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COLLOCATION METHODS FOR CAUCHY SINGULAR INTEGRAL EQUATIONS
ON THE INTERVAL∗

P. JUNGHANNS† AND A. ROGOZHIN‡

Abstract. In this paper we consider polynomial collocation methods for the numerical solution of a singular
integral equation over the interval, where the operator of the equation is supposed to be of the form aI+bµ−1SµI+

K with S the Cauchy singular integral operator, with piecewise continuous coefficients a and b , and with a Jacobi
weight µ . K denotes an integral operator with a continuous kernel function. To the integral equation we apply two
collocation methods, where the collocation points are the Chebyshev nodes of the first and second kind and where
the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of
this collocation scheme in weighted L2-spaces, we derive necessary and sufficient conditions. Moreover, we discuss
stability of operator sequences belonging to algebras generated by the sequences of the collocation methods for the
above described operators. Finally, the so-called splitting property of the singular values of the sequences of the
matrices of the discretized equations is proved.

Key words. Cauchy singular integral equation, polynomial collocation method, stability, singular values, split-
ting property.

AMS subject classifications. 45L10, 65R20, 65N38.

1. Introduction and preliminaries. The present paper can be considered as an im-
mediate continuation of [7], where the stability of the collocation method with respect to
Chebyshev nodes of second kind for Cauchy singular integral equations (CSIEs) is investi-
gated. Here we purpose, firstly, to establish analogous results for collocation with respect to
Chebyshev nodes of first kind (and to compare them with the results of [7]) and, secondly, to
study the stability of operator sequences belonging to an algebra generated by the sequences
of the collocation methods applied to Cauchy singular integral operators (CSIOs). Moreover,
we will be able to prove results on the singular value distribution of the respective matrix
sequences related to the collocation methods.

A function a : [−1, 1] −→ C is called piecewise continuous if it has one-sided limits
a(x ± 0) for all x ∈ (−1, 1) and is continuous at ±1 . For definiteness, we assume that
the function values coincide with the limits from the left. The set of piecewise continuous
functions on [−1, 1] is denoted by PC.

We analyze polynomial collocation methods for CSIEs on the interval (−1, 1) of the type

a(x)u(x) +
b(x)

µ(x)

1

πi

∫ 1

−1

µ(y)u(y)

y − x
dy +

1∫

−1

k(x, y)u(y) dy = f(x) ,(1.1)

where a, b : [−1, 1] −→ C stand for given piecewise continuous functions, where the weight
function µ is of the form µ(x) = vγ,δ(x) := (1−x)γ(1+x)δ with real numbers −1 < γ, δ <
1 ,where the kernel k : (−1, 1)×(−1, 1) −→ C is supposed to be continuous (comp. Lemma
2.10), where the right-hand side function f is assumed to belong to a weighted L2-space L

2
ν ,

and where u ∈ L
2
ν stands for the unknown solution. The Hilbert space L

2
ν is defined as the

space of all (classes of) functions u : (−1, 1) −→ C which are square integrable with respect
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to the weight ν = vα,β , −1 < α, β < 1 . The inner product in this space is defined by

〈u, v〉ν :=

∫ 1

−1

u(x)v(x)ν(x) dx

and the norm by ‖u‖ν :=
√
〈u, u〉ν . In short operator notation (1.1) takes the form

Au := (aI + bµ−1SµI +K)u = f.(1.2)

Here aI : L
2
ν −→ L

2
ν denotes the multiplication operator defined by (au)(x) := a(x)u(x) ,

the operator S : L2
ν −→ L

2
ν is the CSIO given by

(Su)(x) :=
1

πi

∫ 1

−1

u(y)

y − x
dy,

and K : L
2
ν −→ L

2
ν stands for the integral operator with kernel k(x, y) . Note that the

condition −1 < α, β < 1 for the exponents of the classical Jacobi weight ν(x) guarantees
that the CSIO S : L2

ν −→ L
2
ν is continuous, i.e. S ∈ L(L2

ν) (see [3]).
Let σ(x) = (1 − x2)−

1
2 and ϕ(x) = (1 − x2)

1
2 denote the Chebyshev weights of first

and second kind, respectively. For the numerical solution of the CSIE (1.2), we consider the
polynomial collocation method

a(xτjn)un(x
τ
jn) +

b(xτjn)

µ(xτjn)

1

πi

∫ 1

−1

µ(y)un(y)

y − xτjn
dy +

1∫

−1

k(xτjn, y)un(y) dy = f(xτjn) ,

j = 1, . . . , n , where the collocation points xτjn are chosen as the Chebyshev nodes xσjn =

cos 2j−1
2n π of first kind or xϕjn = cos jπ

n+1 of second kind and where the trial function un is
sought in the space of all functions un = ϑpn with a polynomial pn of degree less than n
and with the Jacobi weight ϑ = v

1
4
−α

2
, 1
4
−β

2 . We write the above method in operator form as

Anun = Mnf , un ∈ imLn .(1.3)

Here Ln denotes the orthogonal projection of L
2
ν onto the n dimensional trial space imLn of

all polynomials of degree less than nmultiplied by ϑ . ByMn = Mτ
n we denote the interpola-

tion projection defined byMnf ∈ imLn and (Mnf)(xτjn) = f(xτjn) , j = 1, . . . , n . Finally,
the discretized integral operator An : imLn −→ imLn is given by An := MnA|imLn

.
In accordance with e.g. [11], we call the collocation method stable if the operators An are
invertible at least for all sufficiently large n and if the norms of the inverse operatorsA−1

n are
bounded uniformly with respect to n . Of course, the norm is the operator norm in the space
imLn if the last is equipped with the restriction of the L

2
ν -norm. We call the method (1.3)

convergent if, for any right-hand side f ∈ L
2
ν and for any approximating sequence {fn} ,

fn ∈ imLn , with ‖f − fn‖ν −→ 0 , the approximate solutions un obtained by solving
Anun = fn converge to the exact solution u of (1.2) in the norm of L

2
ν . Note that the stabil-

ity implies bounded condition numbers for the matrix representation of An in a convenient
basis, and, together with the consistency relation AnLn −→ A , it implies the convergence.

In all what follows, for the exponents in the weight functions µ and ν , we suppose

− 1 < α− 2γ < 1 , −1 < β − 2δ < 1 ,(1.4)

and

α0 := γ +
1

4
− α

2
6= 0 , β0 := δ +

1

4
− β

2
6= 0 .(1.5)
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Note that condition (1.4) ensures the boundedness of the integral operator A ∈ L(L2
ν )

whereas (1.5) is needed to derive strong limits for the discrete operators (see Lemma 3.4).
In the subsequent analysis, we will show that there exist four limit operators Wω{An} ,

ω = 1, 2, 3, 4 , introduced in the Lemmata 3.2–3.4. Moreover, we show that the map-
pings {An} 7→ Wω{An} can be extended to *-homomorphisms Wω : A0 −→ L(L2

ν ) ,
where A0 denotes a C∗-algebra of operator sequences including all sequences {Mn(aI +
bµ−1SµI)Ln} , a, b ∈ PC . The invertibility of Wω{An} , ω = 1, 2, 3, 4 , will turn out to be
necessary and sufficient for the stability of {An} ∈ A0 .

2. AC∗-algebra of operator sequences and stability. In this section we will introduce
one of the C∗-algebras of operator sequences under consideration here. For n ≥ 0 , let
pσn = Tn and pϕn = Un stand for the orthonormal polynomials of degree n with respect to the
weight functions σ and ϕ , respectively. That means that

T0(x) =
1√
π
, Tn(cos s) =

√
2

π
cosns, n ≥ 1, s ∈ (0, π) ,

and

Un(cos s) =

√
2

π

sin(n+ 1)s

sin s
, n ≥ 0, s ∈ (0, π) .

We set

ũn(x) := ϑ(x)Un(x) , n = 0, 1, 2, . . . ,

with ϑ =
√
ν−1ϕ = v

1
4
−α

2
, 1
4
−β

2 . Then the solution of (1.3) can be represented by

un(x) =

n−1∑

k=0

ξknũk(x) ,

and, with respect to the orthonormal system {ũn}∞n=0 in L
2
ν , the orthogonal projection Ln

takes the form

Lnu =

n−1∑

k=0

〈u, ũk〉ν ũk .

The interpolation operatorMn = Mτ
n can be written as M τ

n = ϑLτnϑ
−1I , where Lτn denotes

the polynomial interpolation operator with respect to the nodes xjn = xτjn , j = 1, . . . , n . By
`2 we denote the Hilbert space of all square summable sequences ξ = {ξk}∞k=0 of complex
numbers equipped with the inner product

〈ξ, η〉`2 :=

∞∑

k=0

ξkηk .

Finally, we introduce the Christoffel numbers with respect to the weights σ and ϕ by

λσkn :=
π

n
, λϕkn :=

π[ϕ(xϕkn)]2

n+ 1
, k = 1, . . . , n ,

and the discrete weights

ωσkn :=

√
π

n
v

1
4
+α

2
, 1
4
+ β

2 (xσkn) , ωϕkn :=

√
π

n+ 1
v

1
4
+α

2
, 1
4
+β

2 (xϕkn) , k = 1, . . . , n .
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The proof of the approximation properties of the interpolation operators Mn is based on the
following auxiliary results.

LEMMA 2.1 ([10],Theorem 9.25). Let µ, ν be classical Jacobi weights with µν ∈
L

1(−1, 1) and let j ∈ N be fixed. Then for each polynomial q with deg q ≤ jn ,

n∑

k=1

λµkn|q(x
µ
kn)| |ν(xµkn)| ≤ const

∫ 1

−1

|q(x)|µ(x)ν(x) dx,

where the constant does not depend on n and q and where xµkn and

λµkn =

∫ 1

−1

`µkn(x)µ(x) dx with `µkn(x) =
∏

j=1,j 6=k

x− xµjn
xµkn − xµjn

are the nodes and the Christoffel numbers of the Gaussian rule with respect to the weight µ ,
respectively.

Let Qµn denote the Gaussian quadrature rule with respect to the weight µ ,

Qµnf =

n∑

k=1

λµknf(xµkn) ,

and write R = R(−1, 1) for the set of all functions f : (−1, 1) −→ C , which are bounded
and Riemann integrable on each closed subinterval of (−1, 1) .

LEMMA 2.2 ([2], Satz III.1.6b and Satz III.2.1). Let µ(x) = (1 − x)γ(1 + x)δ with
γ, δ > −1 . If f ∈ R satisfies

|f(x)| ≤ const (1 − x)ε−1−γ(1 + x)ε−1−δ , −1 < x < 1,

for some ε > 0 , then lim
n→∞

Qµnf =

∫ 1

−1

f(x)µ(x) dx . If even

|f(x)| ≤ const (1 − x)ε−
1+γ
2 (1 + x)ε−

1+δ
2 , −1 < x < 1,

then lim
n→∞

‖f − Lµnf‖µ = 0 .

COROLLARY 2.3. Let f ∈ R and, for some ε > 0 ,

|f(x)| ≤ const (1 − x)ε−
1+α

2 (1 + x)ε−
1+β
2 , −1 < x < 1 .

Then lim
n→∞

‖f −Mτ
nf‖ν = 0 for τ = σ and τ = ϕ .

Proof. Introduce the quadrature rule

Qnf =

∫ 1

−1

(Lσnf)(x)ϕ(x) dx =

n∑

k=1

σknf(xσkn) ,

where

σkn =

∫ 1

−1

`σkn(x)ϕ(x) dx =

∫ 1

−1

`σkn(x)(1 − x2)σ(x) dx =
π

n
[ϕ(xσkn)]2

for n > 2 . Consequently,

Qnf =
π

n

n∑

k=1

[ϕ(xσkn)]2f(xσkn) .
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Since the nodes xσkn of the quadrature rule Qn are the zeros of 2Tn(x) = Un(x)−Un−2(x) ,
the estimate

∫ 1

−1

|(Lσnf)(x)|2ϕ(x) dx ≤ 2Qn|f |2(2.1)

holds true (see [2, Hilfssatz 2.4, §III.2]). As an immediate consequence we obtain

‖Mσ
nf‖2

ν = ‖Lσnϑ−1f‖2

ϕ ≤ 2π

n

n∑

k=1

|ϑ−1(xσkn)ϕ(xσkn)f(xσkn)|2 = 2Qσn|ϑ−1ϕf |2 .(2.2)

Now let ε > 0 be arbitrary and p be a polynomial such that ‖ϑp− f‖ν < ε . For n > deg p

we have ‖Mσ
nf −f‖2

ν ≤ 2
(
‖Mσ

n (ϑp− f)‖2
ν + ‖ϑp− f‖2

ν

)
. Since, in view of Lemma 2.2,

lim
n→∞

Qσn|ϑ−1ϕ(ϑp − f)|2 = ‖ϑ−1ϕ(ϑp− f)‖2

σ = ‖ϑp− f‖2
ν , we get in view of (2.2) that

lim sup
n→∞

‖Mσ
nf − f‖2

ν < 6ε2 .

The proof for the case τ = ϕ is analogous (see also [2, Satz III.2.1]).
Now we start to prepare the definition of a certain C∗-algebra of operator sequences,

which is closely related to the above mentioned four limit operators defined as strong limits

Wω{An} := lim
n→∞

E(ω)
n An(E(ω)

n )
−1
L(ω)
n , ω ∈ T := {1, 2, 3, 4} ,

in some Hilbert spaces Xω . Here, L(ω)
n : Xω −→ Xω are projections and E(ω)

n : imLn −→
imL

(ω)
n are certain operators defined by

X1 := X2 := L
2
ν , X3 := X4 := `2 , L(1)

n := L(2)
n := Ln , L

(3)
n := L(4)

n := Pn,

E(1)
n := Ln , E

(2)
n := Wn , E

(3)
n = E(3)

n,τ := Vn = V τn , E
(4)
n = E(4)

n,τ := Ṽn = Ṽ τn ,

and

Pn{ξ0, ξ1, ξ2, . . .} := {ξ0, . . . , ξn−1, 0, 0, 0, . . .} , Wnu :=

n−1∑

k=0

〈u, ũn−1−k〉ν ũk ,

V τn u := {ωτ1nu(xτ1n), . . . , ωτnnu(x
τ
nn), 0, 0, . . .} ,

Ṽ τn u := {ωτnnu(xτnn), . . . , ωτ1nu(x
τ
1n), 0, 0, . . .} .

Immediately from the definitions, we conclude that

(E(1)
n )

−1
= Ln , (E(2)

n )
−1

= Wn ,

(E(3)
n,τ )

−1
ξ =

n∑

k=1

ξk−1

ωτkn

˜̀τ
kn , (E(4)

n,τ )
−1
ξ =

n∑

k=1

ξn−k
ωτkn

˜̀τ
kn ,

where

˜̀τ
kn(x) :=

ϑ(x)

ϑ(xτkn)
`τkn(x) =

ϑ(x)pτn(x)

ϑ(xτkn)(x − xτkn)(pτn)′(xτkn)
.
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Between the operators Vn and Ṽn , we have the relations

ṼnV
−1
n Pn = VnṼ

−1
n Pn = W̃nPn,(2.3)

where W̃n ∈ L(imPn) is defined by

W̃n{ξ0, ξ1, . . . , ξn−1} = W̃−1
n {ξ0, ξ1, . . . , ξn−1} = {ξn−1, ξn−2, . . . , ξ0} .

Furthermore, the operatorsE(ω)
n,σ , ω ∈ {1, 2} , and E(ω)

n,ϕ , ω ∈ {1, 2, 3, 4} , are unitary opera-
tors, i.e.

(E(ω)
n,τ )

∗
= (E(ω)

n,τ )
−1
.(2.4)

For E(ω)
n,σ , ω ∈ {3, 4}, we have the following result.

LEMMA 2.4. Let Vn = V σn and Ṽn = Ṽ σn . Then

(V −1
n )

∗
=

1

2
Vn(Ln + Ln−1) , (Ṽ −1

n )
∗

=
1

2
Ṽn(Ln + Ln−1) ,

and, consequently,

V ∗
n = ((V −1

n )
∗
)
−1

= (2Ln − Ln−1)V
−1
n , Ṽ ∗

n = ((Ṽ −1
n )

∗
)
−1

= (2Ln − Ln−1)Ṽ
−1
n .

Proof. For symmetry reasons, we may restrict our considerations to the operator (V −1
n )

∗
.

Let j = 0, 1, . . . , n− 1 . Then

〈
V −1
n ξ, u

〉
ν

=

〈
n∑

k=1

ξk−1

ωσknϑ(xσkn)
ϑ`σkn, ϑUj

〉

ν

=

〈
n∑

k=1

ξk−1

ωσknϑ(xσkn)
`σkn, ϕ

2Uj

〉

σ

,

and, for j = 0, . . . , n− 2 , we obtain

〈
V −1
n ξ, ũj

〉
ν

=
π

n

n∑

k=1

ξk−1[ϕ(xσkn)]2

ωσknϑ(xσkn)
Uj(x

σ
kn)

=
n∑

k=1

ξk−1ω
σ
knϑ(xσkn)Uj(x

σ
kn) = 〈ξ, Vnũj〉`2 .

For j = n− 1, using the relation

(1 − x2)Un−1(x) =
1

2
[γn−1Tn−1(x) − γn+1Tn+1(x)] ,(2.5)

where γ0 =
√

2 and γn = 1 for n ≥ 1 , and the fact that

Tn+1(x
σ
kn) = −Tn−1(x

σ
kn) , n > 1 ,(2.6)

we get, for n > 1 ,

〈
V −1
n ξ, ũn−1

〉
ν

=
1

2

〈
n∑

k=1

ξk−1

ωσknϑ(xσkn)
`σkn, Tn−1 − Tn+1

〉

σ
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=
π

2n

n∑

k=1

ξk−1

ωσknϑ(xσkn)
Tn−1(x

σ
kn)

=
π

2n

n∑

k=1

ξk−1

ωσknϑ(xσkn)
[ϕ(xσkn)]2Un−1(x

σ
kn)

=
1

2

n∑

k=1

ξk−1ω
σ
knϑ(xσkn)Un−1(x

σ
kn)

=
1

2
〈ξ, Vnũn−1〉`2 .

LEMMA 2.5. The sequences
{
E

(ω1)
n

(
E

(ω2)
n

)−1
L

(ω2)
n

}
converge weakly to zero for all

indices ω1, ω2 ∈ T with ω1 6= ω2 .
Proof. The proof for the case τ = ϕ one can find in [7, Lemma 2.1]. The case τ = σ can

be dealt with completely analogous after checking the uniform boundedness of the sequences
{V σn } , {(V σn )−1} , and {Ṽ σn } , {(Ṽ σn )−1} . But, this follows, by using Lemma 2.1, relation
(2.2), and the notation u = ϑpn ∈ imLn , from

‖V σn u‖2
l2 =

π

n

n∑

k=1

ϕ2(xσkn)|pn(xσkn)|2

≤ const

∫ 1

−1

∣∣∣∣
ϑ(x)pn(x)

ϑ(x)

∣∣∣∣
2

[ϕ(x)]2σ(x) dx = const ‖u‖2
ν

and

∥∥(V σn )−1ξ
∥∥2

ν
=

∥∥∥∥∥

n∑

k=1

ξk−1

√
n

π

ϑ(xσkn)

ϕ(xσkn)
˜̀σ
kn

∥∥∥∥∥

2

ν

≤ 2Qσn

∣∣∣∣∣

n∑

k=1

√
n

π
ξk−1

˜̀σ
kn(x)

∣∣∣∣∣

2

= 2

n∑

k=1

|ξk−1|2 = 2‖ξ‖2
`2 .

Analogously we get the uniform boundedness of the sequences
{
Ṽ σn

}
and

{
(Ṽ σn )−1

}
.

COROLLARY 2.6. The sequences
{(
E

(ω1)
n

)−∗(
E

(ω2)
n

)∗
L

(ω2)
n

}
converge weakly to zero

for all indices ω1, ω2 ∈ T with ω1 6= ω2 .
Of course, all constructions in what follows depend on the choice of τ = σ or τ = ϕ .

Nevertheless, we will omit the subscript τ if there is no possibility of misunderstandings.
By F we denote the set of all sequences {An} = {An}∞n=1 of linear operators An :

imLn −→ imLn , for which there exist operators Wω{An} ∈ L(Xω) such that, for all
ω ∈ T ,

E(ω)
n An(E(ω)

n )
−1
L(ω)
n −→Wω{An} ,

(2.7) (
E(ω)
n An(E

(ω)
n )

−1
L(ω)
n

)∗
−→Wω{An}∗

holds in Xω in the sense of strong convergence for n −→ ∞ . If we define, for λ1, λ2 ∈ C ,

λ1{An} + λ2{Bn} := {λ1An + λ2Bn} ,



ETNA
Kent State University 
etna@mcs.kent.edu

18 Collocation methods for Cauchy singular integral equations

{An}{Bn} := {AnBn} , {An}∗ := {A∗
n} ,

and

‖{An}‖F := sup
{
‖AnLn‖L(L2

ν)
: n = 1, 2, . . .

}
,

then it is not hard to see that F becomes a Banach algebra with unit element {Ln} . From
Lemma 2.5 and Corollary 2.6 we conclude

COROLLARY 2.7. For all ω ∈ T and all compact operators Tω ∈ K(Xω) , the se-

quences {A(ω)
n } =

{
(E

(ω)
n )

−1
L

(ω)
n TωE

(ω)
n

}
belong to F , and for ω1 6= ω2 , we get the

strong limits

E(ω1)
n A(ω2)

n (E(ω1)
n )

−1
L(ω1)
n −→ 0 ,

(
E(ω1)
n A(ω2)

n (E(ω1)
n )

−1
L(ω1)
n

)∗
−→ 0 .

COROLLARY 2.8. The algebra F is a C∗-algebra and the mappings Wω : F −→
L(Xω) , ω ∈ T , are *-homomorphisms.

Proof. Of course, the mappings Wω : F −→ L(Xω) , ω ∈ T , are homomorphisms.
Hence, it suffices to show that the operator sequences {E(ω)

n A∗
n(E

(ω)
n )−1L

(ω)
n } and the re-

spective sequences of adjoint operators are strongly convergent for all sequences {An} ∈ F
and that Wω{A∗

n} = (Wω{An})∗ , ω ∈ T . In case (E
(ω)
n )−1 = (E

(ω)
n )∗ this can be easily

verified. Consequently, due to (2.4), it remains to consider the case τ = σ , ω = 3, 4 .
For symmetry reasons we may restrict the proof to the case τ = σ , ω = 3 . Let {An} ∈

F .Using Lemma 2.4 , the relationLn−Ln−1 = WnL1Wn , the compactness ofL1 : L2
ν −→

L
2
ν , and Corollary 2.7, we get

VnA
∗
nV

−1
n Pn

=
1

2

[
Vn(2Ln −WnL1Wn)An(Ln +WnL1Wn)V

−1
n Pn

]∗

=
(
Pn + V −1

n WnL1WnV
−1
n Pn

)∗ (
VnAnV

−1
n Pn

)∗ 1

2

(
2Pn − V −1

n WnL1WnVnPn
)∗

−→ (W3{An})∗ .

The proof for the respective sequence {(VnA∗
nV

−1
n Pn)∗} is analogous.

