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COLLOCATION METHODSFOR CAUCHY SINGULAR INTEGRAL EQUATIONS
ON THE INTERVAL*

P. JUNGHANNST AND A. ROGOZHIN*

Abstract. In this paper we consider polynomial collocation methods for the numerical solution of a singular
integral equation over the interval, where the operator of the equation is supposed to be of the form al +bu =1 Sul +
K with S the Cauchy singular integral operator, with piecewise continuous coefficients a and b, and with a Jacobi
weight i . K denotes an integral operator with a continuous kernel function. To the integral equation we apply two
collocation methods, where the collocation points are the Chebyshev nodes of the first and second kind and where
the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of
this collocation scheme in weighted L2-spaces, we derive necessary and sufficient conditions. Moreover, we discuss
stability of operator sequences belonging to algebras generated by the sequences of the collocation methods for the
above described operators. Finally, the so-called splitting property of the singular values of the sequences of the
matrices of the discretized equations is proved.

Key words. Cauchy singular integral equation, polynomial collocation method, stability, singular values, split-
ting property.

AMS subject classifications. 45110, 65R20, 65N38.

1. Introduction and preliminaries. The present paper can be considered as an im-
mediate continuation of [7], where the stability of the collocation method with respect to
Chebyshev nodes of second kind for Cauchy singular integral equations (CSIES) is investi-
gated. Here we purpose, firstly, to establish analogous results for collocation with respect to
Chebyshev nodes of first kind (and to compare them with the results of [7]) and, secondly, to
study the stability of operator sequences belonging to an algebra generated by the sequences
of the collocation methods applied to Cauchy singular integral operators (CSIOs). Moreover,
we will be able to prove results on the singular value distribution of the respective matrix
sequences related to the collocation methods.

A function a : [-1,1] — C is called piecewise continuous if it has one-sided limits
a(z £ 0) forall x € (—1,1) and is continuous at 1. For definiteness, we assume that
the function values coincide with the limits from the left. The set of piecewise continuous
functions on [—1, 1] is denoted by PC.

We analyze polynomial collocation methods for CSIEs on the interval (—1, 1) of the type

1 1
@) awule)+ 2L [ IO gy eyt = fa).

where a, b : [-1,1] — C stand for given piecewise continuous functions, where the weight
function g is of the form u(z) = v79(z) := (1—2)7(1+2)° with real numbers —1 < ~,§ <
1,wherethekernel & : (—1,1) x (—=1,1) — C is supposed to be continuous (comp. Lemma
2.10), where the right-hand side function f is assumed to belong to a weighted Z2-space L2 ,
and where u € L2 stands for the unknown solution. The Hilbert space L? is defined as the
space of all (classes of) functions « : (—1,1) — C which are square integrable with respect
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12 Collocation methods for Cauchy singular integral equations

to the weight v = v | —1 < o, 3 < 1. The inner product in this space is defined by

(u,v), ::/ u(z)v(z)v(x) de

—1
and the norm by (|||, := /(u, u),, . In short operator notation (1.1) takes the form
(1.2) Au = (al +bp ' Spul + K)u = f.

Here al : L2 — L2 denotes the multiplication operator defined by (au)(z) := a(x)u(x),
the operator S : L2 — L2 is the CSIO given by

1
s == [ M a,

mJ i y—x

and K : L2 — L2 stands for the integral operator with kernel k(z,y). Note that the
condition —1 < «a, 8 < 1 for the exponents of the classical Jacobi weight v(z) guarantees
that the CSIO S : L2 — L2 is continuous, i.e. S € £(L?2) (see [3]).

Let o(z) = (1 —22)~2 and ¢(z) = (1 — 22)2 denote the Chebyshev weights of first
and second kind, respectively. For the numerical solution of the CSIE (1.2), we consider the
polynomial collocation method

1

b(QZT ) 1 1 ,LL
T T n’ k(x dy = T
a(‘r]n)un(x_]n) + M(x;—n) 7TI /1 /1 ]n?y Un ) Y f(x]n)a
j =1,...,n, where the collocation points x7,, are chosen as the Chebyshev nodes =7, =
cos 23—7r of first kind or 7, = cos -L= - of second kind and where the trial function wu,, is

sought in the space of all functlons un = 19pn with a polynomial p,, of degree less than n
and with the Jacobi weight ¢ = vi— 31~ . We write the above method in operator form as

(1.3) Apup =My f, up, €imL,.

