()), that is, the set of all
eigenvalues of P()\), o(P) = {\ € C: detP(A\) = 0}. For ¢ = 1, we have the classical
numerical range of P(\) [10, 12], namely,

W(P) = Wi (P) = {Ae€C:2"PN)z =0,z € C", 2"z = 1}.

If ¢ € (0,1] and P(\) = I\ — g A for some A € M,,, then W,(P) coincides with the
g-numerical range of A, F,(A) = {y*Az : z,y € C", z*z = y*y = 1, y*z = ¢}. For
g = 1, the numerical range of A is F(A) = Fi1(A) = {z*4z : z € C", z*zx = 1} [4].
Moreover, the (outer) g-numerical radius and the inner g-numerical radius of A are defined
by

ro(4) = max{|u| : p € Fy(A)} and #,(A) = min{ |u] : p € DF,(A)},

respectively. Note also that r,(A) < ||A||» forevery q € [0,1] [8], where || - || denotes the
norm induced by the standard inner product.

During the last decade, the numerical range W (P) has attracted attention, and several
results have been obtained (see, e.g., [2, 6, 7, 10, 12, 13, 16, 18]). These results are helpful
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in investigating and understanding matrix polynomials, and some of them have been gen-
eralized to the case of the g-numerical range [3, 14, 15]. Furthermore, applications of the
numerical range of matrix polynomials in spectral analysis, factorization and stability of ma-
trix polynomials can be found in [6, 13, 18], respectively. It is easy to see that if ¢ = 0, then
W, (P) = C. Hence, in the remainder of this note, we assume that 0 < ¢ < 1. As a conse-
quence, since the leading coefficient of P()) in (1.1) is the identity matrix, the g-numerical
range W, (P) in (1.2) is compact and has no more than m connected components [10, 14].

Algorithms for plotting the boundary of the numerical range of the matrix polynomials
AN2matmz 4 pamatme L CAm2 gnd AX™1+t™2 (B 4i C')™2, where the matrices A, B, C
are Hermitian, can be found in [7, 16, 17]. Moreover, the point equation of the boundary of
the numerical range of a general matrix polynomial is studied in [2]. The numerical approx-
imation of the g-numerical range of the monic matrix polynomial P(A) in (1.1) is still an
open and challenging problem. The “brute force” approach would be to plot the roots of the
polynomial y*P(\)x for a large number of randomly chosen unit vectors z,y € C" sat-
isfying y*x = ¢. But that would be too costly, and it would probably not accurately depict
the boundary of W,(P). In this paper, a methodology for the estimation of the g-numerical
range W, (P) is proposed. This method is the first method for drawing W, (P) besides the
application of the definition, and can also be used for the approximation of the boundary
OW,(P). In the next section, we describe the general inclusion-exclusion algorithm, which
is based on the boundedness of W, (P) and a result on open disks that do not intersect W, (P)
[12, 14], and requires the computation of the inner g-numerical radius of the (fixed) matrix
P() for several p € C\ W,(P). In Sections 4 and 5, algorithms for the calculation of the
inner g-numerical radius of a square complex matrix for the cases ¢ =1 and 0 < ¢ < 1, re-
spectively, are given. Furthermore, numerical examples are presented to illustrate our results.
For all the experiments, the computations were performed in MATLAB 4.2 on a PC Celeron
600.

2. The general algorithm. Consider an n x n matrix polynomial P(\) = I\™ +
ApaA™ oo+ AgX + Ap asin (L.1) and areal ¢ € (0,1]. Let u be a complex
number, which does not belong to the g-numerical range of P()), i.e., u lies in the open
set C\ W, (P). Then, we can construct an open circular disk S(u, p,,) with center at x and
radius p, < 1 such that S(u,p,) N W,(P) = 0. The closure of S(y, p,) is denoted by
S, pu)-

THEOREM 2.1. Suppose P(\) = IN™+ A,, (A™ 1+.--+ A A+ A, and ¢ € (0,1],
and let g € C\ W,(P). Then the open disk S(u, p,,) with radius