Using Corollary 2.7, we define the subset J ⊂ F , of all sequences of the form

4∑

ω=1

{
(E(ω)

n )−1L(ω)
n TωE

(ω)
n

}
+ {Cn}

where Tω ∈ K(Xω) and where {Cn} is in the ideal N ⊂ F of all sequences {Cn} tending
to zero in norm, i.e. of all sequences with ‖CnLn‖L(L2

ν)
−→ 0 . Now, the following theorem

is crucial for our stability and convergence analysis.
THEOREM 2.9 ([11], Theorem 10.33). The set J forms a two-sided closed ideal of F .

A sequence {An} ∈ F is stable if and only if the operatorsWω{An} : Xω −→ Xω , ω ∈ T ,
are invertible and if the coset {An} + J is invertible in F/J .

Furthermore, we will need the auxiliary algebra F2 of sequences {An} of linear opera-
tors An : imLn −→ imLn , for which (2.7) holds true for ω = 1, 2 . Moreover, we define
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the subset J2 ⊂ F2 of all sequences of the form

2∑

ω=1

{
(E(ω)

n )−1L(ω)
n TωE

(ω)
n

}
+ {Cn}

where Tω ∈ K(Xω) and where {Cn} is in the ideal N ⊂ F . Obviously, the set J2 forms a
two-sided closed ideal of F2 , and F ⊂ F2 , J2 ⊂ J .

In addition to the operator sequences corresponding to the collocation method applied
to compact operators, the sequences of quadrature discretizations of integral operators with
continuous kernels are contained in J , too. Indeed, we can formulate the following lemma.

LEMMA 2.10. Suppose the function k(x, y)/ρ(y) , where ρ =
√
νϕ = ϑ−1ϕ , is con-

tinuous on [−1, 1] × [−1, 1] and that K is the integral operator with kernel k(x, y) . Then
{MnKLn} ∈ J2 ⊂ J . Moreover, if the approximationsKn ∈ L(imLn) are defined by

Kn = (E(3)
n )−1

(
ω̃τnk(x

τ
j+1,n, x

τ
k+1,n)ρ(xτj+1,n)ϑ(xτk+1,n)

)n−1

j,k=0
E(3)
n Ln ,

where ω̃σn = π/n and ω̃ϕn = π/(n + 1) , then the operator norm of Kn − LnK|imLn tends
to zero and {Kn} is in J2 .

Proof. Consider the case τ = σ . Since

∫ 1

−1

`σkn(y)ϕ(y) dy =

∫ 1

−1

`σkn(y)ϕ2(y)σ(y) dy =
π

n
[ϕ(xσkn)]2 ,

the operators Kn can be written as Mσ
nKn , where

(Knun)(x) =

∫ 1

−1

ϕ(y)Lσn[k(x, ·)ϕ−1un](y) dy .

Obviously, due to the Arzela-Ascoli theorem the operator K : L
2
ν → C[−1, 1] is compact.

Hence, lim
n→∞

‖MnKLn − LnKLn‖L(L2
ν)

= 0 (see Corollary 2.3), and it is sufficient to

show that lim
n→∞

‖KnLn − KLn‖L(L2
ν ,C[−1,1]) = 0 . To this end, we introduce operators

K̃n : imLn −→ C[−1, 1] by

(K̃nun)(x) =

∫ 1

−1

ϕ(y)Lσn[k(x, ·)ρ−1](y)(ϑ−1un)(y) dy .

Due to the exactness of the Gaussian rule we have, for j = 0, . . . , n− 2 ,

K̃nũj =
〈
Lσn[k(x, ·)ρ−1], ϕ2Uj

〉
σ

=
〈
Lσn[k(x, ·)ρ−1Uj ], ϕ

2
〉
σ

= Knũj ,

and, in view of relations (2.5), (2.6),

2K̃nũn−1 =
〈
Lσn[k(x, ·)ρ−1], 2ϕ2Un−1

〉
σ

=
〈
Lσn[k(x, ·)ρ−1], Tn−1 − Tn+1

〉
σ

=
〈
Lσn[k(x, ·)ρ−1Un−1], ϕ

2
〉
σ

= Knũn−1 .

Consequently, KnLn = K̃n(2Ln − Ln−1) .
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Now, we deal with lim
n→∞

‖K̃nLn − KLn‖L(L2
ν ,C[−1,1]) . We take an arbitrary u ∈ L

2
ν

and get Lnu = ϑpn , where pn is a certain polynomial of degree less than n . By kn(x, y)
we refer to the best uniform approximation to k(x, y)/ρ(y) in the space of polynomials with
degree less then n in both variables. Using (2.1) we get, for x ∈ [−1, 1] ,

|(K̃nLnu−KLnu)(x)|

=

∣∣∣∣
∫ 1

−1

ϕ(y)
(
Lσn[k(x, ·)ρ−1](y) − k(x, y)/ρ(y)

)
pn(y) dy

∣∣∣∣

≤
∣∣∣∣
∫ 1

−1

ϕ(y)Lσn[k(x, ·)ρ−1 − kn(x, .)](y)pn(y) dy

∣∣∣∣

+

∣∣∣∣
∫ 1

−1

ϕ(y)[k(x, y)/ρ(y) − kn(x, y)](y)pn(y) dy

∣∣∣∣

≤
(∫ 1

−1

∣∣∣Lσn[k(x, ·)ρ−1 − kn(x, y)](y)
∣∣∣
2

ϕ(y) dy

)1/2

‖pn‖ϕ

+

(∫ 1

−1

∣∣∣k(x, y)/ρ(y) − kn(x, y)
∣∣∣
2

ϕ(y) dy

)1/2

‖pn‖ϕ

≤
(

2π

n

n∑

k=1

|k(x, xσkn)/ρ(xσkn) − kn(x, x
σ
kn)|2[ϕ(xσkn)]2

)1/2

‖Lnu‖ν

+‖k(·, ·)ρ−1 − kn(·, ·)‖∞‖1‖ϕ‖Lnu‖ν

≤ 3‖k(·, ·)ρ−1 − kn(·, ·)‖∞‖1‖ϕ‖Lnu‖ν .
Thus, since lim

n→∞
‖k(·, ·)ρ−1 − kn(·, ·)‖∞ = 0 , we obtain

lim
n→∞

‖KnLn −KLn‖L(L2
ν ,C[−1,1])

≤ lim
n→∞

‖K̃nLn −KLn‖L(L2
ν ,C[−1,1])‖2Ln − Ln−1‖L(L2

ν)

+ lim
n→∞

‖K(Ln − Ln−1)‖L(L2
ν ,C[−1,1]) = 0 .

The proof in case of τ = ϕ is similar and can be found in the proof of [7, Lemma 2.4].

3. The operator sequence of the collocation method. We will show that the sequence
{MnAPn} corresponding to the singular integral operator A ∈ L(L2

ν) (cf. (1.2) belongs to
the algebra F , and we will compute Wω{An} , ω ∈ T . We do this separately for multipli-
cation operators, for the singular integral operator µ−1Sµ with a special weight µ = ρ (see
Lemma 2.10), and for µ−1Sµ with a general µ .

We will use the well-known relations between the Chebyshev polynomials of first and
second kind

SϕUn = iTn+1 , Sϕ
−1Tn = −iUn−1 , n = 0, 1, 2, . . . , U−1 ≡ 0 ,(3.1)

and

Tn+1 =
1

2
(Un+1 − Un−1) , n = 0, 1, 2, . . . , U−1 ≡ 0 .(3.2)
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Furthermore, for the description of the occuring strong limits we need the operators

Jν ∈ L(L2
ν ,L

2
σ) , u 7→

∞∑

n=0

γn〈u, ũn〉νTn ,(3.3)

J−1
ν ∈ L(L2

σ ,L
2
ν) , u 7→

∞∑

n=0

1

γn
〈u, Tn〉σũn ,(3.4)

V ∈ L(L2
ν) , u 7→

∞∑

n=0

〈u, ũn〉ν ũn+1 ,(3.5)

with γn as in (2.5), and their adjoint operators

J∗
ν ∈ L(L2

σ ,L
2
ν) , u 7→

∞∑

n=0

γn〈u, Tn〉σũn ,

J−∗
ν ∈ L(L2

ν ,L
2
σ) , u 7→

∞∑

n=0

1

γn
〈u, ũn〉νTn ,

V ∗ ∈ L(L2
ν) , u 7→

∞∑

n=0

〈u, ũn+1〉ν ũn .

Finally, we will use the following special case of Lebesgue’s dominated convergence theorem.

REMARK 3.1. If ξ, η ∈ `2 , ξn = {ξnk } , |ξnk | ≤ |ηk | for all n > n0 , and if lim
n→∞

ξnk = ξk

for all k = 0, 1, 2, ..., then lim
n→∞

‖ξn − ξ‖`2 = 0 .

LEMMA 3.2. Let a ∈ PC , A = aI , An = MnaLn . Then {An} ∈ F . In particular,
W1{An} = A , W3{An} = a(1)I , W4{An} = a(−1)I , and

W2{An} =





J−1
ν aJν , τ = σ ,

aI = A , τ = ϕ .

Proof. The proof in case of τ = ϕ is given in [7, Lemma 3.8], and the proof in case of
τ = σ is very similar. Thus, here we only pay attention to the proof of the convergence of
(Mσ

naLn)
∗ and of WnM

σ
naWn .

We write Mσ
nf =

n−1∑

j=0

ασjn(f)ũj and get, for j = 0, 1, . . . , n− 2 ,

ασjn(f) = 〈Mσ
nf, ũj〉ν = 〈Lσnϑ−1f, ϕ2Uj〉σ

=
π

n

n∑

k=1

f(xσkn)

ϑ(xσkn)
[ϕ(xσkn)]2Uj(x

σ
kn)

=
π

n

n∑

k=1

f(xσkn)ν(xσkn)ϕ(xσkn)ũj(x
σ
kn) .

For j = n− 1 , n ≥ 2 , we use relations (2.5) and (2.6) to obtain

ασn−1,n(f) = 〈Mσ
nf, ũn−1〉ν = 〈Lσnϑ−1f, ϕ2Un−1〉σ
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=
1

2
〈Lσnϑ−1f, Tn−1〉σ

=
π

2n

n∑

k=1

f(xσkn)

ϑ(xσkn)
Tn−1(x

σ
kn)

=
π

2n

n∑

k=1

f(xσkn)

ϑ(xσkn)
[ϕ(xσkn)]2Un−1(x

σ
kn)

=
π

2n

n∑

k=1

f(xσkn)ν(xσkn)ϕ(xσkn)ũn−1(x
σ
kn) .

Hence,

ασjn(f) = εjn
π

n

n∑

k=1

f(xσkn)ν(xσkn)ϕ(xσkn)ũj(x
σ
kn) ,(3.6)

where εjn = 1 for j = 0, 1, . . . , n− 2 and εn−1,n = 1/2 . As an immediate consequence of
(3.6) we obtain, for u, v ∈ L

2
ν ,

〈Mσ
naLnu, v〉ν =

n−1∑

j=0

〈v, ũj〉ν
n−1∑

l=0

〈u, ũl〉ν〈Mσ
naũl, ũj〉ν

=

n−1∑

j=0

εjn
π

n

n∑

k=1

a(xσkn)

n−1∑

l=0

〈u, ũl〉ν ũl(xσkn)ν(xσkn)ϕ(xσkn)ũj(x
σ
kn)〈v, ũj〉ν

=

n−1∑

l=0

π

n

n∑

k=1

a(xσkn)

n−1∑

j=0

εjn〈v, ũj〉ν ũj(xσkn)ν(xσkn)ϕ(xσkn)ũl(xσkn)〈u, ũl〉ν

=
1

2
〈u, (2Ln − Ln−1)M

σ
na(Ln + Ln−1)v〉ν .

Thus,

(Mσ
naLn)

∗ =
1

2
(2Ln − Ln−1)M

σ
na(Ln + Ln−1) ,(3.7)

whence we have the strong convergence of (Mσ
naLn)

∗ to aI in L
2
ν .

We verify the convergence of WnM
σ
naWnũm for each fixed m ≥ 0 . Let n > m . With

the help of (3.6), the identity

ũn−1−m(xσkn) =
ϑ(xσkn)

ϕ(xσkn)
ϕ(xσkn)Un−1−m(xσkn)

=
1

ρ(xσkn)

√
2

π
sin

(n−m)(2k − 1)π

2n
(3.8)

=
(−1)k+1

ρ(xσkn)
γmTm(xσkn) ,
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and the formula for the Fourier coefficients of the interpolating polynomial Lσnf ,

Lσnf =

n−1∑

j=0

α̃σjn(f)Tj with α̃σjn(f) =
π

n

n∑

k=1

f(xσkn)Tj(x
σ
kn) ,(3.9)

we get, using Lemma 2.2,

WnM
σ
naWnũm =

n−1∑

j=0

ασn−1−j,n(aũn−1−m)ũj

=

n−1∑

j=0

εn−1−j,n
π

n

n∑

k=1

a(xσkn)ũn−1−m(xσkn)ν(xσkn)ϕ(xσkn)ũn−1−j(x
σ
kn)ũj

=

n−1∑

j=0

εn−1−j,n
π

n

n∑

k=1

a(xσkn)γmTm(xσkn)γjTj(x
σ
kn)ũj

=

n−1∑

j=0

π

n

n∑

k=1

a(xσkn)(Jν ũm)(xσknTj(x
σ
kn)J−1

ν Tj

= J−1
ν LσnaJν ũm −→ J−1

ν aJν ũm in L
2
ν .

Thus,

WnM
σ
naWn = J−1

ν LσnaJνLn −→ J−1
ν aJν in L

2
ν .(3.10)

LEMMA 3.3. Suppose A = ρ−1SρI , where ρ = ϑ−1ϕ =
√
νϕ , and An = MnALn .

Then {An} ∈ F and

W1{An} = A , W2{An} =





iJ−1
ν ρV ∗ , τ = σ ,

−A , τ = ϕ ,

and W3/4{An} = ±S with

S =





(
1 − (−1)j−k

πi(j − k)
− 1 − (−1)j+k+1

πi(j + k + 1)

)∞

j,k=0

, τ = σ ,

(
2(k + 1)

[
1 − (−1)j−k

]

πi [(j + 1)2 − (k + 1)2]

)∞

j,k=0

, τ = ϕ .

Proof. The case τ = ϕ is considered in [7, Lemma 3.9]. Thus, let us consider the case
τ = σ .

From (3.1) it follows that Sρun is a polynomial of degree not greater than n if un ∈
imLn . Hence, applying (2.2), Lemma 2.1, and the boundedness of the operator S : L

2
σ −→

L
2
σ , we obtain, for un ∈ imLn ,

‖Mσ
nρ

−1Sρun‖2

ν ≤ 2Qσn|Sρun|2

≤ const

∫ 1

−1

|(Sρun)(x)|2σ(x) dx

≤ const ‖ρun‖2
σ = const ‖un‖2

ν ,
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which shows the uniform boundedness of {An} . Again with the help of (3.1) as well as with
the help of Corollary 2.3 we see that, for n > m ,

Mσ
nρ

−1Sρũm = iMσ
nρ

−1Tm+1 → iρ−1Tm+1 = ρ−1Sρũm in L
2
ν .

Whence, the strong convergence of {An} to A is proved.
The well-known Poincarè-Bertrand commutation formula implies that, for u ∈ L

2
ν and

v ∈ L
2
ν−1 ,

〈Su, v〉 = 〈u, Sv〉,

where 〈., .〉 denotes the L
2(−1, 1) inner product without weight. Consequently, the adjoint

operator of S : L
2
ν −→ L

2
ν is equal to ν−1Sν : L

2
ν −→ L

2
ν . Again, taking into account that

SρLnu is a polynomial with a degree ≤ n (cf. (3.1), we get, for j = 0, ..., n−2 and u ∈ L
2
ν ,

〈Mσ
nρ

−1SρLnu, ũj〉ν = 〈Lσnϕ−1SρLnu, ϕ
2Uj〉σ

=
π

n

n∑

k=1

(SρLnu)(x
σ
kn)ϕ(xσkn)Uj(x

σ
kn) = 〈SρLnu, LσnϕUj〉σ

= 〈SρLnu, σν−1LσnϕUj〉ν = 〈ρLnu, ν−1SσLσnϕUj〉ν
= 〈u, LnϑSσLσnρũj〉ν

and, using relations (2.5) and (2.6),

〈Mσ
nρ

−1SρLnu, ũn−1〉ν = 〈Lσnϕ−1SρLnu, ϕ
2Un−1〉σ

=
π

2n

n∑

k=1

(SρLnu)(x
σ
kn)

ϕ(xσkn)
Tn−1(x

σ
kn)

=
1

2
〈SρLnu, LσnϕUn−1〉σ

=
1

2
〈u, LnϑSσLσnρũn−1〉ν .

Hence, in view of (3.1)

(Mσ
n ρ

−1SρLn)
∗ =

1

2
LnϑSσL

σ
nρ(Ln + Ln−1) =

1

2
ϑSσLσnρ(Ln + Ln−1) .

Using Lemma 2.2, we obtain the strong convergence of (Mσ
n ρ

−1SρLn)
∗ to ϑSϑ−1I .

In view of (3.1), (3.2), (3.10), (2.5), and Lemma 2.2, we have, for n > m+ 1 ,

WnM
σ
nρ

−1SρWnũm = WnM
σ
n ρ

−1Sρũn−1−m

= iWnM
σ
nρ

−1Tn−m

=
i

2
WnM

σ
nρ

−1ϑ−1(ũn−m − ũn−m−2)

= − i

2
WnM

σ
nϕ

−1Wn(ũm+1 − ũm−1)

= − i

2
J−1
ν Lσnϕ

−1Jν(ũm+1 − ũm−1)
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=
i

2
J−1
ν Lσnϕ

−1(γm−1Tm−1 − γm+1Tm+1)

= iJ−1
ν Lσnϕ

−1ϕ2Um−1 → iJ−1
ν ϕUm−1

= iJ−1
ν ρũm−1 .

Obviously, WnM
σ
nρ

−1SρWnũ0 = iWnM
σ
n ρ

−1Tn = 0 . Hence, by means of the shift op-
erator V introduced in (3.5) and by using the uniform boundedness of {Mσ

nALn} , we can
derive the strong convergence

WnM
σ
nρ

−1SρWn = iJ−1
ν LσnρV

∗Ln → iJ−1
ν ρV ∗ in L

2
ν .(3.11)

Using (3.11), we get, for all u, v ∈ L
2
ν ,

〈WnM
σ
n ρ

−1SρWnu, v〉ν = i〈J−1
ν LσnρV

∗Lnu, Lnv〉ν
= i〈LσnρV ∗Lnu, J

−∗
ν Lnv〉σ

=
iπ

n

n∑

k=1

ρ(xσkn)(V ∗Lnu)(x
σ
kn)(J−∗

ν Lnv)(x
σ
kn)

= i〈ϑ−1ϕ2V ∗Lnu, L
σ
nϕ

−1J−∗
ν Lnv〉σ

= i〈V ∗Lnu, ν
−1ϕϑ−2Mσ

nρ
−1J−∗

ν Lnv〉ν
= i〈u, LnVMσ

nρ
−1J−∗

ν Lnv〉ν .

Thus, we have (see Corollary 2.3)

(WnM
σ
nρ

−1SρWn)
∗ = −iLnVM

σ
nρ

−1J−∗
ν Ln −→ −iV ρ−1J−∗

ν in L
2
ν .

Now, let us investigate the sequence {V σ
nM

σ
nALn(V

σ
n )−1Pn} . For n > m > 0 , we have

V σnM
σ
n ρ

−1Sρ(V σn )−1em−1 = V σnM
σ
n ρ

−1S
ρ

ωmn
˜̀σ
mn

= V σn

n∑

k=1

1

ωmn
ρ−1(xσkn)

(
Sρ˜̀σmn

)
(xσkn)˜̀σkn

=

{
ωjn
ωmn

ρ−1(xσjn)
(
Sρ˜̀σmn

)
(xσjn)

} n

j=1

.

We compute, for x 6= xσkn ,

(ρ−1Sρ˜̀kn)(x)

=
1

ρ(x)ϑ(xσkn)T ′
n(x

σ
kn)

1

πi

∫ 1

−1

ϕ(y)Tn(y)

y − xσkn
dy

=
1

ρ(x)ϑ(xσkn)T ′
n(x

σ
kn)

1

πi

1

x− xσkn

∫ 1

−1

(
1

y − x
− 1

y − xσkn

)
ϕ(y)Tn(y) dy
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and, taking into account (3.1),

1

π

∫ 1

−1

1

y − x
ϕ(y)Tn(y) dy =

1

π

∫ 1

−1

1 − y2

y − x
Tn(y)σ(y) dy

=
1

π

∫ 1

−1

1 − x2

y − x
Tn(y)σ(y) dy − 1

π

∫ 1

−1

y2 − x2

y − x
Tn(y)σ(y) dy

= (1 − x2)Un−1(x) −
1

π

∫ 1

−1

(y + x)Tn(y)σ(y) dy ,

i.e.

1

π

∫ 1

−1

1

y − x
ϕ(y)Tn(y) dy = (1 − x2)Un−1(x) .(3.12)

We remark that, for n > 0 ,

T ′
n(x) = nUn−1(x) and T ′

n(x
σ
kn) =

√
2

π

n(−1)k+1

ϕ(xσkn)
.(3.13)

In view of ωjn =

√
π

n
ρ(xσjn) and (3.13), we have, for j 6= k ,

ωjn
ωknρ(xσjn)

(
Sρ˜̀σkn

)
(xσjn) =

√
π

2
(−1)k+1

ϕ(xσjn)]2Un−1(x
σ
jn) − [ϕ(xσkn)]2Un−1(x

σ
kn)

ni(xσjn − xσkn)

=
ϕ(xσkn) − (−1)j+kϕ(xσjn)

ni(xσkn − xσjn)
=: s

(n)
jk .

With the help of

d

dx
[(1 − x2)Un−1(x)] = (1 − x2)U ′

n−1(x) − 2xUn−1(x) = −xUn−1(x) − nTn(x)

we get

ωkn
ωknρ(xσkn)

(
Sρ˜̀σkn

)
(xσkn) = − xσkn

niϕ(xσkn)
=: s

(n)
kk .

It follows

s
(n)
jk =





− cos k+j−1
2n π

ni sin k+j−1
2n π

, j + k even,

− cos k−j2n π

ni sin k−j
2n π

, j + k odd,

(3.14)

and consequently, for fixed k and 1 ≤ j ≤ n or for fixed j and 1 ≤ k ≤ n ,

|s(n)
jk | ≤ const





1

k + j − 1
, j + k even,

1

|k − j| , j + k odd.

(3.15)
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Using Remark 3.1 we find, for fixed m > 0 ,

{
s
(n)
1m, s

(n)
2m, ..., s

(n)
nm, 0, ...

}
−→

{
lim
n→∞

s
(n)
jm

} ∞

j=1
=: {sjm} in `2 ,

where sjk = limn→∞ s
(n)
jk , i.e.

sjk =





− 2

πi(j + k − 1)
, j + k even,

2

πi(j − k)
, j + k odd,





=
1 − (−1)j−k

πi(j − k)
− 1 − (−1)j+k−1

πi(j + k − 1)
.(3.16)

Thus,

V σnM
σ
nALn(V

σ
n )−1Pn −→ S :=

(
s(j+1)(k+1)

)∞
j,k=0

in `2 .