Here L,, denotes the orthogonal projection of L2 onto the n dimensional trial space im L,, of
all polynomials of degree less than » multiplied by ¢ . By M,, = M we denote the interpola-
tion projection defined by M, f € im L,, and (M, f)(z},,) = f(z},),j = 1,...,n. Finally,
the discretized integral operator A,, : im L,, — im L,, is given by A,, := MnA|ian .
In accordance with e.g. [11], we call the collocation method stable if the operators A,, are
invertible at least for all sufficiently large n and if the norms of the inverse operators A, ! are
bounded uniformly with respect to »n . Of course, the norm is the operator norm in the space
im L,, if the last is equipped with the restriction of the L2-norm. We call the method (1.3)
convergent if, for any right-hand side f € L2 and for any approximating sequence {f,} ,
fn € im L, , with ||f — f.||, — 0, the approximate solutions w,, obtained by solving
Anu, = f, converge to the exact solution u of (1.2) in the norm of L2 . Note that the stabil-
ity implies bounded condition numbers for the matrix representation of A,, in a convenient
basis, and, together with the consistency relation A,,L,, — A, it implies the convergence.
In all what follows, for the exponents in the weight functions p and v , we suppose

(1.4) —l<a—-2y<1, —-1<pB-21<1,

and

NN syt B
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Note that condition (1.4) ensures the boundedness of the integral operator A € L£(L2)
whereas (1.5) is needed to derive strong limits for the discrete operators (see Lemma 3.4).

In the subsequent analysis, we will show that there exist four limit operators W, {A,},
w = 1,2,3,4, introduced in the Lemmata 3.2-3.4. Moreover, we show that the map-
pings {A,} — W,{A,} can be extended to *-homomorphisms W, : Ay — L(L32),
where A, denotes a C*-algebra of operator sequences including all sequences {M,,(al +
bu=tSpl)L,}, a,b € PC. The invertibility of W,{A,},w = 1,2,3,4, will turn out to be
necessary and sufficient for the stability of {A,,} € A .

2. A C*-algebraof operator sequencesand stability. In this section we will introduce
one of the C*-algebras of operator sequences under consideration here. For n. > 0, let
po =T, and p¥ = U, stand for the orthonormal polynomials of degree n with respect to the
weight functions o and ¢ , respectively. That means that

1 2
To(x) = —=, Tu(coss) = \/jcosns7 n>1,se(0,m)),
T T
and
2 si 1
Un(coss) = \/jw, n>0,se€(0,m).
T sins
We set

Un(x) :=9(x)Up(x), n=0,1,2,...

)

1_a 1_pB

with ¢ = y/v—1¢p = vi~ 2272 . Then the solution of (1.3) can be represented by

un(@) = 3 Eniin (@),
k=0

o0

and, with respect to the orthonormal system {w,,} -, in L2, the orthogonal projection L,
takes the form

n—1

Lnu = Z <u, ﬁk>yﬂk .

k=0
The interpolation operator M,, = M can be written as M7 = ¢ L7911, where L7, denotes

the polynomial interpolation operator with respect to the nodes z ;, = 27,,,j =1,...,n.By

¢% we denote the Hilbert space of all square summable sequences & = {£;},-, of complex
numbers equipped with the inner product

e = &y -

k=0
Finally, we introduce the Christoffel numbers with respect to the weights o and ¢ by
T e o TGP

kn T n+1

and the discrete weights

i 1 a 1 8 1 a 1 8
- 1T a7 (0 L — it5.2t3 (¥ —
Wiy 1= \/;114 212 (2] ), wl = v1TATE (gf ), k=1,...,n.
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The proof of the approximation properties of the interpolation operators M., is based on the
following auxiliary results.

LEMMA 2.1 ([10],Theorem 9.25). Let u, v be classical Jacobi weights with uv €
L'(—1,1)and let j € N be fixed. Then for each polynomial ¢ with deg ¢ < jn,

n 1

> Malala,) v, < Const/ lq(2)|p(2)v(z) de,

k=1 -1

where the constant does not depend on » and ¢ and where z/, and

n " T — ':C;Ln

xr —_ .
j=1,j#k “kn  Tin

are the nodes and the Christoffel numbers of the Gaussian rule with respect to the weight s ,
respectively.
Let Q% denote the Gaussian quadrature rule with respect to the weight y,

Quf = M. flah,),

and write R = R(—1, 1) for the set of all functions f : (—1,1) — C, which are bounded
and Riemann integrable on each closed subinterval of (—1,1).

LEMMA 2.2 ([2], Satz I11.1.6b and Satz 111.2.1). Let p(z) = (1 — z)7(1 + x)° with
~v,0 > —1.If f € R satisfies

|f(@)] <comst (1 —z)* 17142179 —1<z<l,
1
forsomee > 0, then lim Q% f :/ f(z)p(x)dx . If even
n— 00 1

|f(z)| < const (1 — x)E_HTW(l —&—x)a_%é, -l<z <1,
then lim | f—LLf|, =0.
COROLLARY 2.3. Let f € R and, for somee > 0,
If(2)] < comst (1 —2)* " F* (1 +2) "2, —l<az<l.