7o (P())
Pq(P(1)) + maxj=1,...m | P9 (1)]l2

Pp =
does not intersect the g-numerical range W, (P).
Proof. Consider the matrix polynomial
P,(A) = PA+p) = IN"+ B A™ '+« + BiA+ By

and denote By, = I. Itis well-known that W,(P,) = Wy(P)—p [10, 14]. Thus, the origin
does not belong to W, (P,), or equivalently, 0 ¢ F,(By) (= F,(P(w))). By [14, Theorem
1.4] (see also [12, Theorem 3.1]), for every z € W,(P,), we have that

fq (BO)
7q(Bo) + maxj—1,...m rq(Bj)

< .
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Since r4(B;) < ||Bjll2 § =1,2,...,m), it follows that

TAq(BO)
fq(Bo) + maxj=1,.m [|Bjll2

< lzl.

Hence, S(0, p,) N W, (P,) = 0, or equivalently, S(u,p,) N W,(P) = 0. Since the coeffi-
cients of P,(\) = P(X + p) are given by
1 ; .
Bj = FP(])(/J’) o =0717"'7m7

the proof is complete. [0

The g-numerical range W,(P) is bounded, and thus, we can always find a bounded
region € in the complex plane that contains W,(P). For example, it is known that [14,
Theorem 1.4]

J J

=0,...,m—1 =0,...,m—1 q

Then we can approximate W, (P) by plotting its complement with respect to 2.

Algorithm 1 (The general inclusion-exclusion procedure)
Step | Obtain an open bounded region € C C such that W, (P) C Q.
Step Il Construct a grid Go of Q.
Step 111 For every grid point u € Gq, repeat the following:

(@) checkif u ¢ W,(P), orequivalently, if 0 ¢ F,(P(u)),

(b) if 0 ¢ F,(P(w)), then compute the inner g-numerical radius #,(P(x)) and

the matrices
Bj = %P(J)(p’) ; j=0,1,...,m,

(c) construct the open circular disk S(u, p,) C C\ W, (P) with radius

fq(BO)
fq(Bo) + maxj—1,..m |1 Bjll2

Pu =
Step IV The set

u € Ga
0 ¢ Fq(P(n))

is an approximation of W, (P) and always contains W, (P).

An important feature of the above methodology is that it does not depend strongly on
the degree m of P(X), which appears only in the computation of the matrices B; (j =
0,1,...,m). Note also that the most expensive part of Algorithm 1 is the calculation of the
inner g-numerical radius #4(P(u)) in Step I11(b). This step will be further discussed in
Sections 4 and 5.

The two inclusion regions given by (2.1) are not always satisfactory, since they are
centered at the origin. By a simple MATLAB code, one can plot the roots of a few poly-
nomials of the form y*P(\)z, where z,y € C" are unit vectors satisfying y*z = q¢.
In this way, a first approach of an open rectangle Q@ = (%min;%max) X (i Umin, | Vmax)
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(¥min, Umax, Umin, Umax € R), Which contains W, (P), is obtained. After choosing 2, we
can construct either a constant or a variable grid. In our experiments, we use two grids, where
we move rightwards on each grid line and upwards on each grid column. The first grid, de-
noted by Gq.1(€), is formed by a partition of the intervals (umin, Umax) and (Umin; Umax)
with constant length &, where all grid points within the disks generated by Step 111 (c) are
excluded. The second one, denoted by Gq »(£), is formed by a partition of the interval
(umin, Umax) With constant length £ and a partition of the interval (vmin, Vmax) With vari-
able length max{¢&, p,.}, where p,, is the radius of each disk generated by Step I11(c).

3. Approximating the boundary. Let P()) be an n x n matrix polynomial as in (1.1)
and let g € (0,1]. Fora p € C\ W,(P), recall the open disk S(u, p,,) in Theorem 2.1 and
consider a positive real M), > max;—1,....m ||5; P (1)||2- Then from the relation

WPW)

it follows that

(3.1) pu < Tq(P(p)) < Pu

and it is clear that the radius p,, is small if and only if the inner g-numerical radius of P(u)
is sufficiently small.

Denote now by d(P, i) the distance between p and the compact set W, (P). By Theo-
rem 2.1, this distance is greater than or equal to p,. Moreover, we have the following result.