Now it is easy to see that, in `2 ,

(V σnM
σ
nALn(V

σ
n )−1Pn)∗Pn −→ S

∗ ,

Ṽ σnM
σ
nALn(Ṽ

σ
n )−1Pn = W̃nV

σ
nM

σ
nALn(V

σ
n )−1W̃nPn −→ −S ,

and

((Ṽ σn )Mσ
nALn(Ṽ

σ
n )−1Pn)∗Pn −→ −S

∗ .

Let us turn to the more general operator µ−1SµI and the corresponding sequence of the
collocation method.

LEMMA 3.4. SupposeA = µ−1SµI andAn = MnALn , where µ = vγ,δ satisfies (1.4)
and (1.5). Then {An} ∈ F , where W1{An} = A , W2{An} = W2{Mnρ

−1SρLn} (comp.
Lemma 3.3), and

W3{An} = S + A
µ
+ , W4{An} = −S−A

µ
− .(3.17)

Here ρ = ϑ−1ϕ and S are the same as in Lemma 3.3, and

A
µ
± = B± + D±AD

−1
± −A −D±AD

−1
± WV±

{
−V±A

∗
W , τ = σ ,

+V±AW , τ = ϕ ,
(3.18)

with

A :=





(
(2k + 1)(1 − δj,k)

πi(k + j + 1)(j − k)

)∞

j,k=0

, τ = σ ,

(
2(k + 1)(1 − δj,k)

πi[(j + 1)2 − (k + 1)2]

)∞

j,k=0

, τ = ϕ .

(3.19)

D± , B± ,W , and V± are diagonal operators

D± :=





(
(2k + 1)2χ±δj,k

)∞
j,k=0

, τ = σ ,

(
(k + 1)2χ±δj,k

)∞
j,k=0

, τ = ϕ ,
B± :=

(
b±k+1δj,k

)∞
j,k=0

,
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W :=

(
(−1)k+1

√
2π

δj,k

)∞

j,k=0

, V± :=
(
d±k+1δj,k

)∞
j,k=0

,(3.20)

where χ+ = 1
4 + α

2 − γ , χ− = 1
4 + β

2 − δ , and, choosing ζ± = −χ±, the b±k and d±k are
defined by

b±k :=





64 (−1)k+1

πi

∫ ∞

0

(
2s

(2k−1)π

)2ζ±
− 1

([(2k − 1)π]2 − [2s]2)
2 s

2 cos s ds , τ = σ ,

4(−1)k+1k

i

√
2

π

∫ ∞

0

(
s
kπ

)2ζ± − 1

[(kπ)2 − s2]2
s sin s ds , τ = ϕ ,

(3.21)

and, in case τ = σ ,

d±k :=

√
2

π

16

(2k − 1)π

∫ s∗

0

(
2s

2k−1

)2ζ±
− 1

[(2k − 1)π]2 − [2s]2
s2 cos s ds

+

√
2

π

∫ ∞

s∗

{
512 s

[2s]2ζ± − [(2k − 1)π]2ζ±

([(2k − 1)π]2 − [2s]2)3
+

64

s

(1 + 2ζ±)[2s]2ζ± − [(2k − 1)π]2ζ±

([(2k − 1)π]2 − [2s]2)2

+
4

s3
(4ζ2

± − 1)[2s]2ζ± − [(2k − 1)π]2ζ±

[(2k − 1)π]2 − [2s]2

}
12 cos s+ 12s sin s− 4s2 cos s

[(2k − 1)π]1+2ζ±
s ds(3.22)

+

√
2

π

12 cos s∗ + 12 s∗ sin s∗ − 4(s∗)2 cos s∗

[(2k − 1)π]1+2ζ±

{
32 s∗

[2s∗]2ζ± − [(2k − 1)π]2ζ±

([(2k − 1)π]2 − [2s∗]2)2

+
4

s∗
(1 + 2ζ±)[2s∗]2ζ± − [(2k − 1)π]2ζ±

[(2k − 1)π]2 − [2s∗]2

}
,

where s∗ ∈
(
π
2 ,

3π
2

)
is the solution of the equation cos s + s sin s = 0 , as well as, in case

τ = ϕ ,

d±k = 2

√
2

π

∫ π
2

0

(
s
kπ

)2ζ± − 1

(kπ)2 − s2
s sin s ds

+4

√
2

π

∫ ∞

π
2

cos s




s2
[(

s
kπ

)2ζ± − 1
]

[(kπ)2 − s2]2
+
ζ±
(
s
kπ

)2ζ±
+ 1

2

[(
s
kπ

)2ζ± − 1
]

(kπ)2 − s2



 ds .

The proof of this lemma in case of τ = ϕ can be found in [7, Lemma 3.10], in case of
τ = σ it is given in the appendix.

4. The operators W3{An} and W4{An}. In this section we show that the operators
W3,4{An} belong to an algebra of Toeplitz matrices. For this we consider the C∗-algebra
L(`2) of linear and bounded operators in `2 . By alg T (PC) we denote the closed C∗-
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subalgebra of L(`2) generated by the Toeplitz matrices (ĝj−k)
∞
j,k=0 with piecewise continu-

ous generating functions

g(t) :=
∑

k∈Z

ĝkt
k defined on T := {t ∈ C : |t| = 1}

and continuous on T \ {±1} .
First we recall some results on the Gohberg-Krupnik symbol for operators belonging to

alg T (PC) .
LEMMA 4.1 (see [9], Theorem 16.2). There is a continuous mapping smb from the al-

gebra alg T (PC) to a set of functions defined over T×[0, 1] . For eachR ∈ alg T (PC) , the
corresponding function smbR(t, µ) is called the symbol of R . This symbol has the following
properties:

1. For any fixed point (t, λ) ∈ T × [0, 1] the mapping alg T (PC) → C , R 7→
smbR(t, λ) is a multiplicative functional.

2. For any t 6= ±1 , the value smbR(t, λ) is independent of λ , and the function t 7→
smbR(t, 0) is continuous on {t ∈ T : =m t > 0} and on {t ∈ T : =m t < 0} with
the limits

smbR(1 + 0, 0) := lim
t→+1,=m t>0

smbR(t, 0) = smbR(1, 1) ,

smbR(1 − 0, 0) := lim
t→+1,=m t<0

smbR(t, 0) = smbR(1, 0) ,

smbR(−1 + 0, 0) := lim
t→−1,=m t<0

smbR(t, 0) = smbR(−1, 1) ,

smbR(−1 − 0, 0) := lim
t→−1,=m t>0

smbR(t, 0) = smbR(−1, 0) .

Moreover, the functions λ 7→ smbR(±1, λ) are continuous on [0, 1] .
3. An operatorR ∈ alg T (PC) is Fredholm if and only if smbR(t, λ) does not vanish

on T × [0, 1] .
4. For any Fredholm operatorR ∈ alg T (PC), the index of R is the negative winding

number of the closed curve

Γ :=
{
smbR(eis, 0) : 0 < s < π

}
∪ {smbR(−1, s) : 0 ≤ s ≤ 1}

∪
{
smbR(−eis, 0) : 0 < s < π

}
∪ {smbR(1, s) : 0 ≤ s ≤ 1}

with respect to the point zero, where the direction of the curve Γ is determined by
the parametrizations of its definition.

5. An operator R ∈ alg T (PC) is compact if and only if its symbol function
smbR(t, λ) vanishes on T × [0, 1] .

For any Toeplitz matrix T (g) = (ĝj−k)
∞
j,k=0 with piecewise continuous generating function

g(t) :=
∑
k∈Z

ĝkt
k defined on T and continuous on T \ {±1} , the symbol is given by

smbT (g)(t, λ) =

{
g(t) , t ∈ T \ {±1} ,

λg(t+ 0) + (1 − λ)g(t− 0) , t = ±1 .

LEMMA 4.2 ([1], Theorem 4.97). Any Hankel matrix H(g) = (ĝj+k+1)
∞
j,k=0 with

piecewice continuous generating function g(t) :=
∑

k∈Z

ĝkt
k defined on T and continuous on
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T \ {±1} belongs to alg T (PC) , and its symbol is defined by

smbH(g)(t, λ) =

{
0 , t ∈ T \ {±1} ,

−t i[g(t+ 0) − g(t− 0)]
√
λ(1 − λ) , t = ±1 .

LEMMA 4.3 ([11], Lemma 11.4). Suppose the generating function g(t) =
∑

k∈Z

ĝkt
k of

the Toeplitz matrix (ĝj−k)
∞
j,k=0 is piecewise continuous on T and continuous on T \ {±1} ,

and take a complex z with |<e z| < 1/2 . Then the matrix

R := ([j + 1]−zδj,k)
∞
j,k=0(ĝj−k)

∞
j,k=0([k + 1]zδj,k)

∞
j,k=0

belongs to alg T (PC) , and its symbol is given by

smbR(t, λ) =





g(t) , t ∈ T \ {±1} ,
λg(t+ 0) + (1 − λ)g(t− 0)e−i2πz

λ+ (1 − λ)e−i2πz
, t = ±1 .

Furthermore, for any fixed Toeplitz matrix T (g) = (ĝj−k)
∞
j,k=0 ∈ alg T (PC) with a gen-

erating function which is piecewise twice continuously differentiable, the operator valued
function

z 7→ ([j + 1]−zδj,k)
∞
j,k=0T (g)([k + 1]zδj,k)

∞
j,k=0 ∈ alg T (PC)

is continuous on {z ∈ C : |<e z| < 1/2} in the operator norm.
From this Lemma one can easily obtain the following result.
COROLLARY 4.4. Let the generating function g(t) =

∑
l ĝlt

l of the Toeplitz matrix
(ĝj−k)

∞
j,k=0 be piecewise continuous on T and continuous on T \ {±1} , and take a complex

z with |<e z| < 1/2 . Then the matrix

R :=

([
j +

1

2

]−z
δj,k

)∞

j,k=0

(ĝj−k)
∞
j,k=0

([
k +

1

2

]z
δj,k

)∞

j,k=0

belongs to alg T (PC) , and its symbol is given by

smbR(t, λ) =





g(t) , t ∈ T \ {±1} ,
λg(t+ 0) + (1 − λ)g(t− 0)e−i2πz

λ+ (1 − λ)e−i2πz
, t = ±1 .

Furthermore, for any fixed Toeplitz matrix T (g) = (ĝj−k)
∞
j,k=0 ∈ alg T (PC) with a gen-

erating function which is piecewise twice continuously differentiable, the operator valued
function

z 7→
([

j +
1

2

]−z
δj,k

)∞

j,k=0

T (g)

([
k +

1

2

]z
δj,k

)∞

j,k=0

∈ alg T (PC)

is continuous on {z ∈ C : |<e z| < 1/2} in the operator norm.
LEMMA 4.5 ([12], Satz 3.3 and [7], Lemma 7.1). Suppose the Mellin transform

m̂(z) :=

∫ ∞

0

m(σ)σz−1 dσ
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of the univariate function m : (0,∞) −→ C is analytic in the strip

1/2− ε < <e z < 1/2 + ε

for a small ε > 0 . Moreover, assume that

sup
z:1/2−ε<<e z<1/2+ε

∣∣∣∣
dk

dzk
m̂(z)(1 + |z|)k

∣∣∣∣ <∞ , k = 0, 1, . . .

Then m is infinitely differentiable on (0,∞) , the operators M+1,M−1 ∈ L(`2) defined by

M+1 :=

(
m

(
j + 1

2

k + 1
2

)
1

k + 1
2

)∞

j,k=0

and

M−1 :=

(
(−1)j−km

(
j + 1

2

k + 1
2

)
1

k + 1
2

)∞

j,k=0

belong to the algebra alg T (PC) , and their symbols are given by

smbM+1
(t, λ) =





m̂

(
1

2
+

i

2π
log

λ

1 − λ

)
, t = 1 ,

0 , t ∈ T \ {1} ,

smbM−1
(t, λ) =





m̂

(
1

2
+

i

2π
log

λ

1 − λ

)
, t = −1 ,

0 , t ∈ T \ {−1} .

From Lemma 4.1 and Lemma 4.5 we conclude the following corollary.
COROLLARY 4.6. For arbitrary ε > 0 , an operator R ∈ alg T (PC) admits the

representation

R = (ĝj−k)
∞
j,k=0 +M+ +M− +Rc +Rε ,(4.1)

where the `2-operator norm of Rε is less than ε , where Rc ∈ L(l2) is a compact operator,
where the generating function g of the Toeplitz matrix is piecewise continuous on T and
continuous on T \ {±1} , and where M± ∈ alg T (PC) are defined by

M+ =

(
m+

(
j + 1

2

k + 1
2

)
1

k + 1
2

)∞

j,k=0

and

M− =

(
(−1)j−km−

(
j + 1

2

k + 1
2

)
1

k + 1
2

)∞

j,k=0

with suitably chosen functions m± ∈ C
∞(0,∞) .

Now we prove that the operators W3,4{An} belong to the algebra alg T (PC) and cal-
culate the symbols of these operators.
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LEMMA 4.7. Let (1.4) and (1.5) hold, and letAn := Mn(aI+bµ−1SµI+K)Ln . Then
the operators W3/4{An} belong to the algebra alg T (PC) , and their symbols are given by

smbW3/4{An}(t, λ)

= a(±1)±b(±1)





1 , =m t > 0 ,

−1 , =m t < 0 ,

i cot

(
π

[
1

4
+ χ± +

i

4π
log

λ

1 − λ

])
, t = 1 ,





i cot

(
π

[
1

4
− i

4π
log

λ

1 − λ

])
: τ = σ

−i cot

(
π

[
1

4
+

i

4π
log

λ

1 − λ

])
: τ = ϕ





, t = −1 .

(4.2)
where the numbers χ± are defined in Lemma 3.4.

Proof. The proof in case τ = ϕ is given in [7, Sect. 8]. So, let us restrict to the case
τ = σ . For the discretized multiplication operators (see Lemma 3.2), the statements are
obvious. It remains to consider the limit operators S and A

µ
± (see Lemmata 3.3 and 3.4).

Moreover, since the diagonal entries in the diagonal matrices B± and V± tend to zero (see
(9.19) and (9.29) and since the compact operators belong to alg T (PC), we only have to
show that S ,A , and D±AD

−1
± belong to alg T (PC) (see (3.17) and (3.18).

For the matrix S , we have the relation S = T (φ) − H(φ) , where T (φ) and H(φ) are
Toeplitz and Hankel matrices, respectively, with the generating function φ(t) = sgn (=m t) ,
t ∈ T . From Lemma 4.1 and Lemma 4.2 we obtain that S belongs to alg T (PC) with the
symbol

smbS(t, λ) =





1 , =m t > 0 ,

−1 , =m t < 0 ,

±(2λ− 1) + 2i

√
λ(1 − λ) , t = ±1

(4.3)

=





1 , =m t > 0 ,

−1 , =m t < 0 ,

i cot

(
π

[
1

4
± i

4π
log

λ

1 − λ

])
, t = ±1 .

Now, we consider the operators D±AD
−1
± . In [7, Sect. 7], the relation

κ(x) := (1 − x)
2x2χ±

1 − x2
=

1

2

∫

{ζ:<e ζ=ψ}

x−ζ
{
B(ζ) −B(ζ + 1)

}
dζ , x > 0 ,

is proved, where max{−1/2,−2χ±} < ψ < 1/4− χ± and

B(ζ) := −i cot

(
π

(
ζ

2
+ χ±

))
+ i cot

(
π

(
ζ + χ± − 1

4

))
.
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Consequently, we get, for j 6= k ,

κ

(
j + 1

2

k + 1
2

)
=

(
1 − j + 1

2

k + 1
2

)(
j + 1

2

k + 1
2

)2χ±

2

1 − (j+ 1
2 )

2

(k+ 1
2 )

2

= (k − j)

(
j+ 1

2

k+ 1
2

)2χ±

(2k + 1)

(k − j)(j + k + 1)
,

such that

D±AD
−1
±

(4.4)

=
1

2

∫

{ζ:<e ζ=ψ}




1

πi

(
j+ 1

2

k+ 1
2

)−ζ
(1 − δj,k)

j − k




∞

j,k=0

{
B(ζ) −B(ζ + 1)

}
dζ .

Obviosly, the matrix

(
1 − δj,k
πi(j − k)

)∞

j,k=0

is a Toeplitz matrix, and its generating function

g(ei2πs) =
∑

l6=0
1
πil

1
l e

2iπns = 1 − 2s , 0 ≤ s < 1 , is piecewise continuous on T and
continuous on T \ {1} . Thus, in view of Corollary 4.4, for any fixed ζ ∈ C with <e ζ = ψ ,
the matrix

Tζ :=




1

πi

(
j+ 1

2

k+ 1
2

)−ζ
(1 − δj,k)

j − k




∞

j,k=0

belongs to alg T (PC) , and its symbol is given by

smbTζ (t, λ) =





1 − 2s , t = e2iπs ∈ T \ {1} ,
λ− (1 − λ)e−2iπζ

λ+ (1 − λ)e−2iπζ
, t = 1

=





1 − 2s , t = e2iπs ∈ T \ {1} ,

−i cot

(
π

[
1

2
+ ζ +

1

2πi
log

λ

1 − λ

])
, t = 1 .

Note that the integral in (4.4) has to be understood in the sence of Bochner (see [15]). This
is possible since the operator function {ζ : <ζ = ψ} 3 ζ 7→ Tζ is continuous (see Corollary
4.4) and uniformly bounded and since {ζ : <ζ = ψ} 3 ζ 7→ B(ζ)−B(ζ+1) is a continuous
and absolutely integrable function. Consequently, the integral representation (4.4) proves that
the operators D±AD

−1
± are in alg T (PC) and their symbols are equal to

smb
D±AD

−1

±

(t, λ) =
1

2

∫

{ζ:<ζ=ψ}

smbTζ (t, λ)
{
B(ζ) −B(ζ + 1)

}
dζ

=
1

2

(∫

{ζ:<ζ=ψ}

smbTζ (t, λ)B(ζ) dζ −
∫

{ζ:<ζ=ψ+1}

smbTζ−1
(t, λ)B(ζ) dζ

)
.
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We observe that smbTζ is 1-periodic with respect to the variable ζ , such that, applying the
residue theorem, we arrive at

smb
D±AD

−1

±

(t, λ)

=
1

2

∫

{ζ:<ζ=ψ}

smbTζ (t, λ)B(ζ) dζ − 1

2

∫

{ζ:<ζ=ψ+1}

smbTζ (t, λ)B(ζ) dζ

= smbT1/4−χ±
(t, λ) −





0 , t ∈ T \ {1} ,

B

(
1

2
+

i

2π
log

λ

1 − λ

)
, t = 1

(4.5)

=





1 − 2s , t = e2iπs ∈ T \ {1} ,

i cot

(
π

[
1

4
+ χ± +

i

4π
log

λ

1 − λ

])
, t = 1 .

In particular, if χ± = 0 we obtain that the operators D±AD
−1
± are equal to the operator A .

Therefore A ∈ alg T (PC) and

smbA(t, λ) =





1 − 2s , t = e2iπs ∈ T \ {1} ,

i cot

(
π

[
1

4
+

i

4π
log

λ

1 − λ

])
, t = 1 .

(4.6)

From this we conclude that W3/4{An} ∈ alg T (PC) . Moreover, since the symbol of the
compact operators B± , D±AD

−1
± WV± , and V±A

∗
W are zero, we get (4.2) in view of

(4.3), (4.5), (4.6) and (3.17), (3.18).

5. The subalgebra A of the algebra F . In this section we prove that further sequences
of approximate operators belong to the algebra F . Using these and the operator sequences of
the collocation method, we shall form a C∗-algebra which is the basic algebra for the stability
analysis of the collocation method.

For R ∈ alg T (PC) , using the projections Pn and the notation Section 2, we define the
finite sections Rn := PnRPn ∈ L(imPn) and form the operatorsRωn := (Eωn )−1RnE

ω
nLn ,

ω ∈ {3, 4} , mapping imLn into imLn . We will show that the sequences {R3
n} and {R4

n}
belong to the algebra F .

For k, n ∈ Z and n ≥ 1, let ϕ̃nk = ϕ̃nk,τ denote the characteristic function of the interval




[
k − 1

n
,
k

n

)
, τ = σ ,

[
k − 1

2

n+ 1
,
k + 1

2

n+ 1

)
, τ = ϕ ,





multiplied by





√
n , τ = σ ,

√
n+ 1 , τ = ϕ .

Then the operators

Ẽn : `2
Z
−→ L

2(R) , , {ξk}∞k=−∞ 7→
∞∑

k=−∞

ξkϕ̃
n
k

and

(Ẽn)−1 : im Ẽn −→ `2
Z
,

∞∑

k=−∞

ξkϕ̃
n
k 7→ {ξk}∞k=−∞
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act as isometries. By L̃n we denote the orthogonal projection from L
2(R) onto im Ẽn .

LEMMA 5.1 ([4], Prop. 2.10). For any operator R ∈ alg T (PC) the sequence

ẼnR(Ẽn)−1L̃n : L2(R) −→ L
2(R)

is strongly convergent.
Let W̃ : `2 −→ `2 , be defined by W̃ ξ =

{
(−1)kξk

}∞
k=0

, and let L0
n , W

0
n , V

0
n , Ṽ

0
n ,

and M0
n refer to the operators Ln , Wn , Vn , Ṽn , and Mn , respectively, in the special case

α = β = − 1
2 (i.e. ν = σ). In particular, V 0

n : imL0
n −→ imPn and (V 0

n )−1 : imPn −→
imL0

n are given by

V 0
n u = {ωτnu(xτ1n), . . . , ωτnu(x

τ
nn), 0, 0, . . .} =:

{
ωτnu(x

τ
k+1,n)

}n−1

k=0
,

with

ωτn =
√
ω̃τn =





√
π
n , τ = σ ,

√
π
n+1 , τ = ϕ ,

and

(V 0
n )−1ξ =

n∑

k=1

ξk−1

ωτn
˜̀τ,0
kn ,

˜̀τ,0
kn =

ϕ `τkn
ϕ(xτkn)

,

respectively. One can easily check that

Ln = ρ−1L0
nρI , Wn = ρ−1W 0

nρI ,
(5.1)

Vn = V 0
n ρI , Ṽn = Ṽ 0

n ρI , Mn = ρ−1M0
nρI .

LEMMA 5.2. Let the operators Vn,0 be defined by

Vn,0 : imLn,0 −→ imPn ⊂ `2 , u 7→
{
ωσnu(x

σ
k+1,n)

}n−1

k=0
,

and

Ln,0 : L2
σ −→ L

2
σ , u 7→

n−1∑

k=0

〈u, Tk〉σTk .

Then the sequences
{
(V σn )−1Vn,0JνLn

}
and

{
J−1
ν V −1

n,0V
σ
n Ln

}
belong to the algebra F2 .

Proof. The uniform boundedness of these sequences follows from the uniform bounded-
ness of {V σn } ,

{
(V σn )−1

}
(comp. the proof of Lemma 2.5) and of {Vn,0} ,

{
V −1
n,0

}
, where,

for u ∈ imLn,0 , the equalities

‖Vn,0u‖2
`2 =

π

n

n∑

k=1

|u(xσkn)|2 =

∫ 1

−1

|u(x)|2σ(x) dx = ‖u‖2
σ

have to be taken into account. Using

(V σn )−1Vn,0JνLnu = (V σn )−1Vn,0

n−1∑

k=0

〈u, ũk〉ν γkTk

=

n∑

j=1

ρ−1(xσjn)

n−1∑

k=0

〈u, ũk〉ν (Jν ũk)(x
σ
jn)˜̀σjn

= Mσ
n ρ

−1JνLnu
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and

J−1
ν V −1

n,0V
σ
n Lnu = J−1

ν

n∑

j=1

ρ(xσjn)
n−1∑

k=0

〈u, ũk〉ν ũk(xσjn)`σjn = J−1
ν LσnρLnu ,(5.2)

as well as Lemma 2.2 and Corollary 2.3 we get, for n > m ,

(V σn )−1Vn,0JνLnũm = γmM
σ
n ρ

−1Tm −→ ρ−1γmTm = ρ−1Jν ũm

and

J−1
ν V −1

n,0V
σ
n Lnũm = J−1

ν Lσnρũm −→ ρũm in L
2
ν .

From (3.6), (3.9), and (3.8), for n > m , we get

Wn(V σn )−1Vn,0JνWnLnũm

= WnMnρ
−1γn−1−mTn−1−m

=
n−1∑

j=0

ασn−1−j,n(ρ
−1γn−1−mTn−1−m)ũj

=

n−1∑

j=0

εn−1−j,n
π

n

n∑

k=1

ρ(xσkn)γn−1−mTn−1−m(xσkn)ũn−1−j(x
σ
kn)ũj

=

n−1∑

j=0

εn−1−j,n
π

n

n∑

k=1

ρ(xσkn)ũm(xσkn)γjTj(x
σ
kn)ũj

=

n−1∑

j=0

π

n

n∑

k=1

ρ(xσkn)ũm(xσkn)Tj(x
σ
kn)J−1

ν Tj = J−1
ν Lσnρũm .

Consequently, due to (5.2),

Wn(V
σ
n )−1Vn,0JνWnLn = J−1

ν LσnρLn = J−1
ν V −1

n,0VnLn

and

WnJ
−1
ν V −1

n,0VnWnLn = (V σn )−1Vn,0JνLn ,

and the strong convergence of these sequences follows from the previous part of the proof.
Taking into account Lemma 2.4 and the fact that V ∗

n,0 = V −1
n,0 one can easily conclude

the strong convergence of the respective sequences of adjoint operators.
LEMMA 5.3. For any operatorR ∈ alg T (PC) , the sequences {R3

n} and {R4
n} belong

to the algebra F . If R is the Toeplitz operator (ĝj−k)
∞
j,k=0 then

W3(R
3
n) = W4(R

4
n) = R , W4(R

3
n) = W3(R

4
n) = R̃ , R̃ := (ĝk−j)

∞
j,k=0 .

Proof. In case of τ = ϕ the statements of the lemma have already been proved in [7,
Lemma 4.1 (ii)]. Nevertheless, here we give a proof for both cases by other means.
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For k = 1, . . . , n, define functions ϕnk,τ : [−1, 1] −→ R by

ϕnk,σ(x) =





√
n

π
, cos

k

n
π ≤ x < cos

k − 1

n
π ,

0 , otherwise,

and

ϕnk,ϕ(x) =





√
n+ 1

π
, cos

k + 1
2

n+ 1
π ≤ x < cos

k − 1
2

n+ 1
π ,

0 , otherwise,

and let by T τn , S
τ
n : L2

σ −→ L
2
σ refer to the operators

T τn =
1

ωτn

n∑

k=1

〈u, ϕnk,τ 〉σ ˜̀τ,0kn = (V 0
n )−1

{
〈u, ϕnk+1,τ 〉σ

}n−1

k=0
, Sτnu =

n∑

k=1

〈u, ϕnk,τ 〉σϕnk,τ .

Then, in view of the uniform boundedness of (V 0
n )−1 (see (2.3) and the proof of Lemma 2.5),

‖T τnu‖2
σ ≤ C

n∑

k=1

|〈u, ϕnk,τ 〉σ |2 = C ‖Sσnu‖2
σ ≤ C ‖u‖2

σ ,

i.e. the sequence {T τn} ⊂ L(L2
σ) is uniformly bounded. Moreover, for the characteristic

function u = χ[x,y] of an interval [x, y] ⊂ [−1, 1] , we have

∣∣∣∣〈u, ϕnk,σ〉σ −
√
π

n
u(xσkn)

∣∣∣∣ =
∣∣∣∣∣

√
n

π

∫ k
nπ

k−1

n π

[
u(cos s) − u

(
cos

2k − 1

2n
π

)]
ds

∣∣∣∣∣

≤





0 , x, y 6∈
(

cos
k

n
π, cos

k − 1

n
π

)
,

√
π
n , otherwise,

as well as

∣∣∣∣〈u, ϕnk,ϕ〉σ −
√

π

n+ 1
u(xϕkn)

∣∣∣∣ =

∣∣∣∣∣∣

√
n+ 1

π

∫ k+ 1
2

n+1
π

k− 1
2

n+1
π

[
u(cos s) − u

(
cos

kπ

n+ 1

)]
ds

∣∣∣∣∣∣

≤





0 , x, y 6∈
(

cos
k + 1

2

n+ 1
π, cos

k − 1
2

n+ 1
π

)
,

√
π
n+1 , otherwise,

which implies

‖T τnu−M0
nu‖2

σ =
∥∥∥(V 0

n )−1
{
〈u, ϕnk+1,τ 〉σ − ωτnu(x

τ
kn)
}n−1

k=0

∥∥∥
2

σ
≤ C

2π

n
.

Consequently, T τnu −→ u in L
2
σ for all u ∈ L

2
σ . In particular, we get the equivalences

(ξnk ∈ C)

n∑

k=1

ξnk
˜̀τ,0
kn −→ u in L

2
σ ⇐⇒ lim

n→∞

∥∥∥∥∥

n∑

k=1

ξnk
˜̀τ,0
kn − T τnu

∥∥∥∥∥
σ

= 0
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⇐⇒ lim
n→∞

n∑

k=1

∣∣ωτnξnk − 〈u, ϕnk,τ 〉σ
∣∣2 = 0

⇐⇒ lim
n→∞

∥∥∥∥∥

n∑

k=1

ωτnξ
n
kϕ

n
k,τ − Sτnu

∥∥∥∥∥
σ

= 0

⇐⇒ ωτn

n∑

k=1

ξnkϕ
n
k,τ −→ u in L

2
σ .

Since T τn −→ I in L
2
σ , the convergence (V 0

n )−1Rn(V
0
n )L0

nu −→ g in L
2
σ for some u ∈ L

2
σ

is equivalent to

(V 0
n )−1RnV

0
n T

τ
nu = (V 0

n )−1Rn
{
〈u, ϕnk+1,τ 〉σ

}n−1

k=0
−→ g in L

2
σ

and so, due to the previous considerations, equivalent to

n∑

j=1

n∑

k=1

rj−1,k−1〈u, ϕnk,τ 〉σϕnj,τ −→ g in L
2
σ ,(5.3)

where R = [rjk ]
∞
j,k=0 .

The mapping T : L2
σ −→ L

2(0, 1) defined by (Tu)(s) =
√
πu(cosπs) is an isometrical

isomorphism, whereby Tϕnk,τ = ϕ̃nk,τ , k = 1, . . . , n . Consequently, (5.3) is equivalent to

χ[0,1]

∑

j∈Z

∑

k∈Z

rj−1,k−1〈χ[0,1]Tu, ϕ̃
n
k,τ〉L2(R)ϕ̃

n
j,τ → χ[0,1]Tg in L

2(R) .(5.4)

The left-hand side of (5.4) can be written as χ[0,1]ẼnR(Ẽn)−1L̃nχ[0,1]Tu, and Lemma 5.1
guarantees the convergence of this sequence. Hence, we have proved that the strong limit
of (V 0

n )−1RnV
0
nL

0
n in L

2
σ exists. Since ρI : L

2
ν −→ L

2
σ is an isometrical isomorphism,

the strong convergence of V −1
n RnVnLn = ρ−1(V 0

n )−1RnV
0
nL

0
nρI in L

2
ν follows, where we

have used (5.1).
To prove the convergence of {WnR

3
nWn} , we remark that by definitions and by taking

into account (3.8) and

ũn−1−m(xϕkn) = (−1)k+1ũm(xϕkn) ,

we find that, for u ∈ L
2
ν , the relations

VnWnu = Vn

(
n−1∑

m=0

〈u, ũm〉ν ũn−1−m

)

=

{
ωτnρ(x

τ
k+1,n)

n−1∑

m=0

〈u, ũm〉ν ũn−1−m(xτk+1,n)

}n−1

k=0

(5.5)

=

{
(−1)kωτn

n−1∑

m=0

〈u, ũm〉ν
{

(Jν ũm)(xσk+1,n)

ρ(xτk+1,n)ũm(xϕk+1,n)

}}n−1

k=0

=

{
W̃Vn,0JνLnu , τ = σ ,

W̃VnLnu , τ = ϕ ,
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are valid, where the operators Vn,0 are defined in Lemma 5.2. Consequently, for ξ ∈ imPn ,
we have

WnV
−1
n ξ =

{
J−1
ν (Vn,0)

−1W̃ ξ , τ = σ ,

V −1
n W̃ ξ , τ = ϕ ,

and

WnV
−1
n RnVnWn =

{
J−1
ν (Vn,0)

−1PnW̃RW̃PnVn,0JνLn , τ = σ ,

V −1
n PnW̃RW̃PnVnLn , τ = ϕ .

(5.6)

In case R = (ĝj−k)
∞
j,k=0 is a Toeplitz matrix with generating function g(t) =

∑

k∈Z

ĝkt
k ,

t ∈ T , we get W̃RW̃ = R− , where R− is the Toeplitz matrix with the generating function
g(−t) . Hence, since W̃ 2 = I , W̃RW̃ ∈ alg T (PC) if R ∈ alg T (PC) . Thus, by (5.6)
and Lemma 5.2 we get the existence of W2{R3

n} .
Obviously,

VnR
3
nV

−1
n Pn = VnV

−1
n PnRPnVnV

−1
n Pn = PnRPn −→ R in `2

for each R ∈ alg T (PC) . In view of (2.3) we have

ṼnR
3
nṼ

−1
n Pn = ṼnV

−1
n PnRPnVnṼ

−1
n Pn = W̃nPnRW̃nPn .

In case of R = (ĝj−k)
∞
j,k=0 this is equal to PnR̃Pn with R̃ = (ĝk−j)

∞
j,k=0 . Morover, it is

well known that W̃nPnRW̃nPn converges strongly in `2 for each R ∈ alg T (PC) (comp.
[1, Cor. 7.14]).

The strong convergence for the respective sequences of adjoint operators can now be
proved with the help of (2.4), Lemma 2.4, and the relations

WnLn−1 = (Ln − L0)Wn , Ln−1Wn = Wn(Ln − L0) .

The proof for {R4
n} is analogous.

By A we denote the smallest C∗-subalgebra of F generated by all sequences of the ideal
J , by all sequences {Rωn} with ω ∈ {3, 4} andR ∈ alg T (PC) , and by all sequences of the
form {Mn(aI + bµ−1SµI)Ln} , a, b ∈ PC , where µ := vγ,δ satisfies (1.4) and (1.5). We
shall check the invertibility of the coset {An}+J (of the collocation sequence) in F/J (see
Theorem 2.9) by checking the invertibility in the quotient algebra A/J . For {An} ∈ F , we
write {An}o for the coset {An} + J ∈ F/J .

6. Application of the local principle of Allan and Douglas. In this section we show
that the set C := {{MnfLn}o : f ∈ C[−1, 1]} forms a subalgebra contained in the center
of the quotient algebra A/J . This result will enable us to apply the local principle of Allan
and Douglas in order to prove the invertibility of an element of A/J . Moreover, by A0

we will denote the smallest C∗-subalgebra of F which contains all sequences of the form
{Mn(aI+bµ−1SµI)Ln} , a, b ∈ PC , µ = vγ,δ satisfying (1.4) and (1.5), and all sequences
from the ideal J .

6.1. A Subalgebra in the center of the quotient algebraA/J . At first, we prove some
auxiliary results.
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LEMMA 6.1. Suppose χs and χb are continuous functions over [−1, 1] such that, for
x ∈ [−1, 1] , |χs(x)|, |χb(x)| ∈ [0, 1] , such thatχs has a small support with supp [χs◦cos] ⊂
[t− εs, t+ εs] , where cos is considered as a function defined on [0, π] , and such that χb has
a support with supp [χb ◦ cos] ∩ [t− εb, t+ εb] = ∅ . Then, for any R ∈ alg T (PC) and for
any ε > 0 , there exists a constant C such that εb/εs > C implies the locality property

∥∥∥
(
χb(xτj+1,n)δj,k

)n−1

j,k=0
Rn
(
χs(xτj+1,n)δj,k

)n−1

j,k=0

∥∥∥
L(`2)

≤ ε ,

∥∥∥
(
χs(xτj+1,n)δj,k

)n−1

j,k=0
Rn
(
χb(xτj+1,n)δj,k

)n−1

j,k=0

∥∥∥
L(`2)

≤ ε .

Moreover, if the support of χs satisfies supp [χs ◦ cos] ⊂ [t− εs, t+ εs] ⊂ [0, π − εb] , then
we get

∥∥∥(I − Pn)RPn
(
χs(xτj+1,n)δj,k

)n−1

j,k=0

∥∥∥
L(`2)

≤ ε ,

∥∥∥
(
χs(xτj+1,n)δj,k

)n−1

j,k=0
PnR(I − Pn)

∥∥∥
L(`2)

≤ ε .

The proof is independently of the choice of τ and can be found in the proof of [7,
Lemma 4.1 (i)].

LEMMA 6.2. Let

T (φ) =

(
1 − (−1)j−k

πi(j − k)

)∞

j,k=0

be the Toeplitz matrix with the generating function φ = sgn=m t , t ∈ T , and let χ , χ̃ be
continuous functions with suppχ, supp χ̃ ⊂ (−1, 1) . Then the sequence

{Mσ
nχLn[M

σ
nρ

−1SρLn − [T (φ)]3n]M
σ
n χ̃Ln}

belongs to the ideal J2 ⊂ J σ .
Proof. In view of (3.14) we have

Mσ
nρ

−1SρLn − [T (φ)]3n = (V σn )−1





1 − (−1)j+k

2




2

πi (j − k)
−

cos
j − k

2n
π

ni sin
j − k

2n
π




n−1

j,k=0

(6.1)

−1 + (−1)j+k

2




cos
j + k − 1

2n
π

ni sin
j + k − 1

2n
π




n−1

j,k=0




V σn Ln .

Now we define functions k1(t, s) and k2(t, s) on [0, π]2 by

k1(t, s) :=
χ(cos t)χ̃(cos s)

πi ρ(cos t)ϑ(cos s)




1

t− s
−

cos
t− s

2

sin
t− s

2



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and

k2(t, s) :=
χ(cos t)χ̃(cos s)

πi ρ(cos t)ϑ(cos s)

cos
t+ s

2

sin
t+ s

2

.

Clearly, these functions are continuous, and the integral operators K1 and K2 with the ker-
nels k1(arccosx, arccosy) and k2(arccosx, arccosy) , respectively, can be approximated by
quadrature methods K1

n,K
2
n ∈ L(imLn) such that

K1
n = Mσ

nχLn(V
σ
n )−1




2

πi(j − k)
−

cos
j − k

2n
π

ni sin
j − k

2n
π




n−1

j,k=0

V σn LnM
σ
n χ̃Ln ,(6.2)

K2
n = Mσ

nχLn(V
σ
n )−1




cos
j + k − 1

2n
π

ni sin
j + k − 1

2n
π




n−1

j,k=0

V σn LnM
σ
n χ̃Ln ,(6.3)

and
{
K1
n

}
,
{
K2
n

}
∈ J2 (see Lemma 2.10). Furthermore, in view of (5.5), we obtain

PnW̃Pn = Vn,0JνWnV
−1
n Pn and PnW̃Pn = VnWnJ

−1
ν V −1

n,0Pn .

Using these relations together with (6.1), (6.2), and (6.3), we can write

Mσ
nχLn[Mnρ

−1SρLn − [T (φ)]3n]Mnχ̃Ln

=
1

2
[K1

n −K2
n] −

1

2
(V σn )−1Vn,0JνWn[K

1
n +K2

n]WnJ
−1
ν V −1

n,0V
σ
n Ln .

Now, the assertion of the lemma follows immediately from Lemma 5.2.
LEMMA 6.3. LetM±1 be the operators defined in Lemma 4.5, and let χ, χ̃ be continuous

functions with suppχ, supp χ̃ ⊂ (−1, 1) . Then the sequences

{Mσ
nχLn[M±1]

3
nM

σ
n χ̃Ln}

belong to the ideal J2 ⊂ J σ .
Proof. Setting

k(x, y) =
χ(x)χ̃(y)

ρ(x)ϑ(y)
m

(
arccosx

arccosy

)
1

arccosy
,

the operator {Mσ
nχLn[M+1]

3
nM

σ
n χ̃Ln} takes the form Kn of Lemma 2.10 and, conse-

quently, {Mσ
nχLn[M+1]

3
nM

σ
n χ̃Ln} ∈ J2 ⊂ J σ .

The proof for M−1 is analogous.
In case of τ = ϕ , the following lemma can be found in [7, Lemma 5.1]. Taking into

account the previous results of the present section, the proof in case τ = σ is completely
analogous.

LEMMA 6.4. For f ∈ C[−1, 1] , the coset {MnfLn}o belongs to the center of A/J .
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Due to the last lemma the set C = {{MnfLn}o : f ∈ C[−1, 1]} forms a C∗-subalgebra
of the center of A/J . This subalgebra is *-isomorphic to C[−1, 1] via the isomor-
phism {MnfLn}o 7→ f , and, consequently, the maximal ideal space of C is equal to
{Iτ : τ ∈ [−1, 1]} with It := {{MnfLn}o : f ∈ C[−1, 1], f(t) = 0} . By Jt we denote
the smallest closed ideal of A/J which contains It , i.e. Jt is equal to

closA/J





m∑

j=1

{AjnMnfjLn}o : {Ajn} ∈ A, fj ∈ C[−1, 1], fj(t) = 0,m = 1, 2, . . .



 .

The local principle of Allan and Douglas claims the following.
THEOREM 6.5. The ideal Jt is a proper ideal in A/J for all t ∈ [−1, 1] . An element

{An}o of A/J is invertible if and only if {An}o + Jt is invertible in (A/J )/Jt for all
t ∈ [−1, 1] .

6.2. The local invertibility at the points t ∈ (−1, 1). This section is devoted to the
invertibility of {An}o + Jτ in (A/J )/Jt for t in the interior of the interval [−1, 1] (see
Theorem 6.5).

LEMMA 6.6. Let {An} ∈ A0 . If the limit operator W1{An} : L
2
ν −→ L

2
ν is Fredholm

then the coset {An}o + Jt is invertible in (A/J )/Jt for t ∈ (−1, 1) .
Proof. The case τ = ϕ is considered in [7, Section 6]. Since the proof of the lemma in

case of τ = σ is completely analogous we give only an outline of it. We fix a t ∈ (−1, 1) and
set

ht(x) :=

{
0 if −1 ≤ x ≤ t ,

1 if t < x ≤ 1 .

The subalgebra of (A/J )/Jt containing all cosets {Mσ
n (aI + bµ−1SµI)Ln}o + Jt is gen-

erated by e = {Ln}o + Jt ,

p :=
1

2

(
{Ln}o + {Mσ

nρ
−1SρLn}o

)
+ Jt , and q := {Mσ

nhtLn}0 + Jt .

Obviously, q is a selfadjoint projection. We prove that the same is true for p . We have ([7,
(6.4)])

ρ−1Sρϕρ−1SρI = ϕI +K0 , K0u = − 1√
2
〈u, ũ0〉νρ−1T0.(6.4)

Due to (3.1) we can write

Mσ
nϕρ

−1SρLnu = Mσ
nϕρ

−1Sρ
n−1∑

k=0

〈u, ũk〉ν ũk

= iMσ
nϑ

n−1∑

k=0

〈u, ũk〉νTk+1 = iMσ
nϑ

n−2∑

k=0

〈u, ũk〉νTk+1

= ϕρ−1SρLn−1u = ϕρ−1Sρ(Ln −WnL1Wn)u .

Together with (6.4), we get the identity

Mσ
n ρ

−1SρLnM
σ
nϕρ

−1SρLn = Mσ
n (ϕI +K0)(Ln −WnL1Wn)
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and, consequently,

{Mσ
nρ

−1SρLn}o{Mσ
nρ

−1SρLn}o + Jt

=
1

ϕ(τ)
{Mσ

nρ
−1SρLn}o{Mσ

nϕρ
−1SρLn}o + Jt

=
1

ϕ(τ)
{Mσ

n (ϕI +K0)(Ln −WnL1Wn)}o + Jt

=
1

ϕ(τ)
{Mσ

nϕLn}o + Jt = {Ln}o + Jt .

Hence, p2 = p . Now, the proof of p∗ = p and also the proof of the fact that the spectrum of
pqp in (A/J )/Jt coincides with the interval [−1, 1] are the same as in the case of τ = ϕ .
It remains to apply the so-called two-projections lemma (comp. [7, Lemma 7.1]) and the
Fredholm criteria for singular integral operators with piecewise continuous coefficients (see
[3]).

6.3. The local invertibility for t = ±1. In this section we analyze the invertibility
of {An}o + J±1 in (A/J )/J±1 (see Theorem 6.5) and show that the invertibility of the
operators W3{An} and W4{An} imply the invertibility of {An}o + J+1 and {An}o + J−1

in (A/J )/J±1 , respectively. For symmetry reasons, we may restrict our considerations to
the invertibility of {An}o + J1 in (A/J )/J1 .

The proof of the following lemma does not depend on the choice of τ and can be found
in [7, Lemma 7.2, i)].

LEMMA 6.7. SupposeR ∈ alg T (PC) is invertible and consider the sequenceR3
n, then

the coset {[R−1]3n}o + J1 is the inverse of {R3
n}o + J1 in (A/J )/J1 .

Let C1 denote the class of continuous functions f : [−1, 1] → [0, 1] satisfying f(1) = 1 .

LEMMA 6.8. Let a sequence {Cn} ∈ A be the sum of two sequences {An} and {Bn}
and assume that

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥[MnfLn]An[MnfLn] + JnLn

∥∥∥
L(L2

ν)
= 0

and

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥[MnfLn]Bn[MnfLn] + JnLn

∥∥∥
L(L2

ν)
= 0 .

Then {Cn}o ∈ J1 .
Proof. Due to the assumptions we have that, for each ε > 0 there are functions

fA,ε, fB,ε ∈ C1 and sequences {JA,εn }, {JB,εn } ∈ J , such that, for all n ∈ N ,

∥∥∥[MnfA,εLn]An[MnfA,εLn] + JA,εn Ln

∥∥∥
L(L2

ν)
≤ ε ,

∥∥∥[MnfB,εLn]Bn[MnfB,εLn] + JB,εn Ln

∥∥∥
L(L2

ν)
≤ ε .