THEOREM 3.1. For an n x n matrix polynomial P(A) = IA™ + A, 1 A™7 L+ .- +
AiA+ Ag and ¢ € (0,1], consider p € C\ Wy(P) and the disk S(u, p,) defined in
Theorem 2.1. Suppose that for two unit vectors zg,yo € C™ such that yizo = ¢ and
lys P(11)wo| = 7 (P(p)), we have yg P1) (u)zo # 0. Then for sufficiently small p,,

2p, M,
(1= pu) lyg PO ()0

d(P,p) <

Proof. Consider the two unit vectors xq,yo € C™ satisfying
yso = @, |ysP(w)zo| = #4(P(n)), and y5PM(u)zo # 0.
Then there is areal § > 0 such that forany X € S(u,9),
yo P(Nzo = g5 {P(1) + (A = )PP (1) + (A = ) R(A, 1) }o
(3:2) = 45 P()zo + (A = ) (45 PY ()0 + Y3 RO\ )0 ),

where ||R(\, p)|| = o(1) as [A—pu| — 0. Since y&P™M (u)xo # 0, § can be chosen so small
that |yg P (u)xo| > 2 |ys R(\, p)xo| for every A € S(u,d). Furthermore, for sufficiently
small p,,, by (3.1), we can assume that

Pq(P(1)) < 6 lygPY (w)wo + yg R(N, 1) To|.

Then, since (3.2) holds for every A € S(u,d), there exists a Ao € S(u,d) such that
yakP()\o).'Eo =0, i.e., Ao € Wq(P) Thus,

Fq(P()) < 27q(P(p))

d(P, < |do—p =
(Pp) < Ao —pl lys PO (1)zo + y5R(o, p)zo| = |y PO (p)zo|’
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and the proof is completed by (3.1). O

Notice that for any p ¢ W, (P), the origin does not belong to the g-numerical range of
the matrix P(u) and there are infinitely many pairs of unit vectors zg,yo € C™ such that
yizo = q and |yg P(u)zo| = #(P(u)). If one of these pairs also satisfies yg P (u)zo # 0,
then Theorem 3.1 and the inequality d(P,p) > p, imply that the radius p, is small if
and only if the point 4 is sufficiently close to the boundary of W, (P). Recall also that the
function maxj=1,....m ||%P(j) (M)||2 is bounded. Hence, if we choose a sufficiently small
e > 0, then we can approximate the boundary 0W,(P) by using Algorithm 1 and plotting
the disks S(u, pu) C @\ Wy(P) with radius p, < e (see Examples 4.2 and 5.1 below).

4, Thecase g =1. Let PN =IA™ + Ay 4 A™ L+~ + Ajd+ Ag bean n xn
monic matrix polynomial and let ¢ = 1. It is clear that for the estimation of the numerical
range W(P) (= Wy(P)) via the algorithm in Section 2, a method for the computation of
the inner numerical radius of an n x n complex matrix is needed. By [1, Theorem 2.1] (see
also [4, Chapter 1.5]), the inner numerical radius of a matrix A € M,, is given by

_ <ei9A+ei0A*>
min Apax | ———————

A) = "(d) = 6€[0,27] 2

?

where A\nax(-) denotes the maximum eigenvalue of a Hermitian matrix. As a consequence,
the following procedure produces 7#(A) and classifies the origin as belonging to F'(A) =
Fi(A) ornot.

Algorithm 2
Step | Construct a grid

iT .
0=—:5=0,1,...,2N -1
{ N J b ) }

of the interval [0, 2] for some positive integer N.
Step I For every choice of 4, compute the largest eigenvalue A\pax(H (0)) of the Hermi-
tian matrix

_ 1 —i6 g%

H®) = 2(e Ate A).

Step 111 Find the minimum of Amax(H (6)) and the corresponding angle 6,. The absolute
value of this minimum is an approximation of the inner numerical radius #(A).
Moreover, the origin does not belong to the numerical range F'(A) if and only if the
eigenvalue Amax(H (6g)) is negative.