For n ∈ N , it follows
∥∥∥[MnfA,εfB,εLn](An +Bn)[MnfA,εfB,εLn]
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+[MnfB,εLn]J
A,ε
n [MnfB,εLn] + [MnfA,εLn]J

B,ε
n [MnfA,εLn]

∥∥∥
L(L2

ν)
≤ const ε ,

Consequently,

inf
f∈C1

∥∥∥{MnfLn}o{Cn}o{MnfLn}o
∥∥∥
A/J

= 0

and {Cn}o ∈ J1 .
LEMMA 6.9. Suppose (1.4) and (1.5) to be fulfilled and consider An = Mn[aI +

bµ−1SµI +K]Ln as well as R := W3{An} . Then the cosets {R3
n}o +J1 and {An}o +J1

coincide. In particular, {An}o + J1 is invertible if R is invertible.
Proof. The proof of this lemma in case of τ = ϕ is given in [7, Lemma 7.2, iii)]. The

case τ = σ can be treated very analogous.
We have to prove that {R3

n − An}o belongs to J1 . In view of Lemma 6.8, it is enough
to show that (see Lemmata 3.2, 3.3, and 3.4)

{
[a(1)I ]3n −MnaLn

}o
∈ J1 ,(6.5)

{
[S]3n −Mnρ

−1SρLn

}0

∈ J1 ,(6.6)

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥MnfLnV
−1
n BnVnMnfLn + JnLn

∥∥∥
L(L2

ν)
= 0 ,(6.7)

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥MnfLnV
−1
n DnAnD

−1
n WnVnVnMnfLn + JnLn

∥∥∥
L(L2

ν)
= 0 ,

(6.8)

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥MnfLnV
−1
n VnA

∗
nWnVnMnfLn + JnLn

∥∥∥
L(L2

ν)
= 0 ,(6.9)

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥MnfLnV
−1
n [An − PnAPn]VnMnfLn + JnLn

∥∥∥
L(L2

ν)
= 0,(6.10)

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥MnfLnV
−1
n [Fn − PnFPn]VnMnfLn + JnLn

∥∥∥
L(L2

ν)
= 0(6.11)

with Fn = DnAnD
−1
n and F = D+AD

−1
+ , since the operators B+ , V+A

∗
W , and

D+AD
−1
+ WV+ are compact (see (9.19), (9.29) and comp. the beginning of the proof of

Lemma 4.7).
Due to limt→1 a(t) = a(1) we have

inf
f∈C1

∥∥∥
{
MnfLn

}o{
[a(1)I ]3n −MnaLn

}o∥∥∥
A/J

≤ C inf
f∈C1

sup
n∈N

∥∥∥
(
f(xσk+1,n)[a(1) − a(xσk+1,n)]δj,k

)n−1

j,k=0

∥∥∥
L(`2)

= 0 ,

and (6.5) is proved.
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To show (6.6) we introduce the bounded function

g(s) :=
cos s

sin s
− 1

s
, s ∈

[
−3

4
π,

3

4
π

]
.

In view of the defition of S and due to (3.14) , the entries rnj,k of

Vn
(
[S]3n −Mnρ

−1SρLn
)
V −1
n ,

0 ≤ j ≤ n
2 , 0 ≤ k < n , can be estimated by

|rnj,k | =

∣∣∣∣
1 − (−1)j−k

iπ

1

(j − k)
− 1 − (−1)j+k+1

iπ

1

j + k + 1
−

1 − (−1)j−k

2ni

cos j−k2n π

sin j−k
2n π

+
1 − (−1)j+k+1

2ni

cos j+k+1
2n π

sin j+k+1
2n π

∣∣∣∣∣

=

∣∣∣∣
1 − (−1)j+k+1

2ni
g

(
j + k + 1

2n
π

)
− 1 − (−1)j−k

2ni
g

(
j − k

2n
π

)∣∣∣∣ ≤
C

n
.

Consequently, due to
(
fn :=

(
f(xσk+1,n)δj,k

) n−1

j,k=0

)

inf
f∈C1

∥∥∥
{
MnfLn

}o{
[S]3n −Mnρ

−1SρLn
}o{

MnfLn
}0
∥∥∥
A/J

≤ const inf
f∈C1

sup
n∈N

∥∥∥fnVn
(
[S]3n −Mnρ

−1SρLn
)
V −1
n fn

∥∥∥
L(`2)

≤ const inf
f∈C1

sup
n∈N

∥∥∥
(
f(xσj+1,n)rnj,k

)n−1

j,k=0

∥∥∥
L(`2)

,

we get, using a Frobenius norm estimate and choosing f ∈ C1 with supp(f ◦ cos) ⊂ [0, ε] ,
a bound less than const ε , where ε > 0 can be chosen arbitrarily small.

Now, let us introduce the function Φ(s) = cos
√
s , s ∈

[
0, π

2

4

]
. Then the function

h :

[
0,
π2

4

]2
−→ R , (s, t) 7→ Φ′(s)

Φ(s) − Φ(t)
− 1

s− t

is bounded and, for s, t ∈
[
0, π2

]
, we have

sin s

cos t− cos t
− 2s

s2 − t2
=

2sΦ′(s2)

Φ(s2) − Φ(t2)
− 2s

s2 − t2
= 2s h(s2, t2) .

Hence, we get, for j, k ≤ n−1
2 ,

∣∣∣∣∣
ϕ(xσk+1,n)

ni(xσk+1,n − xσj+1,n)
− 2k + 1

πi(k + j + 1)(j − k)

∣∣∣∣∣

=

∣∣∣∣∣
1

ni

sin 2k+1
2n π

cos 2k+1
2n π − cos 2j+1

2n π
− 1

ni

2 2k+1
2n π

(
2j+1
2n π

)2 −
(

2k+1
2n π

)2

∣∣∣∣∣(6.12)

=

∣∣∣∣∣
2

ni

2k + 1

n
h

((
2k + 1

2n
π

)2

,

(
2j + 1

2n
π

)2
)∣∣∣∣∣ ≤ C

k

n2
.
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Furhermore, the entries of PnD+AD
−1
+ Pn −DnAnD

−1
n can be written in the form

(
2j + 1

2k + 1

)2χ+ (2k + 1)(1 − δj,k)

πi(k + j + 1)(j − k)
−
χ(xσj+1,n)

χ(xσk+1,n)

ϕ(xσk+1,n)(1 − δj,k)

ni(xσk+1,n − xσj+1,n)

=
χ(xσj+1,n)

χ(xσk+1,n)

[
2k + 1

πi(j + k + 1)(j − k)
−

ϕ(xσk+1,n)

ni(xσk+1,n − xσj+1,n)

]
(1 − δj,k)

+

[
1 −

χ(xσj+1,n)

4χ−

(
2j+1
2n π

)2χ+

](
2j + 1

2k + 1

)2χ+ (2k + 1)(1 − δj,k)

πi(k + j + 1)(j − k)

4χ−

(
2k+1
2n π

)2χ+

χ(xσk+1,n)

+

[
1 − 4χ−

(
2k+1
2n π

)2χ+

χ(xσk+1,n)

](
2j + 1

2k + 1

)2χ+ (2k + 1)(1 − δj,k)

πi(k + j + 1)(j − k)
.

Denoting the first addend on the right-hand side by r̃njk , using (6.12), and taking into account
(9.13), we obtain the Frobenius norm estimate

sup
n∈N

∥∥∥
(
f(xσj+1,n)r̃njkf(xσk+1,n)

)n−1

j,k=0

∥∥∥
L(`2)

≤ const

n2

√√√√√
n−1∑

j=0

2j+1≤2ε

n−1∑

k=0

2k+1≤2ε

(2j + 1)4χ+(2k + 1)2−4χ+

≤ const

n2

√ ∑

1≤j≤2nε

j4χ+

√ ∑

1≤k≤2nε

k2−4χ+

≤ const
√

(nε)4χ++1
√

(nε)3−4χ+

n2
= const ε2

for any f ∈ C1 with supp(f ◦ cos) ⊂ [0, ε] . Furthermore we get

inf
f∈C1

sup
n∈N

∥∥∥MnfLnV
−1
n [DnAnD

−1
n − PnD+AD

−1
+ Pn]VnMnfLn

∥∥∥
L(L2

ν)

≤ inf
f∈C1

sup
n∈N

∥∥∥MnfLnV
−1
n (r̃nj,k)

n−1
j,k=0VnMnfLn

∥∥∥
L(L2

ν)

+const inf
f∈C1

sup
n∈N

∥∥∥∥∥∥
Pn

(
f(xσj+1,n)

[
1 −

χ(xσj+1,n)

4χ−

(
2j+1
2n π

)2χ+

]
δj,k

)n−1

j,k=0

Pn

∥∥∥∥∥∥
L(l2)

∗

(6.13)

∗
∥∥PnD+AD

−1
+ Pn

∥∥
L(l2)

∥∥∥∥∥∥
Pn

(
f(xσk+1,n)

4χ−

(
2k+1
2n π

)2χ+

χ(xσk+1,n)
δj,k

)n−1

j,k=0

Pn

∥∥∥∥∥∥
L(l2)

+const inf
f∈C1

sup
n∈N

∥∥PnD+AD
−1
+ Pn

∥∥
L(l2)

∗

∗
∥∥∥∥∥Pn

(
f(xσk+1,n)

[
1 − 4χ−

(
2k+1
2n π

)2χ+

χ(xσk+1,n)

]
δj,k

)n−1

j,k=0

Pn

∥∥∥∥∥
L(l2)

= 0 ,
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since 4χ−x2χ+

χ(cos x) −→ 1 if x −→ 0 and since the operator D+AD
−1
+ is bounded. Consequently,

(6.11) is true. Completely analogous we get that (6.10) holds and that

inf
f∈C1

sup
n∈N

∥∥∥MnfLnV
−1
n [A∗

n − PnA
∗Pn]VnMnfLn

∥∥∥
L(L2

ν)
= 0 .(6.14)

For fixed k0 , the projection Pk0 ∈ L(`2) is a compact operator. Hence the sequence
{V −1

n Pk0VnPk0PnA
∗
WPnVnLn} belongs to J and, in view of (6.14) and (9.29), we arrive

at

inf
f∈C1

inf
Jn∈J

sup
n∈N

∥∥∥[MnfLn]V
−1
n VnA

∗
nWnVn[MnfLn] + JnLn

∥∥∥
L(L2

ν)

≤ inf
f∈C1

sup
n∈N

∥∥∥V −1
n VnVnMnfLnV

−1
n [A∗

n − PnA
∗Pn]VnMnfLnV

−1
n WnVn

∥∥∥
L(L2

ν)

+ inf
f∈C1

sup
n∈N

∥∥∥MnfLnV
−1
n (I − Pk0)VnVnV

−1
n PnA

∗
WPnVnMnfLn

∥∥∥
L(L2

ν)

≤ const inf
f∈C1

sup
n∈N

∥∥∥Pn(I − Pk0)
(
f(xσj+1,n)dnj+1δj,k

)n−1

j,k=0
Pn

∥∥∥
L(`2)

≤ const sup
n∈N

sup
k0≤k≤n/4

1

kε
=

const

kε0
,

for some ε > 0 . Consequently, we have proved (6.9). Similarly, we can show that (6.8) is
true.

It remains to prove (6.7). We have k0, {V −1
n Pk0BnVnLn} ∈ J for fixed k0 . Conse-

quently, in view of (9.19), we get

inf
f∈C1

inf
{Jn}∈J

sup
n∈N

∥∥∥[MnfLn]V
−1
n BnVn[MnfLn] + JnLn

∥∥∥
L(L2

ν)

≤ inf
f∈C1

sup
n∈N

∥∥∥Pn(I − Pk0)
(
f2(xσj+1,n)bnj+1δj,k

)n−1

j,k=0
Pn

∥∥∥
L(`2)

≤ const sup
n∈N

sup
k0≤k≤n/4

1

kε
=

const

kε0

for some ε > 0 , and (6.7) is shown.

7. Stability of the collocation methods. At first let us study the stability of sequences
from A0 .

THEOREM 7.1. A sequence {An} ∈ A0 is stable if and only if all operators Wω{An} :
Xω −→ Xω , ω = 1, 2, 3, 4 , are invertible.

Proof. The necessity of the conditions follows from Theorem 2.9. To prove that the
conditions are also sufficient we have, due to the same theorem, to show that the invertibility
of Wω{An} implies the invertibility of the coset {An}o in F/J . By Lemma 4.7 and by
the fact that the mappings W3/4 : F −→ L(`2) are *-homomorphisms we conclude that
W3/4{An} ∈ alg T (PC) . This, together with Lemma 6.7, Lemma 6.9, and the relation (see
[7, (7.1)])

[R1]
3/4
n [R2]

3/4
n − [R1R2]

3/4
n ∈ J±1 , R1, R2 ∈ alg T (PC) ,
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implies that the cosets {R3/4
n }o + J±1 and {An}o + J±1 coincide in (A/J )/J±1 for

R = W3/4{An} . In particular, {An}o + J±1 is invertible if W3/4{An} is invertible. The
invertibility of {An}o + Jt for t ∈ (−1, 1) follows from Lemma 6.6 and the invertibility of
W1{An} . It remains to refer to Theorem 6.5.

The remaining part of this section is devoted to the case An = Mn(aI + µ−1bµS +
K)Ln , a, b ∈ PC , which is associated to equation (1.1) or, which is the same, to equation
(1.2). At first we recall the Fredholm conditions for the operator aI + bS : L

2
ν −→ L

2
ν (see

[3, Theorem 9.4.1]). Define c(x) =
a(x) + b(x)

a(x) − b(x)
, and, for (x, λ) ∈ [−1, 1]× [0, 1] ,

c(x, λ) =





(1 − λ)c(x − 0) + λc(x + 0) , x ∈ (−1, 1) ,

c(1) + [1 − c(1)]fα(λ) , x = 1 ,

1 + [c(−1) − 1]fβ(λ) , x = −1 ,

where

fα(λ) =





sinπαλ

sinπα
e−iπα(λ−1) , α ∈ (−1, 1) \ 0 ,

λ , α = 0 .

Note that, for z1, z2 ∈ C , the image of the function z1+(z2−z1)fα(λ) , λ ∈ [0, 1] , describes
the circular arc from z1 to z2 such that the straight line segment [z1, z2] is seen from the points
of the arc under the angle π(1 + α) , i.e., in case α ∈ (−1, 0) , the arc lies on the right of the
segment [z1, z2] and, in case α ∈ (0, 1) , on the left. Thus, if the numbers c(x ± 0) are finite
for x ∈ [−1, 1] the image of c(x, λ) is a closed curve in the complex plane which possesses
a natural orientation. By wind c(x, λ) we denote the winding number of this curve w.r.t. the
origin. Furthermore, note that, for − 1

2 < κ < 1
2 ,

{f−2κ(λ) : λ ∈ [0, 1]} = {fκ(λ) : λ ∈ [0, 1]} ,(7.1)

where

fκ(λ) =
λ

λ+ (1 − λ)e2πiκ
.

LEMMA 7.2 ([3], Theorem 9.4.1). Let a, b ∈ PC . Then the operator aI + bS : L2
ν −→

L
2
ν is Fredholm if and only if a(x± 0)− b(x± 0) 6= 0 for all x ∈ [−1, 1] and c(x, λ) 6= 0 for

all (x, λ) ∈ [−1, 1]× [0, 1] . In this case, the operator is one-sided invertible and its Fredholm
index is equal to ind (aI + bS) = −wind c(x, λ) .

Define d(x, λ) in the same way as c(x, λ) by using α− 2γ and β − 2δ instead of α and
β , respectively.

COROLLARY 7.3. Since the multiplication operator µI : L
2
ν −→ L

2
vα−2γ,β−2δ is an

isometric isomorphism, the operatorA = aI+µ−1bSµ : L2
ν −→ L

2
ν is invertible if and only

if a(x±0)− b(x±0) 6= 0 for all x ∈ [−1, 1] , if d(x, λ) 6= 0 for all (x, λ) ∈ [−1, 1]× [0, 1] ,
and if windd(x, λ) = 0 .

LEMMA 7.4. The operator W2{Mσ
n (aI + µSµI)Ln} is invertible in L

2
ν if and only if

the operator aI + bS : L2
σ −→ L

2
σ is invertible.

Proof. Let An = Mσ
n (aI + bS)Ln . Due to Lemma 3.2, Lemma 3.3 and Lemma 3.4 we

have that the operatorW2{An} is equal to J−1
ν (aJν + ibρV ∗) the invertibility of which in L

2
ν
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is equivalent to the invertibility of the operatorB : L2
ν −→ L

2
ν withB = ρ−1(aJν + ibρV ∗) .

With the help of (3.1), (3.2), and the three-term recurrence relations

Tk+1(x) = 2xTk(x) − γk−1Tk−1(x) , Uk+1(x) = 2xUk(x) − Uk−1(x) , k = 1, 2, . . . ,

we find that

Jν = ρ(ϕI − iψρ−1SρI) , and V ∗ = ψI + iϕρ−1SρI ,

where ψ(x) = x . Hence, the operator B is a singular integral operator the invertibility of
which is equivalent to the Fredholmness of B with index zero or to the Fredholmness of BV
with index −1 . With the help of (6.4) we get

BV = a(ϕI + iψρ−1SρI)(ψI − iϕρ−1SρI) + ibI

= −iaϕ2ρ−1SρI − iaψ2ρ−1SρI + ibI

= i(bI − aρ−1SρI) +K

with a compact operator K : L
2
ν −→ L

2
ν , and the assertion follows from b−a

b+a =

−
(
a+b
a−b

)−1

, Lemma 7.2, and the fact that ρI : L2
ν −→ L

2
σ is an isometric isomorphism.

LEMMA 7.5. Let An = Mn(aI + bS)Ln . Then the operator W2{An} is invertible in
L

2
ν if the operators Wω{An} : L2

ν −→ L
2
ν , ω = 1, 3, 4 , are invertible.

Proof. We consider the case τ = σ . (The case τ = ϕ is dealt with in [7, Section 8].) Let
the operators Wj{An} , j = 1, 3, 4 , be invertible in L

2
ν . Then, due to Lemma 7.2, Lemma

4.1, and Lemma 4.7, the curves

Γ1 :=









(1 − λ)c(x − 0) + λc(x + 0) , x ∈ (0, 1) ,

c(1) + [1 − c(1)]fγ−α/2(λ) , x = 1 ,

1 + [c(−1) − 1]fδ−β/2(λ) , x = −1





: (x, λ) ∈ [−1, 1]× [0, 1]




,

Γ3 :=

{
a(1) + b(1)i cot

(
π

[
1

2
+
α

2
− γ + iλ

])
: −∞ ≤ λ ≤ ∞

}

∪
{
a(1) + b(1)i cot

(
π

[
1

2
− 1

4
+ iλ

])
: ∞ ≥ λ ≥ −∞

}
,

and

Γ4 :=

{
a(−1) − b(−1)i cot

(
π

[
1

2
+
β

2
− δ + iλ

])
: −∞ ≤ λ ≤ ∞

}

∪
{
a(−1) − b(−1)i cot

(
π

[
1

2
− 1

4
+ iλ

])
: ∞ ≥ λ ≥ ∞−

}

do not run through the zero point, and their winding numbers vanish. For e2πλ = λ1

1−λ1
,

λ1 ∈ [0, 1] , and − 1
2 < κ < 1

2 , we get

−i cot

(
π

[
1

2
+ κ+ iλ

])
=

1 − λ1 − λ1e
−i2πκ

1 − λ1 + λ1e−i2πκ
,
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a(1) + b(1)i cot
(
π
[

1
2 + κ+ iλ

])

a(1) − b(1)
= c(1) + [1 − c(1)]f−κ(1 − λ1) ,(7.2)

and

a(−1) − b(−1)i cot
(
π
[
1
2 + κ+ iλ

])

a(−1) − b(−1)
= 1 + [c(−1) − 1]f−κ(1 − λ1) .

Thus, if W3{An} and W4{An} are invertible in L
2
ν , then the invertibility of W1{An} :

L
2
ν −→ L

2
ν is equivalent to the absence of zero on the curve

Γ2 :=









(1 − λ)c(x− 0) + λc(x+ 0) , x ∈ (0, 1) ,

c(1) + [1 − c(1)]f1/4(λ) , x = 1 ,

1 + [c(−1) − 1]f1/4(λ) , x = −1





: (x, λ) ∈ [−1, 1]× [0, 1]





and its vanishing winding number, since zero is not contained in the domains enclosed by the
curves Γ3 and Γ4 . It remains to apply Lemma 7.4.

Let a0, b0 ∈ C with a0 ± b0 6= 0 , set c0 = a0+b0
a0−b0

, and consider the arc

Gκ(a0, b0) :=

{
a0 + b0i cot

(
π

[
1

2
+ κ+ iλ

])
: −∞ ≤ λ ≤ ∞

}
,

where − 1
2 < κ < 1

2 . The point zero does not lie in the convex hull of this arc if and only if

λ1(a0 − b0) + (1 − λ1)

[
a0 + b0i cot

(
π

[
1

2
+ κ+ iλ

])]
6= 0

for all (λ1, λ) ∈ [0, 1] × [−∞,∞] or, which is the same (comp. (7.2),

λ1 + (1 − λ1)[f−κ(1 − λ) + c0fκ(λ)] , 0 ≤ λ1, λ ≤ 1 .

This condition is equivalent to

λ1 + (1 − λ1)c0 6= −f−κ(1 − λ)

fκ(λ)
= −1− λ

λ
ei2πκ , 0 ≤ λ1, λ ≤ 1 .

The last condition can be written in the form

λ1 + (1 − λ1)c0 6∈ ei2πκ[−∞, 0] , 0 ≤ λ1 ≤ 1 .

This means that c0 can be represented in the form

c0 = |c0|ei2πκ0(7.3)

with

− 1

2
+ κ < κ0 <

1

2
if κ > 0(7.4)

and

− 1

2
< κ0 <

1

2
+ κ if κ < 0 .(7.5)
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Moreover, the point zero is contained in the interior of the convex hull of the arc Gκ(a0, b0)
if and only if c0 is of the form (7.3) with

−1

2
< κ0 < −1

2
+ κ if κ > 0

and

1

2
− κ < κ0 <

1

2
if κ < 0 .(7.6)

Now, assume that the operatorA = aI+bµ−1SµI : L2
ν −→ L

2
ν with a, b ∈ PC is invertible.

Then, due to Corollary 7.3,

1

2π
arg c(1) 6= 1

2
+
(α

2
− γ
)

+ k , k ∈ Z

and

1

2π
arg c(−1) 6= −1

2
−
(
β

2
− δ

)
+ k , k ∈ Z .

Hence we can define two numbers

κ+ = − 1

2π
arg c(1) ∈

(
−1

2
−
(α

2
− γ
)
,
1

2
−
(α

2
− γ
))

(7.7)

and

κ− =
1

2π
arg c(−1) ∈

(
−1

2
−
(
β

2
− δ

)
,
1

2
−
(
β

2
− δ

))
.

LEMMA 7.6. Let the operator A = aI + bµ−1SµI : L
2
ν −→ L

2
ν be invertible, a, b ∈

PC , and set An = MnALn . Then the operators W3/4{An} : `2 −→ `2 are Fredholm with
index zero if and only if

∣∣∣∣κ± − 1

4

∣∣∣∣ <
1

2
if ω = σ

and
∣∣∣∣κ± +

1

4

∣∣∣∣ <
1

2
if ω = ϕ .

Proof. Let ω = σ . In this case the operatorW3{An} : `2 −→ `2 is Fredholm with index
zero if and only if the point zero is not at the curve Γ3 or in its interior. Since Γ3 is the union
of the two arcs Gα

2
−γ(a(1), b(1)) and G− 1

4
(a(1), b(1)) , this holds true if and only if eighter

(a) zero is not contained in the convex hulls of the arcs G α
2
−γ(a(1), b(1)) and

G− 1
4
(a(1), b(1)) , or

(b) zero is contained in the interior of both convex hulls, or
(c) if both arcs are located on the same side of the straight line from a(1) + b(1) to

a(1) − b(1) , i.e. if α2 − γ < 0 , zero is on this straight line.
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Condition (a) is equivalent to (see (7.4) and (7.5))

−1

2
< κ+ <

1

2
−
(α

2
− γ
)

if
α

2
− γ > 0 ,

−1

2
−
(α

2
− γ
)
< κ+ <

1

2
if

α

2
− γ < 0 ,

and

−1

2
+

1

4
< κ+ <

1

2
,

i.e., taking into account (7.7), equivalent to

− 1

2
+

1

4
< κ+ <

1

2
.(7.8)

Condition (b) can be written as (see (7.6))

α

2
− γ < 0 , −1

2
< κ+ − 1 < −1

2
−
(α

2
− γ
)

and

1

2
< κ+ <

1

2
+

1

4
,

which is, due to (7.7), equivalent to

1

2
< κ+ <

1

2
+

1

4
.(7.9)

Finally, condition (c) is equivalent to

α

2
− γ < 0 and κ+ =

1

2
.(7.10)

Summarizing (7.8), (7.9), and (7.10) we get
∣∣∣∣κ+ − 1

4

∣∣∣∣ <
1

2
.

The proof for W4{An} is completely analogous, and the proof in case of ω = ϕ is given in
[7, Section 8].

8. Splitting property of the singular values. The singular values of a matrix A ∈
Cn×n are the nonnegative square roots of the eigenvalues of A

∗
A . In this section we study

the asymptotic behaviour of the singular values of operator sequences {An} ∈ A0 , where
an operator An : imLn −→ imLn is identified with one of its matrix representations, for
example in the basis {ũk}n−1

k=0 or in the basis {˜̀kn} nk=1 .
Let F0 denote the C∗-algebra of all bounded sequences {An} of matrices An ∈ Cn×n ,

provided with the supremum norm and elementwise operations. Further, let N be the two-
sided closed ideal of F0 consisting of all sequences {An} ∈ F0 with limn→∞ ‖An‖ = 0 .

For {An} ∈ F0 , by Λn(An) we denote the set of all singular values of An . We say
that the singular values of a sequence {An} ∈ F0 have the k-splitting property if there is a
sequence {εn} of nonnegative numbers and a real number d > 0 , such that limn→∞ εn = 0
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and Λ(An) ⊂ [0, εn]∪ [d,∞) for all n , where, for all sufficiently large n , exactly k singular
values lie in [0, εn] .

Case τ = ϕ . With the help of Theorem 7.1 and relations (2.4), one can easily check that
in this case the algebra A0 is a so called standard algebra (for a definition, see [5, p. 258]).
Consequently, from [5, Theorems 6.1(b), 6.12] we get the following theorem.

THEOREM 8.1. Let {An} ∈ Aϕ
0 and let {An} + J ϕ be invertible in Aϕ

0 /J ϕ . Then the
operators Wϕ

ω {An} : Xω −→ Xω , ω = 1, 2, 3, 4 , are Fredholm and the singular values of
{An} have the k-splitting property with

k =

4∑

ω=1

dim kerWϕ
ω {An} .

Case τ = σ . In this case A0 is not longer a standard algebra (see Lemma 2.4). Hence, in
the following we give another proof for the k-splitting property of the singular values (comp.
[8, Section 5]), which applies in both cases.

For this aim, we continue with recalling some definitions and facts from a Fredholm the-
ory for approximation sequences (comp. [5, 13]). Given a strongly monotonically increasing
sequence η : N −→ N , let Fη refer to the C∗-algebra of all bounded sequences {An} with
An ∈ Cη(n)×η(n) , and write Nη for the ideal of all sequences {An} ∈ Fη which tend to zero
in norm. Further, let Rη : F0 −→ Fη , {An} 7→ {Aη(n)} denote the restriction mapping,
which is a ∗-homomorphism from F0 onto Fη mapping N onto Nη . For a C∗-subalgebra B
of F0 , let Bη = Rη(B) which is a C∗-algebra, too. A ∗-homomorphismW : B −→ C from
B into a C∗-algebra C is called fractal, if, for any strongly monotonically increasing sequence
η : N −→ N , there is a ∗-homomorphism Wη : Bη −→ C such that W = WηRη . The
algebra B is called fractal, if the canonical homomorphism π : B −→ B/(B ∩ N ) is fractal.

LEMMA 8.2 ([5], Theorem 1.69). Let B be a unital C∗-subalgebra of F0 . Then B is
fractal if and only if there exists a family {Wt}t∈T0

of unital and fractal ∗-homomorphisms
Wt : B −→ Ct from B into unital C∗-algebras Ct such that, for every sequence {Bn} ∈ B ,
the following equivalence holds: The coset {Bn}+B ∩N is invertible in B/(B ∩N ) if and
only if Wt{Bn} is invertible in Ct for all t ∈ T0 .

COROLLARY 8.3. The algebra A0 is fractal.
Proof. Due to Theorem 7.1 and Lemma 8.2 we have only to show that the unital ∗-

homomorphisms (see Cor. 2.8) Wω : A0 −→ L(Xω) , ω = 1, 2, 3, 4 , are fractal. But, this
is evident since the images Wω{An} , {An} ∈ A0 , are strong limits which are uniquely
defined by each subsequence of {An} .

Let B be a unital C∗-algebra. An element k ∈ B is said to be of central rank one if, for
any b ∈ B , there is an element r(b) belonging to the center of B , such that k b k = r(b) k .
An element of B is called of finite central rank if it is the sum of a finite number of elements
of central rank one, and it is called centrally compact if it lies in the closure of the set of all
elements of finite central rank. Let J (B) denote the set of all centrally compact elements of
B .

LEMMA 8.4 ([8], Theorem 5.6). Let B be a unital and fractal C∗-subalgebra of F0

which contains the ideal N . Then, K(B) = J (B) .
LEMMA 8.5 ([13], Theorem 3). Let B be a unital C∗-algebra and π : B −→ L(H) an

irreducible representation of B . Then π(J (B)) ⊂ K(H) .
Since every ∗-homomorphism between C∗-algebras, which preserves spectra, also pre-

serves norms, we can conclude from Theorem 7.1 that the mapping

smb : A0 −→ L(L2
ν) ×L(L2

ν) ×L(`2) ×L(`2) ,
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{An} 7→ (W1{An},W2{An},W3{An},W4{An})

is a ∗-homomorphism with kernel N . Since K(Xω) ⊂Wω(A0) for all ω ∈ T , we can easily
check that every Wω : A0 −→ L(Xω) , ω ∈ T , is an irreducible representation of A0 .
Hence, the mapping

smb : A0 −→ L(L2
ν ) ×L(L2

ν ) ×L(`2) ×L(`2)

is an irreducible representation of A0 , too. Lemma 8.5 implies

smb(J (A0)) ⊂ K(L2
ν) ×K(L2

ν) ×K(`2) ×K(`2) .

Recalling the definiton of the ideal J and the fact that every compact operator can be ap-
proximated as closely as desired by an operator of finite dimensional range, we find that
J ⊂ K(A0) . Thus, due to Lemma 8.4, J ⊂ J (A0) . Obviously,

smb(J ) = K(L2
ν) ×K(L2

ν) ×K(`2) ×K(`2) .

Thus, we have proved the following.
LEMMA 8.6. The homomorphism smb maps J (A0) onto K(L2

ν) × K(L2
ν) × K(`2) ×

K(`2) .
We say that a sequence {Bn} ∈ F0 is a Fredholm sequence if it is invertible modulo

J (F0) . Due to [13, Theorem 2] (or [5, Theorem 6.35]) the Fredholmness of a sequence
from F0 is equivalent to the fact that the singular values of this sequence have the k-splitting
property. A C∗-subalgebra B of F0 is called Fredholm inverse closed if J (B) = B∩J (F0) .

LEMMA 8.7 ([8], Theorem 5.8). Let B be a C∗-subalgebra of F0 and let {Jn} ∈
J (F0) ∩ B . Then, for every irreducible representation π : B −→ L(H) of B , the operator
π{Jn} is compact.

Let B be a unital and fractal C∗-subalgebra of F0 which contains the ideal N . A central
rank one sequence of B is said to be of essential rank one if it does not belong to the ideal N .
For every essential rank one sequence {Kn} , let J {Kn} refer to the smallest closed ideal of
B which contains the sequence {Kn} and the ideal N .

In [13, Cor. 2] (see also [5, Cor. 6.43]) there is shown that, if {Kn} and {Jn} are
sequences of essential rank one in B , then eighter

J {Kn} = J {Jn} or J {Kn} ∩ J {Jn} = N .(8.1)

Calling {Kn} and {Jn} equivalent in the first case we get a splitting of the sequences of
essential rank one into equivalence classes, the collection of which we denote by S . More-
over, with every s ∈ S there is associated a unique (up to unitary equivalence) irreducible
representation W s : B −→ L(Hs) such that W s(J {Kn}) = K(Hs) and that the kernel of
the mapping W s : J {Kn} −→ K(Hs) is N (see [13, Theorem 4] or [5, Theorem 6.39]).

From [13, Theorem 10] (or [5, Theorem 6.54]) and [5, Theorem 5.41] we infer the fol-
lowing.

THEOREM 8.8. Let B be a unital, fractal and Fredholm inverse closed C∗-subalgebra
of F0 which contains the ideal N .

(a) If {Bn} ∈ B is a Fredholm sequence, then the operators W s{Bn} are Fredholm
operators for all s ∈ S , there are only finitely many s ∈ S for which W s{Bn} is
not invertible, and the singular values of {Bn} have the k-splitting property with

k =
∑

s∈S

dim kerW s{Bn} .
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(b) Let the family {W s}s∈S be sufficient for the stability of sequences in B , i.e., the
invertibility of all operators W s{Bn} implies the stability of {Bn} . Then the se-
quence {Bn} ∈ B is Fredholm, if all operators W s{Bn} are Fredholm and if there
are only finitely many among them which are not invertible.

Now we are ready to prove the following.
THEOREM 8.9. The singular values of a sequence {An} ∈ A0 have the k-splitting

property if all operators Wω{An} , ω = 1, 2, 3, 4 , are Fredholm. Moreover,

k =

4∑

ω=1

dim kerWω{An} .

Proof. Due to Corollary 8.3, Theorem 8.8, and Theorem 7.1 we have to show that the
algebra A0 is Fredholm inverse closed and that we can identify S with {1, 2, 3, 4} and W ω

with Wω .
Let c denote the set off all convergent sequences of complex numbers. Since the center of

A0 is equal to
{
{γnIn} : {γn} ∈ c

}
(In denotes the idetity matrix of order n) every central

rank one sequence in A0 is also a central rank one sequence in F0 , i.e. J (A0) ⊂ J (F0) .
Hence for the Fredholm inverse closedness of A0 , it remains to show that A0 ∩ J (F0) ⊂
J (A0) . For this, let {Kn} ∈ A0 ∩ J (F0) . By Lemma 8.7 we get

smb{Kn} ∈ K(L2
ν ) ×K(L2

ν ) ×K(`2) ×K(`2) ,

and Lemma 8.6 implies the existence of a sequence {Jn} ∈ J (A0) such that

smb{Kn} = smb{Jn} .

Hence, {Kn − Jn} ∈ N and {Kn} ∈ J (A0) .
Now, we show that, for each essential rank one sequence {Kn} , there exists an ω0 ∈

{1, 2, 3, 4} such that

J {Kn} = Jω0
:=
{{

(E(ω0)
n )−1L(ω0)

n TE(ω0)
n + Cn

}
: T ∈ K(Xω0

), {Cn} ∈ N
}
.(8.2)

For some ω ∈ {1, 2, 3, 4} , let Kn = (E
(ω)
n )−1L

(ω)
1 E

(ω)
n . Then {Kn} ∈ Jω and, con-

sequently, J {Kn} ⊂ Jω . This implies Wω(J {Kn}) ⊂ Wω(Jω) = K(Xω) . Hence,
Wω(J {Kn}) = Wω(Jω) and J {Kn} = Jω . On the other hand, for an arbitrary essen-
tial rank one sequence {Kn} ∈ A0 , we get, using smb(J (A0)) = smb(J ) , J {Kn} ⊂ J .
This implies, due to (8.1), the existence of an ω0 ∈ {1, 2, 3, 4} such that (8.2) holds.

9. Appendix: Proof of Lemma 3.4 in case τ = σ. At first we collect some known
results needed in the sequel.

LEMMA 9.1 ([14], Lemma 4.13). If w ∈ C
0,η with η > 1

2 [1 + max{α, β, 0}] , then the
commutator wS − SwI belongs to K(L2

ν ,C
0,λ) for some λ > 0 .

LEMMA 9.2 ([11], Prop. 9.7, Theorem 9.9). Assume that a, b ∈ C
0,η are real valued

functions, where η ∈ (0, 1) and [a(x)]2 + [b(x)]2 > 0 for all x ∈ [−1, 1] . Furthermore,
assume taht the integers λ± satisfy the relations

α0 := λ+ + g(1) ∈ (−1, 1) and β0 := λ− − g(−1) ∈ (−1, 1) ,

where g : [−1, 1] −→ R is a continuous function such that

a(x) + i b(x) =
√

[a(x)]2 + [b(x)]2] eiπg(x) , x ∈ [−1, 1] .
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Then there exists a positive function w ∈ C
0,η such that, for each polynomial p of degree

n , the function a vα0,β0w p + iS b vα0,β0w p is a polynomial of degree n − κ , where κ =
−λ+ − λ− and where, by definition, a polynomial of negative degree is identically zero.

Suppose γ, δ ≥ 0 . By Cγ,δ we denote the Banach space of all continuous functions
f : (−1, 1) −→ C , for which vγ,δf is continuous over [−1, 1] .Moreover, by L̃

p
vα,β

we refer
to the Banach space of all functions f such that vα,βf belongs to L

p(−1, 1) . The norms in
Cγ,δ and L̃

p
vα,β

are defined by

‖f‖γ,δ,∞ :=
∥∥vγ,δf

∥∥
∞
, ‖f‖

L̃
p

vα,β
:=
∥∥vα,βf

∥∥
Lp(−1,1)

.

We introduce the operator Tγ,δ by

(Tγ,δu)(x) :=

∫ 1

−1

[
1 − vγ,δ(y)

vγ,δ(x)

]
u(y)

(y − x)
dy , −1 < x < 1 .

LEMMA 9.3 ([6], Corollary 4.4). If p > 2 ,

γ, δ ∈
(
−1

4
,−1

p

)
∪
(

1

p
, 1 − 1

2p

)
, 0 < χ < min

{
1

4
− 1

2p
,
1

4
+ γ,

1

4
+ δ

}
,

then the operator Tγ,δ : L̃p

v
γ− 1

2p
,δ− 1

2p
−→ Cγ+ 1

4
−χ,δ+ 1

4
−χ is compact.

Of course, the assertion of this lemma remains true if one of the numbers γ or δ is equal
to zero.

LEMMA 9.4 ([6], (2.9)). The sequence {Wn} converges weakly to 0 in the space L̃
p
ψ

with ψ = v
1
4
+α

2
− 1

2p ,
1
4
+ β

2
− 1

2p .
Proof of Lemma 3.4 in case τ = σ :
Since (1.5) holds, we can choose integers λ± such that α0 − λ+ and λ− − β0 are in

(−1, 0) . Moreover, by g(x) we denote a linear function such that g(1) = α0 − λ+ and
g(−1) = λ− − β0. Then, â(x) := − cot[πg(x)] is a continuous function on [−1, 1] and
â(x) − i =

√
[â(x)]2 + 1 eiπg(x) . Due to Lemma 9.2 there exist a positive function ω ∈⋂

η∈(0,1) C
0,η such that (âI + iS)µωun is a polynomial of degree less then n − k for each

un ∈ imLn , where k = −λ+ − λ− . Now we use the decomposition

µ−1SµI = iâI − i(µω)−1(âI + iS)µωI + (µω)−1(ωS − Sω)µI .(9.1)

The uniform boundedness of {MnâLn} follows from Lemma 3.2. Taking into account (2.2),
Lemma 2.1, and the boundedness of S : L

2
vα−2γ,β−2δ −→ L

2
vα−2γ,β−2δ we get, for un ∈

imLn and qn = (âI + iS)µωun ,

‖Mn(µω)−1qn‖2

ν ≤ 2Qσn|ϑ−1ϕ(µω)−1qn|2

≤ const

∫ 1

−1

|qn|2ϑ−2ϕ2µ−2σ dx(9.2)

= const ‖qn‖2
νµ−2 ≤ const ‖µωun‖2

νµ−2 ≤ const ‖un‖2
ν ,

which proves the uniform boundedness of the second term in (9.1) corresponding to the
collocation method. To handle the third term we set Hω := ωS − Sω . Due to (1.4),
we have 1

2 [1 + max{α − 2γ, β − 2δ, 0}] < 1 . Thus, in view of Lemma 9.1, we have
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Hω ∈ K(L2
νµ−2 ,C0,λ) , for some λ > 0 , which implies µ−1Hωµ ∈ K(L2

ν) . Moreover,
choosing a ε > 0 such that

ε < min

{
1 + α

2
− γ,

1 + α

2
,
1 + β

2
− δ,

1 + β

2

}

and applying Corollary 2.3, we get {(Mn − Ln)ω
−1µ−1HωµLn} ∈ N and, consequently,

{Mnω
−1µ−1HωµLn} ∈ J .(9.3)

Using decomposition (9.1) together with Lemma 3.2 and Corollary 2.3, we infer that for
each fixed m = 0, 1, 2, . . . ,

MnâLnũm −→ âũm ,

Mn(µω)−1(âI + S)µωLnũm −→ (µω)−1(âI + S)µωũm ,

Mn(µω)−1HωµLnũm −→ (µω)−1Hωµũm .

Thus, {An} converges strongly to A .
With the help of (3.2) and Lemma 2.1 we obtain, for un = ϑpn ∈ imLn ,

‖Mnaun‖2
ν ≤ 2‖a‖2

∞Q
σ
n|ϑ−1ϕϑpn|2 ≤ const ‖a‖2

∞‖un‖2
ν .(9.4)

To prove the strong convergence of {A∗
n} , at first we consider sequences of the form

{Mnb0bµ
−1SµLn} , where b0 ∈ PC and b is a differentiable function with b′ ∈ C

0,1[−1, 1]
and b(±1) = b′(±1) = 0 . We use the decomposition

bµ−1SµI = bρ−1SρI + µ−1(bS − SbI)µI + µ−1(Sbµρ−1I − bµρ−1S)ρI
(9.5)

=: bρ−1SρI +K1 +K2 .

In the same way as for (9.3) one can show that {MnKjLn} ∈ J , j = 1, 2 . Due to Lemma
3.2 and Lemma 3.3 the inclusion {Mnb0bµ

−1SµLn} ∈ F follows. Using this fact and the
estimate (see (9.4))

‖Mn(b− b̃)µ−1SµLn‖L(L2
ν)

= ‖Mn(b− b̃)LnMnµ
−1SµLn‖L(L2

ν)

(9.6)
≤ const ‖b− b̃‖∞

we get

{Mnbµ
−1SµLn} ∈ F for all b ∈ PC with b(±1) = 0 .(9.7)

Now, for fixed m, we take the function ϕ−1ũm . This function belongs to L
2
ν and fulfills the

conditions of Corollary 2.3 such that Mnϕ
−1ũm −→ ϕ−1ũm . Because of (Mnϕ

−1Ln)
∗ =

(2Ln − Ln−1)Mnϕ
−1 1

2 (Ln + Ln−1) (see (3.7), which is also true for a = ϕ−1) we get

lim
n→∞

(Mnµ
−1SµLn)

∗ũm

= lim
n→∞

(Mnϕ
−1LnMnϕµ

−1SµLn)
∗ũm

= lim
n→∞

(Mnϕµ
−1SµLn)

∗(2Ln − Ln−1)Mnϕ
−1 1

2
(Ln + Ln−1)ũm

= W1{Mnϕµ
−1SµLn}∗ϕ−1ũm
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in L
2
ν .
To prove the strong convergence of {WnMnµ

−1SµWn} we write

µ−1SµI = ρ−1SρI + µ−1KµI(9.8)

with K := S − ρ−1µSµ−1ρI . Moreover, for p ≥ 2 , we set

ψ := v
1
4
+α

2
− 1

2p ,
1
4
+ β

2
− 1

2p , ψ̃ := µ−1ψv
1
4
+α

2
−γ− 1

2p ,
1
4
+ β

2
−δ− 1

2p .

By assumption (1.4) we have − 1
4 <

1
4 + α

2 −γ < 3
4 and − 1

4 <
1
4 + β

2 −δ < 3
4 . Thus, together

with (1.5) we can apply Lemma 9.3 for sufficiently large p and sufficiently small χ > 0 to
conclude the compacness of

Kµ := µ−1KµI : L̃pψ
µI−→ L̃

p

ψ̃

K−→ C 1+α
2

−γ−χ, 1−β
2

−δ−χ

µ−1I−→ C 1+α
2

−χ, 1−β
2

−χ .

Using the decomposition (9.8) together with Lemma 3.3, it remains to prove that
WnMnKµWnũm converges to zero in L

2
ν for each fixed m = 0, 1, 2, . . . . As a consequence

of Corollary 2.3 and the compactness of the operator Kµ we get

lim
n→∞

‖(Mn − I)Kµ‖L̃
p
ψ→L2

ν
= 0

for some p > 2 . Together with the uniform boundedness of Wn : L̃
p
ψ −→ L̃

p
ψ (see Lemma

9.4) this leads to

lim
n→∞

‖Wn(Mn − I)KµWn‖L̃pψ→L2
ν

= 0

Again Lemma 9.4 and the compactness of the operator Kµ imply, for some p > 2 ,

lim
n→∞

‖WnKµWnu‖ν = 0 , u ∈ L̃
p
ψ .

It remains to remark that ũm ∈ L̃
p
ψ for all p ≥ 1 ..

For fixed m, the function ϕ− 1
3 Tm belongs to L

2
σ and fulfills the conditions of Lemma

2.2 such that

Lσnϕ
− 1

3 Tm −→ ϕ− 1
3 Tm in L

2
σ .(9.9)

Using (3.10) we get, for all u, v ∈ L
2
ν ,

〈WnMnaWnu, v〉ν =
〈
J−1
ν LσnaJνLnu, v

〉
ν

=
〈
LσnaJνLnu, J

−∗
ν Lnv

〉
σ

=
π

n

n∑

j=1

a(xσjn)(JνLnu)(x
σ
jn)(J−∗

ν Lnv)(xσjn)

=
〈
JνLnu, L

σ
naJ

−∗
ν Lnv

〉
σ

=
〈
u, J∗

νL
σ
naJ

−∗
ν Lnv

〉
ν
,

i.e.

(WnMnaWn)
∗ = J∗

νL
σ
naJ

−∗
ν Ln .