The above algorithm can be used for Step 111 (a),(b) of Algorithm 1. As a consequence,
we have a complete methodology for the approximation of the numerical range W (P), which
is illustrated in the following examples.

ExAMPLE 4.1. For the matrix polynomial

R S i e 10 5
Pl(/\)—I)\+[0 P PN IR P TS IR

the roots of a few thousand (randomly chosen) polynomials of the form z*P;(\)z (z €
C?, z*z = 1) are sketched in the left part of Figure 4.1. Observe that we do not have a clear
picture of W (Py), and that three eigenvalues of P; () (marked with ‘+’) appear to lie out of
W (Py). Moreover, it seems that W ( Py ) lies in the open rectangle Q = (—3,3)x(—i2.5,i3).
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4 4
3r 4 3r 4
2t Q 1 2t 1
2 ar W 1 &1 1
2 2
£ + £
Lt 1o i
—2b : 4 —2b d
4 -3 -2 - [) 1 2 3 4 [) 4
Real Axis Real Axis

F1G. 4.1. A numerical range with three connected components.

For the grid Gq,1(0.05), by Algorithms 1 and 2, an approximation of the numerical range
W (Py) is drawn in the right part of the figure. The number of disks is 1076, and now we
can see that W (P;) has three connected components and contains the spectrum o(Py) in its
interior.

Imaginary Axis
n
Imaginary Axis

Real Axis Real Axis

F1G. 4.2. A connected numerical range.

ExXAMPLE 4.2. For the matrix polynomial

Pz()\):I)\3+[; _21]A2+[(1’ _'1]A+[f _03]

the roots of a few thousand (randomly chosen) polynomials of the form z*P(\)z (z €
C?, z*x = 1) are sketched in the left part of Figure 4.2. We have a clear picture only for
the left part of W(P,) and an eigenvalue of P»(A) (marked with ‘+”) appears to lie out of
W (P»). Using our methodology and choosing the grid Gg 1(0.05) of the inclusion domain
Q = (-3,3) x (—i2,i2.5), an estimation of the numerical range W (P,) is drawn in the
right part of the figure and gives a better visualization of W (P,). The total number of disks is
3812. With respect to the same grid, in Figure 4.3, we plot exactly the open disks S(u, p,) C
Q\ W(P,) with radius p,, < € for e = 0.08 (left part) and € = 0.04 (right part). In this
way, we approach the boundary of W (P-), confirming Theorem 3.1 and the discussion in the
previous section.
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g & g
=3 3 < ol
=] =]
& i i T &
E %ﬁwﬁ.ﬂ' 5 e E
. %‘ &
——
-2 -2
-3 . . 3 .
-4 -3 -2 0 2 3 4 -4 -3 -2 0 2 3 4
Real Axis Real Axis

FiG. 4.3. Approximating the boundary of W (Ps).

The above method for the estimation of the numerical range of P(\) can be considered
reliable when W (P) is a regular closed set, i.e., when it coincides with the closure of its
interior, and when the boundary OW ( P) is smooth. If W (P) is not a regular closed set and/or
OW (P) contains non-differentiable points, then our algorithm may become less satisfactory
(locally), as one can see in the next example.

4 4
3 3
2 2
) * )
< 1f < 1f
2 2
s s
] ]
> >
& —_— & of
E° E°
-1 -1
*
-2 -2
-3 . . . . . . . 3 . . . .
-5 -4 -3 -2 -1 0 1 2 3 -5 -4 -3 -2 -1 0 1 2 3
Real Axis Real Axis

F1G. 4.4. A numerical range with line segments.