Together with (9.7) and (9.9) we conclude, for all fixed m,

(WnMnµ
−1SµWn)

∗ũm = (WnMnϕ
− 1

3WnWnMnϕ
1
3 µ−1SµWn)

∗ũm

= (WnMnϕ
1
3µ−1SµWn)∗J∗

νL
σ
nϕ

− 1
3 J−∗

ν Lnũm

−→W2{Mnϕ
1
3 µ−1SµLn}∗J∗

νϕ
− 1

3 J−∗
ν ũm
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in L
2
ν .

To get the strong limits of the sequences {VnAnV −1
n Pn} and {(VnAnV −1

n Pn)∗} we
consider the structure of the corresponding matrices more closely. Setting B := µ−1SµI −
ρ−1SρI and Bn = MnBLn and using (3.12) and (3.13) we compute, for x 6= xσkn ,

(B ˜̀σkn)(x)

=
1

πi

∫ 1

−1

[
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
ϑ(y)Tn(y) dy

ϑ(xσkn)T ′

n(x
σ
kn)(y − xσkn)(y − x)

=
1

ϑ(xσkn)T ′

n(x
σ
kn)

1

xσkn − x

1

πi

∫ 1

−1

[
µ(y)

µ(x)
− ρ(y)

ρ(x)

] [
1

y − xσkn
− 1

y − x

]
ϑ(y)Tn(y) dy

=
1

ϑ(xσkn)T ′

n(x
σ
kn)

1

xσkn − x
∗

∗ 1

πi

∫ 1

−1

1

µ(x)

[
µ(y)

ρ(y)
− µ(x)

ρ(x)

][
1

y − xσkn
− 1

y − x

]
ϕ(y)Tn(y) dy

=
1

ϑ(xσkn)T ′

n(x
σ
kn)

1

xσkn − x

{
1

πi

∫ 1

−1

[
µ(xσkn)

µ(x)
− ρ(xσkn)

ρ(x)

]
1

ρ(xσkn)

ϕ(y)Tn(y)

y − xσkn
dy

+
1

πi

∫ 1

−1

([
µ(y)

µ(x)
− ρ(y)

ρ(x)

]
1

ρ(y)
−
[
µ(xσkn)

µ(x)
− ρ(xσkn)

ρ(x)

]
1

ρ(xσkn)

)
ϕ(y)Tn(y)

y − xσkn
dy

− 1

πi

∫ 1

−1

1

µ(x)

[
µ(y)

ρ(y)
− µ(x)

ρ(x)

]
ϕ(y)Tn(y)

y − x
dy

}

=
1

ϑ(xσkn)T ′

n(x
σ
kn)

1

xσkn − x

{
1

i

[
µ(xσkn)

µ(x)
− ρ(xσkn)

ρ(x)

]
1

ρ(xσkn)
ϕ2(xσkn)Un−1(x

σ
kn)

+
1

πi

∫ 1

−1

[
µ(y)

ρ(y)
− µ(xσkn)

ρ(xσkn)

]
1

µ(x)

ϕ(y)Tn(y)

y − xσkn
dy

− 1

πi

∫ 1

−1

1

µ(x)

[
µ(y)

ρ(y)
− µ(x)

ρ(x)

]
ϕ(y)Tn(y)

y − x
dy

}

=
1

xσkn − x

{
ϕ(xσkn)

ni

[
µ(xσkn)

µ(x)
− ρ(xσkn)

ρ(x)

]
+

(−1)k+1

√
2π

1

ni

µ(xσkn)

µ(x)
ϕ(xσkn)dnk

− (−1)k+1

√
2π

1

ni

ρ(xσkn)

ρ(x)
ϕ(x)dn(x)

}
,

where

dn(x) :=

∫ 1

−1

[
µ(y)ρ(x)

ρ(y)µ(x)
− 1

]
ϕ(y)

ϕ(x)

Tn(y)

y − x
dy , dnk := dn(xσkn).
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Consequently, we get

VnBnV
−1
n Pn =

(
ω(j+1)n

ω(k+1)n
(B ˜̀σk+1,n)(xσj+1,n)

) n−1

j,k=0

(9.10)
= Bn + DnAnD

−1
n −An −DnAnD

−1
n WnVn −VnA

∗
nWn ,

with

Bn :=
(
(Bl̃σ(j+1)n)(xσ(j+1)n)δj,k

) n−1

j,k=0
, An :=

(
ϕ(xσk+1,n)

ni

1 − δj,k
xσk+1,n − xσj+1,n

) n−1

j,k=0

,

and

Wn :=

(
(−1)k+1

√
2π

δj,k

) n−1

j,k=0

, Vn :=
(
dnk+1δj,k

)n−1

j,k=0
, Dn :=

(
ρ(xσj+1,n)

µ(xσj+1,n)
δj,k

) n−1

j,k=0

,

where the diagonal elements in An are equal to zero by definition. We have to show that, for
any fixed m = 1, 2, . . . , the sequences

{VnAnV −1
n Pnem−1} and {(VnAnV −1

n Pn)
∗em−1}

converge in `2 to A
µ
+em−1 and (Aµ

+)∗em−1 , respectively.
a) At first we turn to the limits for the operators An . We define

a
(n)
jk =

ϕ(xσk+1,n)

ni

1 − δj,k
xσk+1,n − xσj+1,n

, 0 ≤ j, k ≤ n− 1 .

We observe that, for fixed j and k with k 6= j and for n −→ ∞ ,

a
(n)
jk =

1

ni

sin 2k+1
2n π

2 sin k+j+1
2n π sin j−k

2n π
−→ 1

πi

2k + 1

(k + j + 1)(j − k)
(9.11)

and, for fixed k and j = 0, 1, . . . , n− 1 , j 6= k , and n > 2k ,

|a(n)
jk | ≤ const

2k + 1

|j − k|(k + j + 1)
.(9.12)

The same estimate holds true for fixed j and k = 0, 1, . . . , n − 1 , k 6= j , and n > 2k .
Using (9.11) and (9.12) together with Remark 3.1, we see that Anem−1 −→ Aem−1 and
A

∗
nem−1 −→ A

∗em−1 for any fixed m = 1, 2, . . .
b) In this item we consider the convergence of the operators DnAnD

−1
n . We introduce

the function χ(x) := ρ(x)[µ(x)]−1 = (1 − x)χ+(1 + x)χ− with

χ+ :=
1

4
+
α

2
− γ , χ+ :=

1

4
+
β

2
− δ(9.13)

and define

ã
(n)
jk =

χ(xσj+1,n)

χ(xσk+1,n)

ϕ(χ(xσk+1,n))

ni

1 − δj,k
xσj+1,n − xσj+1,n

, 0 ≤ j, k ≤ n− 1 .
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Then, condition (1.4) is equivalent to

− 1

4
< χ± <

3

4
.(9.14)

We observe that, for fixed j and k with k 6= j and for n −→ ∞ ,

ã
(n)
jk =

(
sin 2j+1

4n π

sin 2k+1
4n π

)2χ+
(

cos 2j+1
4n π

cos 2k+1
4n π

)2χ−

1

ni

sin 2k+1
2n π

2 sin k+j+1
2n π sin j−k

2n π
(9.15)

−→
(

2j + 1

2k + 1

)2χ+ 1

πi

2k + 1

(k + j + 1)(j − k)
=: ãjk .

For 0 ≤ j, k ≤ n
2 and j 6= k , we have the estimate

|ã(n)
jk | ≤ conts

(
2j + 1

2k + 1

)2χ+

(
1 − 2j+1

4n π

1 − 2k+1
4n π

)2χ−

2k + 1

|j − k|(k + j + 1)
.

For fixed k, n > 3k and n > j > n
2 we get, if χ− ≥ 0 ,

|ã(n)
jk | ≤ const

(n
k

)2χ+ 1

n

k

n
= const

k1−2χ+

n2(1−χ+)

and, if χ− < 0 ,

|ã(n)
jk ≤ const

(n
k

)2χ+

(
2n− 2j − 1

2n

)2χ− 1

n

k

n
≤ const

(n− j)2χ−k1−2χ+

n2(1−χ++χ−)
.

Thus, for fixed k and j = 0, 1, . . . , n− 1 , j 6= k , and n > 3k , we have

|ã(n)
jk | ≤ const





1

j
1
2
+ε

if j ≤ n

2
,

1

nε
1

(n− j)
1
2
+ε

if j >
n

2

(9.16)

with some ε > 0 . For fixed j , n > 3j , and n > k > n
2 we get, if χ− ≤ 0 ,

|ã(n)
jk | ≤ const

(
j

n

)2χ+ 1

n
≤ const

j2χ+

n(1+2χ+)
,

and, if χ− > 0 ,

|ã(n)
jk | ≤ const

(
j

n

)2χ+
(

2n

2n− 2k − 1

)2χ− 1

n

2n− 2k − 1

2n

≤ const
(n− k)1−2χ−j2χ+

n2(1+χ+−χ−)
,

Thus, we obtain, for fixed j and k = 0, 1, . . . , n− 1 , k 6= j , and n > 3j ,

|ã(n)
jk | ≤





const

1

k
1
2
+ε

if k ≤ n

2
,

1

nε
1

(n− k)
1
2
+ε

if k >
n

2

(9.17)
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with some ε > 0 . Using (9.15), (9.16), and (9.17) together with Remark 3.1 we conclude

lim
n→∞




n
2∑

j=0,j 6=k

|ã(n)
jk − ãjk|2 +

n−1∑

j=n
2
+1,j 6=k

|ã(n)
jk |2 +

∞∑

j=n
2
+1,j 6=k

|ãjk|2

 = 0

and

lim
n→∞




n
2∑

k=0,j 6=k

|ã(n)
jk − ãjk |2 +

n−1∑

k=n
2
+1,j 6=k

|ã(n)
jk |2 +

∞∑

k=n
2
+1,j 6=k

|ãjk |2

 = 0 ,

which imply the `2-convergences

DnAnD
−1
n ek → D+AD

−1
+ ek and (DnAnD

−1
n )∗ej → (D+AD

−1
+ )∗ej ,(9.18)

where A and D+ are defined in (3.19).
c) Next we compute the limits b+k := limn→∞ bnk , where we have set bnk :=

(B`σkn)(xσkn) . In particular, we shall show that, for some ε > 0 ,

|bnk | ≤
const

min{k, n+ k − 1}ε , k = 1, 2, . . . , n .(9.19)

At first we consider the case n ≥ 2k − 1 . Defining

ζ(x) := [ρ(x)]−1µ(x) = [χ(x)]−1 =: (1 − x)ζ+(1 + x)ζ−

and using (3.13) we get

bnk =
1

πi

∫ 1

−1

[
µ(y)

µ(xσkn)
− ρ(y)

ρ(xσkn)

]
ϑ(y)Tn(y)

ϑ(xσkn)T ′
n(x

σ
kn)(y − xσkn)2

dy

=
(−1)k+1

√
2π

1

ni

∫ 1

−1

ζ(y) − ζ(xσkn)

ζ(xσkn)

ϕ(y)Tn(y)

(y − xσkn)2
dy

=

(∫ − 1
2

−1

+

∫ x̃σ2k,n

− 1
2

+

∫ 1
2
(1+xσkn)

x̃σ
2k,n

+

∫ 1

1
2
(1+xσkn)

)
F (y, xσkn) dy

=: In1,k + In2,k + In3,k + In4,k ,

where x̃σ2k,n = max
{
− 1

2 , cos 2k−1
n π

}
and

F (y, x) :=
(−1)k+1

π

1

ni

ϕ(y)

ζ(x)

ζ(y) − ζ(x)

(y − x)2
cos s , y = cos

s

n
.

We observe xσk,n ≥ 0 for n ≥ 2k − 1 . For −1 < y < − 1
2 , we have 2 > |y − xσk,n| > 1

2 and
2 > 1 − y > 3

2 . Thus,

|In1,k| ≤
const

n

1

(1 − xσk,n)ζ+

∫ − 1
2

−1

[
(1 + y)ζ− + (1 − xσkn)ζ+

]
(1 + y)

1
2 dy

(9.20)

≤ const

n

[
1 +

(n
k

)2ζ+
]
≤ const√

n
≤ const√

k
,
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since − 3
4 < ζ± < 1

4 (recall (9.14) and ζ± = −χ±). From (9.20) we conclude
limn→∞ In1,k = 0 and

b+k = lim
n→∞

(In2,k + In3,k + In4,k) = lim
n→∞

∫ ∞

0

G(s, xσkn) ds ,(9.21)

where

G(s, x) :=





1

n
F
(
cos

s

n
, x
)

sin
s

n
if 0 < s <

2π

3
n ,

0 if
2π

3
n < s .

Now, we consider the case 1
2 (1+xσkn) < y = cos sn < 1 ,which is equivalent to 0 < s < snk ,

where 2k−1
4 π < snk <

2k−1
2 π . Thus y − xσkn >

1
2 (1 − xσkn) and

|G(s, xσkn)| ≤ const

n

[(
1 − y

1 − xσkn

)ζ+
+ 1

]
(1 − y)

1
2

(1 − xσkn)2
1

n
sin

s

n
| cos s|

(9.22)

≤ const

n

[( s
k

)2ζ+
+ 1

]
s

n

(n
k

)4 s

n2
≤ const

k4

[( s
k

)2ζ+
+ 1

]
s2 .

Consequently,

|In4,k| ≤
const

k4

∫ 2k−1

2
π

0

[( s
k

)2ζ+
+ 1

]
s2 ds ≤ const

k
.(9.23)

For the case x̃σ2k,n < y = cos sn <
1
2 (1 +xσkn) we have snk < s < min{(2k− 1)π, 2π

3 n} and

|F (y, xσkn)| ≤ const
ϕ(y)

n

|ζ ′(ζ1)|
ζ(x

σ
kn)

∣∣∣∣∣∣∣

cos s− cos
2k − 1

2
π

cos
s

n
− cos

2k − 1

2n
π

∣∣∣∣∣∣∣

= const
ϕ(y)

n

|ζ ′(ζ1)|
ζ(x

σ
kn)

∣∣∣∣
∫ 1

0

sin

[
2k − 1

2
π + λ

(
s− 2k − 1

2
π

)]
dλ

∣∣∣∣
1

n

∫ 1

0

sin
1

n

[
2k − 1

2
π + λ

(
s− 2k − 1

2
π

)]
dλ

≤ const
ϕ(y)

n

|ζ ′(ζ1)|
ζ(x

σ
kn)

∣∣∣∣∣
1

s− 2k−1
2 π

∫ s

2k−1

2
π

sinu du

∣∣∣∣∣

1

n

∫ 1
2

0

sin
1

n

[
2k − 1

2
π + λ

(
s− 2k − 1

2
π

)]
dλ

≤ const
ϕ(y)

n

|ζ ′(ζ1)|
ζ(x

σ
kn)

min

{
1,

∣∣∣∣s−
2k − 1

2
π

∣∣∣∣
−1
}

k

n2

for some ζ1 ∈
(
x̃σ2k,n, [1 + xσkn]/2

)
. Since in this case

1− y > 1 − 1

2
(1 + xσkn) =

1

2
(1 − xσkn)
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and

1 − y < 1 − cos
2k − 1

n
π = 2 sin2 2k − 1

2n
π

= 2

(
1 + cos

2k − 1

2n
π

)(
1 − cos

2k − 1

2n
π

)
4(1 − xσkn) ,

we get 1 − y ∼ 1 − xσkn ∼ 1 − ζ1 ,

|G(s, xσkn)| ≤ const
1

n

s

n

n2

k2

n2

k
min

{
1,

∣∣∣∣s−
2k − 1

2
π

∣∣∣∣
−1
}

s

n2

(9.24)

= const
s2

k3
min

{
1,

∣∣∣∣s−
2k − 1

2
π

∣∣∣∣
−1
}
,

and

|In3,k| ≤ const
1

k3

∫ (2k−1)π

0

s2 min

{
1,

∣∣∣∣s−
2k − 1

2
π

∣∣∣∣
−1
}

(9.25)

≤ const
1

k

∫ (2k−1)π

0

min

{
1,

∣∣∣∣s−
2k − 1

2
π

∣∣∣∣
−1
}

= const
1 + log k

k
.

In the last case − 1
2 < y < x̃σ2k,n , i.e. (2k − 1)π < s < 2π

3 n , we obtain the relations

1 − y > 1 − cos
2k − 1

n
π = 2 sin2 2k − 1

2n
π

= 2

(
1 + cos

2k − 1

2n
π

)(
1 − cos

2k − 1

2n
π

)
≥ 2(1 − xσkn) ,

and

1 − y > xσkn − y = (1 − y) − (1 − xσkn) >
1

2
(1 − y) .(9.26)

Consequently, we get

|F (y, xσkn)| ≤ const

n

[(
1 − y

1 − xσkn

)ζ+
+ 1

]
(1 − y)

1
2

(1 − y)2

and

|G(s, xσkn)| ≤ const

n

[( s
k

)2ζ+
+ 1

]
n3

s3
s

n2
= const

[( s
k

)2ζ+
+ 1

]
1

s2
.(9.27)

Since 2(1 − ζ+) > 1 , we obtain the estimate

|In2,k| ≤ const

∫ ∞

(2k−1)π

[( s
k

)2ζ+
+ 1

]
1

s2
ds ≤ const

k
.(9.28)

From the estimates (9.22), (9.24), and (9.27) we conclude that the function

f(s) := C

{
max{s2ζ++2, s2} if 0 < s < (2k − 1)π ,

(s2ζ+ + 1)s−2 if (2k − 1)π < s <∞ ,
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with the constant C depending only on ζ± and k , is an integrable majorant for the functions
G(s, xσkn) , n > 3

2 (2k − 1) , in (9.21). Thus, we can change the order between the limit and
the integration, and we obtain

b+k =

∫ ∞

0

lim
n→∞

G(s, xσkn) ds

=
(−1)k+1

πi

∫ ∞

0

lim
n→∞

{
1

n2
sin

s

n




(
2 sin2 s

2n

)ζ+ (
2 cos2 s

2n

)ζ−

(
2 sin2 2k−1

4n π
)ζ+ (

2 cos2 2k−1
4n π

)ζ− − 1




1

4 sin2 (2k−1)π−2s
4n sin2 (2k−1)π+2s

4n

cos s sin
s

n

}
ds

=
(−1)k+1

πi

∫ ∞

0

lim
n→∞

s2

n4

[(
2s

(2k − 1)π

)2ζ+

− 1

]
(4n)4 cos s

4 ([(2k − 1)π]2 − [2s]2)2
ds

=
64(−1)k+1

πi

∫ ∞

0

(
2s

(2k−1)π

)2ζ+
− 1

([(2k − 1)π]2 − [2s]2)
2 s

2 cos s ds .

Hence, formula (3.21) is shown.
Due to the estimates (9.20), (9.23), (9.25), and (9.28) we have |bnk | ≤ const k−ε for some

ε > 0 and for 1 ≤ k ≤ n+1
2 . Let us consider the case n+1

2 < k ≤ n , j = n + 1 − k . It
follows 1 ≤ j ≤ n+1

2 and, in view of xσn+1−j,n = −xσjn , ϕ(−y) = ϕ(y) , and Tn(−y) =
(−1)nTn(y) ,

bnk =
(−1)j√

2π

1

ni

∫ 1

−1

ζ̃(y) − ζ̃(xσjn)

ζ̃(xσjn)

ϕ(y)Tn(y)

(y − xσjn)2
dy ,

where ζ̃(y) = ζ(−y) . Hence, we get |bnk | ≤ const j−ε = const (n + 1 − k)−ε for n+1
2 ≤

k ≤ n , and (9.19) is proved.
d) Now we compute the limits d+

k = limn→∞ dnk with

dnk =
1

ζ(xσkn)

∫ 1

−1

ζ(y) − ζ(xσkn)

y − xσkn

ϕ(y)

ϕ(xσkn)
Tn(y) dy .

In particular, we shall show that, for some ε > 0 ,

|dnk | ≤
const

min{k, n+ 1 − k}ε , k = 1, 2, . . . , n .(9.29)

At first, let n ≥ 2k − 1 and consider the polynomials

Sn(x) :=

[
1

n+ 1
Tn+1(x) −

1

n− 1
Tn−1(x)

]
,

for which we have the relations (see (3.2) and (3.13))

Tn(x) =
1

2
[Un(x) − Un−2(x)] =

1

2
S′
n(x) .(9.30)
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We obtain, for n ≥ 2 ,

Sn(x
σ
1n) =

1

n+ 1
cos

(n+ 1)π

2n
− 1

n− 1
cos

(n− 1)π

2n

= − 1

n+ 1
sin

π

2n
− 1

n− 1
sin

π

2n
< 0 ,

and

Sn(x
σ
2n) =

1

n+ 1
cos

3(n+ 1)π

2n
− 1

n− 1
cos

3(n− 1)π

2n

=
1

n+ 1
sin

3π

2n
+

1

n− 1
sin

3π

2n
> 0 .

Moreover, since S ′
n(x) = 2Tn(x) and Tn(x) < 0 for x ∈ (xσ2n, x

σ
1n) , we get that Sn(x)

decreases monotonously on the interval (xσ2n, x
σ
1n) . Consequently, the polynomial Sn(x) has

exactly one root in the interval (xσ2n, x
σ
1n) . We denote this root by x+

n . Obviously, x+
n has

the form

x+
n = cos

s∗n
n

with
π

2
< s∗n <

3π

2
.(9.31)

Now, we take an arbitrary s ∈ (π2 ,
3π
2 ) and compute, for sufficiently large n ,

Sn(cos
s

n
) =

1

n+ 1
cos

n+ 1

n
s− 1

n− 1
cos

n− 1

n
s

=
1

n+ 1

[
cos s cos

s

n
− sin s sin

s

n

]
− 1

n− 1

[
cos s cos

s

n
− sin s sin

s

n

]

=

[
1

n+ 1
− 1

n− 1

]
cos s cos

s

n
−
[

1

n+ 1
+

1

n− 1

]
sin s sin

s

n

= − 2 cos s

n2 − 1

[
1− O

(
1

n2

)]
− 2n sin s

n2 − 1

[
s

n
+O

(
1

n3

)]

= −2[cos s+ s sin s]

n2 − 1
+O

(
1

n4

)
,

which means that there exist constants c, d ∈ R and N ∈ N such that, for each s ∈
(
π
2 ,

3π
2

)

and for any n > N ,

−2[cos s+ s sin s] +
c

n
< (n2 − 1)Sn(cos

s

n
) < −2[cos s+ s sin s] +

d

n
.

Since Sn

(
cos

s∗n
n

)
= 0 the inequalities

c

n
≤ 2[cos s∗n + s∗n sin s∗n] ≤

d

n

are fulfilled. Whence we conclude that s∗n tends to s∗ , where s∗ ∈ (π2 ,
3π
2 ) is the so-

lution of the equation cos s + s sin s = 0 . Define x−n = −x+
n and taking into acount



ETNA
Kent State University 
etna@mcs.kent.edu

P. Junghanns and A. Rogozhin 67

Sn(−x) = (−1)n+1Sn(x) , we obtain Sn(x±n ) = 0 . In view of (9.30) we get, by apply-
ing partial integration two times,

dnk =
1

ζ(xσkn)ϕ(xσkn)

∫ 1

−1

ζ(y) − ζ(xσkn)

y − xσkn
ϕ(y)Tn(y) dy

=
1

ζ(xσkn)ϕ(xσkn)

(∫ x−
n

−1

+

∫ 1

x+
n

)
ζ(y) − ζ(xσkn)

y − xσkn
ϕ(y)Tn(y) dy

+
1

2ζ(xσkn)ϕ(xσkn)

∫ x+
n

x−
n

[
ϕ(y)

ζ(y) − ζ(xσkn) − ζ ′(y)(y − xσkn)

(y − xσkn)2

−ϕ′(y)
ζ(y) − ζ(xσkn)

y − xσkn

]
Tn(y) dy

=
1

ζ(xσkn)ϕ(xσkn)

(∫ x−
n

−1

+

∫ 1

x+
n

)
ζ(y) − ζ(xσkn)

y − xσkn
ϕ(y)Tn(y) dy

± S̃n(x
±
n )

4ζ(xσkn)ϕ(xσkn)

[
ϕ(x±n )

ζ(x±n ) − ζ(xσkn) − zeta′(x±n )(x±n − xσkn)

(x±n − xσkn)2

−ϕ′(x±n )
ζ(x±n ) − ζ(xσkn)

x±n − xσkn

]
+

∫ x+
n

x−
n

F̃ (y, xσkn) dy

=: dn,1k,− + dn,1k,+ + dn,2k,+ − dn,2k,− + d̃nk ,

where

S̃n(y) =
1

(n+ 1)(n+ 2)
Tn+2(y) +

1

(n− 1)(n− 2)
Tn−2(y) −

1

n2 − 1
Tn(y)

and

F̃ (y, x) =
S̃n(y)

4ϕ(x)ζ(x)

[
2ϕ(y)

ζ(y) − ζ(x) − ζ ′(y)(y − x) + 1
2ζ

′′(y)(y − x)2

(y − x)3

−2ϕ′(y)
ζ(y) − ζ(x) − ζ ′(y)(y − x)

(y − x)2
+ ϕ′′(y)

ζ(y) − ζ(x)

y − x

]
.

For n ≥ 5 , the term dn,1k,− can be estimated (remark that in this case x−n < − 1
2 ) by

|dn,1k,−| ≤ const

∫ x−
n

−1

[
(1 + y)ζ

−

(1 − xσkn)ζ+
+ 1

]
(1 + y)1/2

(1 − xσkn)1/2
dy

= const

[
(1 + x−n )3/2+ζ−

(1 − xσkn)1/2+ζ+
+

(1 + x−n )3/2

(1 − xσkn)1/2

]

≤ const

[(
1

n

)3+2ζ− (n
k

)1+2ζ+
+

1

n3

n

k

]
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≤ const

[
1

n2(1+ζ−−ζ+)k1+2ζ+
+

1

n2

]

such that limn→∞ dn,1k,− = 0 and

|dn,1k,−| ≤
C

k3/2
.(9.32)

To consider dn,1k,+ we use the substitution y = cos s
n and get

dn,1k,+ =

∫ 1

x+
n

H(y, xσkn) dy =

(∫ max{x+
n ,

1
2
(1+xσkn)}

x+
n

+

∫ 1

max{x+
n ,

1
2
(1+xσkn)}

)
H(y, xσkn) dy

=

(∫ s∗n

min{s∗n,s
n
k
}

+

∫ min{s∗n,s
n
k}

0

)
H̃(s, xσkn) ds =: Jn1,k + Jn2,k

with snk = n arccos 1
2 (1 + xσkn) ,

H(y, x) =

√
2

π

ϕ(y)

ϕ(x)ζ(x)

ζ(y) − ζ(x)

y − x
cos s , y = cos

s

n
,

and

H̃(s, x) =





1

n
H
(
cos

s

n
, x
)

sin
s

n
if 0 < s < s∗n ,

0 if s∗n ≤ s ≤ 3π

2
.

If snk < s < s∗n , i.e. x+
n < y = cos sn <

1
2 (1 + xσkn) , we have the estimate

|H(y, xσkn)| ≤ const
ϕ(y)

ϕ(xσkn)

|ζ ′(ζ1)|
ζ(xσkn)

for some ζ1 ∈
(
x+
n ,

1
2 (1 + xσkn)

)
. Since in this case (1−y) ∼ (1−xσkn) ∼ (1− ζ1) , we get

|H̃(s, xσkn)| ≤ const

n

s

k

n2

k2

s

n
=

const s2

k3
and |Jn1,k| ≤

const

k3

∫ 3
2
π

0

s2 ds ≤ const

k3
.

For Jn2,k , we have 0 < s < snk , which equivalent to 1
2 (1 + xσkn) < y = cos sn < 1 . Hence

y − xσkn >
1
2 (1 − xσkn) ,

|H(y, xσkn)| ≤ const

(
1 − y

1 − xσkn

)1/2
[(

1 − y

1 − xσkn

)ζ+
+ 1

]
1

1 − xσkn
,

and

|H̃(s, xσkn)| ≤ const

n

s

k

[( s
k

)2ζ+
+ 1

]
n2

k2

s

n
=

const

k3

[( s
k

)2ζ+
+ 1

]
s2 .

Thus,

|Jn2,k| ≤
const

k3

∫ 3
2
π

0

[( s
k

)2ζ+
+ 1

]
s2 ds ≤ const

k3/2
.
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Consequently,

|dn,1k,+| ≤
const

k3/2
,(9.33)

and the functions H̃(s, xσkn) possess an integrable majorant,
∣∣∣H̃(s, xσkn)

∣∣∣ ≤ C
[
s2+2ζ+ + s2

]
, 0 < s <

3π

2
,

where the constant C depends only on ζ+ and k . So, we can change the order between the
limit and the integration and obtain

lim
n→∞

dn,1k,+ =

∫ s∗

0

lim
n→∞

H̃(s, xσkn) ds

=

√
2

π

∫ s∗

0

lim
n→∞

2s

2k − 1

[(
2s

2k − 1

)2ζ+

− 1

]
s

n2

8n2 cos s

[(2k − 1)π]2 − [2s]2
ds

=

√
2

π

16

2k − 1

∫ s∗

0

(
2s

2k−1

)2ζ+
− 1

[(2k − 1)π]2 − [2s]2
s2 cos s ds .

To estimate dn,2k,± we remark that S̃n(−x) = (−1)nS̃n(x) and write
√
π

2
S̃n(cos t) =

cos(n+ 2)t

(n+ 1)(n+ 2)
− cos(n− 2)t

(n− 1)(n− 2)
− 2 cosnt

n2 − 1

=

[
1

(n+ 1)(n+ 2)
+

1

(n− 1)(n− 2)

]
cosnt cos 2t− 2

n2 − 1
cosnt

+

[
1

(n− 1)(n− 2)
− 1

(n+ 1)(n+ 2)

]
sinnt sin 2t(9.34)

=

[
(2n2 + 4) cos 2t

(n2 − 1)(n2 − 4)
− 2

n2 − 1

]
cosnt+

6n

(n2 − 1)(n2 − 4)
sinnt sin 2t

=
2n2(cos 2t− 1) cosnt+ 4 cos2t cosnt+ 8 cosnt+ 6n sin 2t sinnt

(n2 − 1)(n2 − 4)

=
8 cosnt+ 4 cos2t cosnt+ 6n sin 2t sinnt− 4n2 sin2 t cosnt

(n2 − 1)(n2 − 4)
.

For n ≥ 5 , the term dn,2k,− can be estimated by (comp. (9.31))

|dn,2k,−| ≤ const
1 + s∗n + (s∗n)

2

n4

(n
k

)1+2ζ+

{
s∗n
n

[(
k

n

)2ζ+

+

(
s∗n
n

)2ζ−−2
]

+
n

s∗n

[(
k

n

)2ζ+

+

(
s∗n
n

)2ζ−
]}

≤ const

{
1

n4

1

k
+

1

n2

1

k
+

1

n2(1+ζ−−ζ+)k1+2ζ+

}
,
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such that limn→∞ dn,2k,− = 0 and

|dn,2k,−| ≤
const

k3/2
.(9.35)

For the term dn,2k,+ , there are two possible cases x+
n ≥ 1

2 (1 + xσkn) and xσ2k,n < x+
n <

1
2 (1 + xσkn) . In the first case, we have x+

n − xσkn ≥ 1
2 (1 − xσkn) and

|dn,2k,+| ≤
const

n4

(n
k

)1+2ζ+

{
1

n

[(
k

n

)2ζ+

+

(
1

n

)2ζ+

+

(
1

n

)2ζ+−2
k2

n2

]
n4

k4

+n

[(
k

n

)2ζ+

+

(
1

n

)2ζ+
]
n2

k2

}

= const

{(
1

k

)5

+

(
1

k

)5+2ζ+

+

(
1

k

)3

+

(
1

k

)3+2ζ+
}

≤ const

k3/2
.

In the second case, we have

|dn,2k,+| ≤
const

n4

(n
k

)1+2ζ+
{

1

n
|ζ ′′(ζ2| + n|ζ ′(ζ1)|

}
,

for some ζ1, ζ2 ∈
(
x+
n ,

1
2 (1 + xσkn)

)
. Since in this case 1− ζ1,2 > 1

2 (1−xσkn) , we conclude

|dn,2k,+| ≤
const

n4

(n
k

)1+2ζ+

{
1

n

(
k

n

)2ζ+−4

+ n

(
1

n

)2ζ+−2
}

= const

{
1

k5
+

1

k3

}
.

Consequently,

|dn,2k,+| ≤
const

k3/2
(9.36)

and, taking into account (9.34),

lim
n→∞

dn,2k,+

=
1

4

√
2

π
lim
n→∞

8 cos s∗n + 4 cos s∗n + 12s∗n sin s∗n − 4(s∗n)
2 cos s∗n

(n2 − 1)(n2 − 4)

81/2+ζ+

21/2+ζ−

∗
(

n

(2k − 1)π

)1+2ζ+
{
s∗n
n

2ζ−

8ζ+

[(
2s∗n
n

)2ζ+

−
(

(2k − 1)π

n

)2ζ+
]
∗

∗ 64n4

([(2k − 1)π]2 − [2s∗n]
2)2

− s∗n
n

2ζ−

8ζ+

(
2s∗n
n

)2ζ+ [ζ−
2

− 8ζ+n
2

[2s∗n]
2

]
8n2

[(2k − 1)π]2 − [2s∗n]
2

+
n

s∗n

2ζ−

8ζ+

[(
2s∗n
n

)2ζ+

−
(

2k − 1

n

)2ζ+
]

8n2

[(2k − 1)π]2 − [2s∗n]
2

}
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=

√
2

π

12 cos s∗ + 12s∗ sin s∗ − 4(s∗)2 cos s∗

[(2k − 1)π]1+2ζ+

{
32s∗

[2s∗]2ζ+ − [(2k − 1)π]2ζ+

([(2k − 1)π]2 − [2s∗]2)2

+
4

s∗
(1 + 2ζ+)[2s∗]2ζ+ − [(2k − 1)π]2ζ+

[(2k − 1)π]2 − [2s∗]2

}
.

Finally, we write

d̃nk =

(∫ − 1
2

x−
n

+

∫ x̃σ2k,n

− 1
2

+

∫ x̃+
n

x̃σ
2k,n

+

∫ x+
n

x̃+
n

)
F̃ (y, xσkn) dy =: Ĩn1,k + Ĩn2,k + Ĩn3,k + Ĩn4,k ,

where x̃σ2k,n = max
{
− 1

2 , cos 2k−1
n π

}
and x̃+

n = min
{
x+
n ,

1
2 (1 + xσkn)

}
. For x−n < y <

− 1
2 , we have 2 > |y − xσkn| > 1

2 and 2 > 1 − y > 3
2 . With the help of the relations

−x−n = x+
n and S̃n(−y) = (−1)nS̃n(y) together with the substitution y = cos s

n we obtain

|Ĩn1,k| ≤
C

(1 − xσkn)1/2+ζ+

∫ x+
n

1
2

{
(1 − y)

1
2

[
(1 − y)ζ−−2 + (1 − xσkn)ζ+

]

+(1 − y)−
1
2

[
(1 − y)ζ−−1 + (1 − xσkn)ζ+

]

+(1 − y)−
3
2

[
(1 − y)ζ− + (1 − xσkn)ζ+

]
}
S̃n(y) dy

≤ const
(n
k

)1+2ζ+
∫ π

3
n

π
2

{
s

n

[( s
n

)2ζ−−4

+

(
k

n

)2ζ+
]

+
n

s

[( s
n

)2ζ−−2

+

(
k

n

)2ζ+
]

+
n3

s3

[( s
n

)2ζ−
+

(
k

n

)2ζ+
]}

1 + s+ s2

n4

s

n2
ds

≤ const

∫ π
3
n

π
2

{
s4

n6k
+

s2

n4k
+

1

n2k
+

s2ζ−

n2(1−ζ++ζ−)k1+2ζ+

}
ds

≤ const





1

n
+

1

n1−2ζ+k1+2ζ+
if ζ− > −1

2
1

n
+

logn

n1−2ζ+k1+2ζ+
if ζ− = −1

2
1

n
+

1

n2(1−ζ++ζ−)k1+2ζ+
if ζ− < −1

2





≤ const

nε

for some ε > 0 . Consequently, limn→∞ Ĩn1,k = 0 ,

|Ĩn1,k| ≤
const

kε
,(9.37)

and

d̃+
k = lim

n→∞
d̃nk,+ = lim

n→∞
Ĩn2,k + Ĩn3,k + Ĩn4,k = lim

n→∞

∫ ∞

π
2

G̃(s, xσkn) ds ,(9.38)
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where

G̃(s, x) =





0 if
π

2
< s < s∗n ,

1

n
F̃ (cos

s

n
, x) sin

s

n
if s∗n < s <

2π

3
n ,

0 if
2π

3
n < s .

Now, let 1
2 (1 + xσkn) < y = cos sn < x+

n , which is equivalent to s∗n < s < snk , where
2k−1

4 π < snk <
2k−1

2 π . Hence, y − xσkn >
1
2 (1 − xσkn) and

|G̃(s, xσkn)| ≤ const

{
s

n

[( s
n

)2ζ+
+

(
k

n

)2ζ+

+
( s
n

)2ζ+−2 k2

n2
+
( s
n

)2ζ+−4 k4

n4

]
n6

k6

+
n

s

[( s
n

)2ζ+
+

(
k

n

)2ζ+

+
( s
n

)2ζ+−2 k2

n2

]
n4

k4

+
n3

s3

[( s
n

)2ζ+
+

(
k

n

)2ζ+
]
n2

k2

}(n
k

)1+2ζ+ s3

n6
(9.39)

≤ const

{
s4+2ζ+

k7+2ζ+
+
s2+2ζ+

k5+2ζ+
+

s2ζ+

k3+2ζ+
+
s4

k7
+
s2

k5
+

1

k3

}

≤ const

{
s2ζ+

k3+2ζ+
+

1

k3

}

Consequently,

|Ĩn4,k| ≤ const

∫ 2k−1

2
π

π
2

{
s2ζ+

k3+2ζ+
+

1

k3

}
ds ≤ const

k3/2
(9.40)

For the case x̃σ2k,n < y = cos sn < x̃+
n ≤ 1

2 (1 + xσkn) , we have max{snk , s∗n} < s <

min{(2k − 1)π, 2π
3 n} and, for some ζ1, ζ2, ζ3 ∈

(
x̃σ2k,n, x̃

+
n

)
, the estimate

|F̃ (y, xσkn)| ≤ S̃n(y)

ϕ(xσkn)ζ(xσkn)

(
ϕ(y)|ζ ′′′(ζ3)| + |ϕ′(y)||ζ ′′(ζ2)| + |ϕ′′(y)||ζ ′(ζ1)|

)
.

Because of (1 − y) ∼ (1 − xσkn) ∼ (1 − ζ1,2,3) we get

|G(s, xσkn)| ≤ const
(n
k

)1+2ζ+

{
k

n

(
k

n

)2ζ+−6

+
n

k

(
k

n

)2ζ+−4

+
n3

k3

(
k

n

)2ζ+−3
}
k3

n6

(9.41)

≤ const

k2

and

|Ĩn3,k| ≤
const

k2

∫ (2k−1)π

π/2

ds ≤ const

k
(9.42)
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In last case − 1
2 < y < x̃σ2k,n , i.e. (2k−1)π < s < 2π

3 n , we have the relation (comp. (9.26))

1 − y > xσkn − y >
1

2
(1 − y) .

Consequently,

|G(s, xσkn)| ≤ const
(n
k

)1+2ζ+

{
s

n

[( s
n

)2ζ+
+

(
k

n

)2ζ+
]
n6

s6

+
n

s

[( s
n

)2ζ+
+

(
k

n

)2ζ+
]
n4

s4
+
n3

s3

[( s
n

)2ζ+
+

(
k

n

)2ζ+
]
n2

s2

}
s3

n6
(9.43)

≤ const

{
1

s2(1−ζ+)k1+2ζ+
+

1

s2k

}

and, since 2(1− ζ+) > 1 ,

|Ĩn2,k | ≤ const

∫ ∞

(2k−1)π

{
1

s2(1−ζ+)k1+2ζ+
+

1

s2k

}
ds ≤ const

k2
(9.44)

From the estimates (9.39), (9.41), and (9.43) we conclude that the function

f̃(s) := C

{
max{s2ζ+ , 1} if

π

2
< s < (2k − 1)π ,

(s2ζ+ + 1)s−2 if (2k − 1)π < s <∞ ,

with the constant C depending only on ζ± and k , is an integrable majorant for the functions
G(s, xσkn) , n > 3

2 (2k − 1) , in (9.38). Thus, we can change the order between the limit and
the integration and obtain

d̃+
k =

∫ ∞

s∗

1

4

√
2

π
lim
n→∞

12 cos s+ 12s sin s− 4s2 cos s

(n2 − 1)(n2 − 4)

81/2+ζ+

21/2 + ζ−

(
n

(2k − 1)π

)1+2ζ+

∗

∗
{

2s

n

2ζ−

8ζ+

[(
2s

n

)2ζ+

−
(

(2k − 1)π

n

)2ζ+
]

512n6

([(2k − 1)π]2 − [2s]2)3

−2s

n

2ζ−

8ζ+

(
2s

n

)2ζ+ [ζ−
2

− 8ζ+n
2

[2s]2

]
64n4

([(2k − 1)π]2 − [2s]2)2

+
s

n

2ζ−

8ζ+

(
2s

n

)2ζ+ [ (ζ2
+ − ζ+)64n4

[2s]4
ζ2
− − ζ−

4
− 8ζ−ζ+n

2

[2s]2

]
8n2

[(2k − 1)π]2 − [2s]2

+
2n

s

2ζ−

8ζ+

[(
2s

n

)2ζ+

−
(

(2k − 1)π

n

)2ζ+
]

64n4

([(2k − 1)π]2 − [2s]2)2

−2n

s

2ζ−

8ζ+

(
2s

n

)2ζ+ [ζ−
2

− 8ζ+n
2

[2s]2

]
8n2

[(2k − 1)π]2 − [2s]2

−
[
n

s
+
n3

s3

]
2ζ−

8ζ+

[(
2s

n

)2ζ+

−
(

(2k − 1)π

n

)2ζ+
]

8n2

[(2k − 1)π]2 − [2s]2

}
s

n2
ds
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=

√
2

π

∫ ∞

s∗

{
512s

[2s]2ζ+ − [(2k − 1)π]2ζ+

([(2k − 1)π]2 − [2s]2)3
+

64

s

(1 + 2ζ+)[2s]2ζ+ − [(2k − 1)π]2ζ+

([(2k − 1)π]2 − [2s]2)2

+
4

s3
(4ζ2

+ − 1)[2s]2ζ+ − [(2k − 1)π]2ζ+

[(2k − 1)π]2 − [2s]2

}
12 cos s+ 12s sin s− 4s2 cos s

[(2k − 1)π]1+2ζ+
s ds

Formula (3.22) is proved.
Due to the estimates (9.32), (9.33), (9.35), (9.36), (9.37), (9.40), (9.42), and (9.44) we

have |dnk | ≤ const k−ε for some ε > 0 and for 1 ≤ k ≤ n+1
2 . Additionally, let n+1

2 < k ≤ n
and j = n+ 1 − k . Then 1 ≤ j ≤ n+1

2 and, in view of xσn+1−j,n = −xσjn , ϕ(−y) = ϕ(y) ,
and Tn(−y) = (−1)nTn(y) ,

dnk =
(−1)n+1

ζ̃(xσjn)

∫ 1

−1

ζ̃(y) − ζ̃(xσjn)

y − xσjn

ϕ(y)

ϕ(xσjn)
Tn(y) dy,

where ζ̃(y) = ζ(−y) . Hence, we get |dkn| ≤ const j−ε = const (n + 1 − k)−ε for n+1
2 ≤

k ≤ n , and (9.29) is proved.
e) Using the estimates (9.12) and (9.17) together with (9.29) and Remark 3.1, we get, for

each fixed m = 1, 2, . . . , the `2-convergences

VnA
∗
nWnem−1 −→ V+A

∗
Wem−1

and

DnAnD
−1
n WnVnem−1 −→ D+AD

−1
+ WV+em−1

as well as the corresponding limit relations for the adjoint operators, where the operators V+

and W are defined by (3.20). Together with items a),b), c), and Lemma 3.3, we obtain the
strongly convergence of the sequences {VnAnV −1

n Pn} and {(VnAnV −1
n Pn)∗} .

The strong convergence of ṼnAnṼ −1
n Pn and (ṼnAnṼ

−1
n Pn)∗ follows from the previous

considerations and the relations

a
(n)
n−1−j,n−1−k =

ϕ(xσn−k,n)

ni

1 − δn−1−j,n−1−k

xσn−k,n − xσn−j,n

= −
ϕ(xσk+1,n)

ni

1 − δj,k
xσk+1,n − xσj+1,n

= −a(n)
jk , 0 ≤ j, k ≤ n− 1 ,

ã
(n)
n−1−j,n−1−k =

χ(xσn−j,n)

χ(xσn−k,n)

ϕ(xσn−k,n)

ni

1 − δn−1−j,n−1−k

xσn−k,n − xσn−j,n

= −
χ̃(xσj+1,n)

χ̃(xσk+1,n)

ϕ(xσk+1,n)

ni

1 − δj,k
xσk+1,n − xσj+1,n

, 0 ≤ j, k ≤ n− 1 ,

bnn+1−k =
(−1)n−k√

2π

1

ni

∫ 1

−1

ζ(y) − ζ(xσn+1−k,n)

ζ(xσn+1−k,n)

ϕ(y)Tn(y)

(y − xσn+1−k,n)2
dy

= − (−1)k+1

√
2π

1

ni

∫ 1

−1

ζ̃(y) − ζ̃(xσkn)

ζ̃(xσkn)

ϕ(y)Tn(y)

(y − xσkn)2
dy , 1 ≤ k ≤ n ,
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dnn+1−k =
1

ζ(xσn+1−k,n)

∫ 1

−1

ζ(y) − ζ(xσn+1−k,n)

y − xσn+1−k,n

ϕ(y)

ϕ(xσn+1−k,n)
Tn(y) dy

=
(−1)n+1

ζ̃(xσkn)

∫ 1

−1

ζ̃(y) − ζ̃(xσkn)

y − xσkn

ϕ(y)

ϕ(xσkn)
Tn(y) dy , 1 ≤ k ≤ n ,

where χ̃(y) = χ(−y) , ζ̃(y) = ζ(−y) . The numbers a(n)
jk ã

(n)
jk , bnk , and dnk are defined in

items a),b), c), and d), respectively.
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