EXAMPLE 4.3. The boundary of the numerical range of the quadratic matrix polynomial

1 i o0 121
PsN)=IX+| =i 2 0[x+]|2 00
0 0 1 1 0 4

(with Hermitian coefficients) is accurately sketched in the left part of Figure 4.4 by an al-
gorithm described in [7]. In the right part of the same figure, choosing = (—3.5,2.5) x
(—12.5,i3) and its grid Ga 2(0.03), W (Ps) is approximated by Algorithms 1 and 2 (the
number of disks is 8356). In both parts of the figure, the eigenvalues of P;(\) are marked
with asterisks, and we remark that the non-real part of the boundary of W (Ps) intersects
the real axis orthogonally [7, Theorem 5.2]. Clearly, the existence of real intervals and non-
differentiable points on the boundary W (P3) affects the accuracy of the methodology.
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5. The case 0 < ¢ < 1. In this section, we assume that 0 < ¢ < 1. In [9], Li and
Nakazato describe an algorithm for drawing the g-numerical range of an n x n complex
matrix A. Their method is based on the construction of the (convex) surface of the Davis-
Wielandt shell of A, that is,

WD(A) = {(z*Az,z*A*Az) e Cx R: 2 € C", z*z = 1},
and the relation
6D F) = {8 (ex VO=@)B=TP) : (1) € oWD(4)},

and can be used for the calculation of the inner g-numerical radius #,(A) and for verifying
whether the origin belongs to F, (A4) or not.

Algorithm 3

Step | Construct a grid on the unit sphere in R? using spherical coordinates

(sin @ cos ¢, sin 8 sin ¢, cos )
with
7w 27 (N-=1m B
G—N,W,...,T,ﬂ' and ¢—
for some positive integers N and S.

Step Il For every choice of (sin 6 cos ¢, sin 8 sin ¢, cos 8), repeat the following:
(a) compute the largest eigenvalue Amax(H (6, ¢)) of the Hermitian matrix

2m (25 -1«
’S""’ S

w0l

*

2i

A+ A*

H(0,¢) = (sinfcos¢) ( >+(sin05in 9) ( >+(c050)(A*A),

a corresponding unit eigenvector yy 4 € C™ and the scalars

2(0,0) = yssAyes and h(6,0) = yp A" Ayg e,

(b) consider the closed circular disk

D(©,9) = 5 (a2(6,), V(1 = @) (h(6,9) - 26, 9)P)) ,

and notice that if [2(8,¢)|? < 1;;’2 (h(6,¢) — |2(6, ¢)|?) , then the origin
belongs to F,(A).
Step I1l By (5.1), the union J, ,D(6,¢) is an approximation of Fy(A4). If 0 ¢
Up,¢ D(6, ¢), then we say that 0 ¢ Fy,(A4) and

(4) = min {q|2(0,0)| - V(1= @) (8,9) ~ [0, 9)P) } .

If P()\) is a monic matrix polynomial asin (1.1) and 0 < g2 < g1 < 1, then it is known
that W, (P) C Wy, (P) [15, Theorem 10]. This result is confirmed by comparing Figure
4.1 with the figure in the following example.

ExamMPLE 5.1. Recall the matrix polynomial P;()\) in Example 4.1. In the left part
of Figure 5.1, the roots of a few thousand (randomly chosen) polynomials of the form
y*P(\Nz (z,y € C?, z*z = y*y = 1, y*z = 0.7) are plotted. Observe the gaps around
two eigenvalues of Py (\) (marked with “+”) and that Wy 7(P1) appears to lie in the open
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Imaginary Axis
=
Imaginary Axis
=

+

-1k

0 1 1 0
Real Axis Real Axis

FiG. 5.1. The 0.7-numerical range of Py ().

square 2 = (—3,3) x (—i3,i3). In the right part of Figure 5.1, using Algorithms 1 and
3, we sketch an approximation of the boundary of Wy 7(P;) by drawing 638 open disks
S, pp) C Q\ Wo.z(Pr) with centers in Go 2(0.06) and radius p, < 0.04. Itis easy to
verify that Wy 7(P1) is connected with smooth boundary and contains the numerical range
W(Py) in Figure 4.1.

Algorithm 1 is simple and robust, but it is also expensive (even for medium sized matrix
polynomials) because of the required computations in Step 111 (b). Furthermore, Algorithm
2 is based on polar rotations (two dimensional) rather than spherical rotations (three dimen-
sional), which are required by Algorithm 3. Consequently, the cost of Algorithm 3 is much
higher than the cost of Algorithm 2. So, the problem of the design of less expensive algo-
rithms for the computation of the inner g-numerical radius of a general square matrix is still
challenging.
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