Then lim ||f — M f|, =0forr =cand T =¢
Proof. Introduce the quadrature rule

Quf = / (L2 f) @) de =S oxnf (250),
-1 k=1
where
1
7= [ @t dm—/ (7, (@)1~ 2)o(x) do = Tlp(af, )P

for n > 2. Consequently,

n

Quf = = 3 lp(ef ) (af,) -

k=1
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Since the nodes x¢,, of the quadrature rule @,, are the zeros of 27, (z) = U, (z) — U, —2(x) ,
the estimate

1
2.1) 1 D@ () do < 20,11

holds true (see [2, Hilfssatz 2.4, §lI11.2]). As an immediate consequence we obtain
g g g 2 g - 2
@2)IMFI3 = L9~ 11 <—Z|z9 (efn )@l f (2f,)]” = 2Q7 19 o f|

Now let e > 0 be arbitrary and p be a polynomial such that ||9p — f||, < €. Forn > degp
we have || M2 f — f]|2 <2 (HMg(ﬁp — D2+ ||9p — f||12,) . Since, in view of Lemma 2.2,
Tim Q7|9 (9 — £)2 = [0 e (Wp — fll; = |[vp — £} . we getin view of (2.2) that
hmsup |MSf— fII? < 662

The proof for the case 7 = ¢ is analogous (see also [2, Satz 111.2.1]). 0
Now we start to prepare the definition of a certain C*-algebra of operator sequences,
which is closely related to the above mentioned four limit operators defined as strong limits

Wo{An) = lim E@A,(EC) LW | weT:={1,2,3,4},

in some Hilbert spaces X, . Here, LS{“) : X, — X,, are projections and Eff’) :im L,, —
im L' are certain operators defined by

X = X5 := L,%, X3 := Xy := 62, lel) = L%Q) =L, leg) = le4) =P,,

and
n—1
Pn{§07§17§23 .. } = {607 s 7571717 Oa 0707 H } ) Wnu = Z<ua ﬁnflfk>l/ak P
k=0

Viiu:={wi,u(z],),. .. wn

Viu = {wl un,),. .. ,wlux],)0,0,...}.

Immediately from the definitions, we conclude that

f=1 “kn k=1 Tk
where
e 20 9(@)py ()
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Between the operators V,, and 17n , we have the relations

(2.3) V,VolP, =V, VolP, = W, Py,
where Wn € L(imP,) is defined by

Wn{goaglv cee agnfl} = Wr:l{g()vgla B agnfl} = {571—1,571—2, cee 750} .

Furthermore, the operators E,(l o, w € {1,2},and E,(ﬂ), ,w € {1,2,3,4} , are unitary opera-
tors, i.e.

(2.4) (B = (B)

n,T

For E,(fg ,w € {3,4}, we have the following result.
LEMMA 2.4. LetV,, =V,7and V,, = V7. Then

n

1 ~ 1 1=
= §Vn(Ln+Ln—l)u (Vﬁl) = §Vn(Ln+Ln—1)7

VE= (VY)Y = (2L — Lo )V L, V= ((17*1)*)71 = (2L — L)V, L.

n

Proof. For symmetry reasons, we may restrict our considerations to the operator (V)" .
Letj =0,1,...,n—1.Then

B n € " §k—1
V 1 , = _— 196 77,7 - 76 n’ ?
< " 5 u>V <I; wknﬁ(xkn) g >1/ <l§ wgnﬁ(xgn) * >a

and, for j =0,...,n — 2, we obtain

(Vi€ i) Z&cl

v, (%)
k 1 wkn kn) ! "

ng 1wkn mkn)Uj(xZn) = <€7Vnaj>£2
=1

For ; = n — 1, using the relation

1

_h/n—lTn—l(x) - ’Yn+1Tn+l($)] )

(25) (1 - $2)Un—1($) = )

where vo = /2 and v,, = 1 for n > 1, and the fact that
(26) Tﬂ+1(xgn) = _Tn—l(xgn) , N> 1’

we get, forn > 1,

n

1~ 1 §k—1 -
<Vn 1§’u”*1>u = §<Z T‘Tt]zn) knaTnfl - Tn+1>

k=1 “kn
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T k-1
=5 oo In-1(ziy)
2n k=1 wknﬁ(‘rkn)

7T - fk,1 o \12 o
= LN Sk U
2 ‘ wgﬂﬁ(xzn)[(p(xkn)] 1(xkn)

k=
n
Z 1wkn xkn)Un—l(xZn)

<§a Vnﬂn*1>£2 :

N = wly—l

0
LEMMA 2.5. The sequences { (“’1)( (“’2))71L§§J2)} converge weakly to zero for all

indices wy,wy € T with wy # wy .

Proof. The proof for the case = =  one can find in [7, Lemma 2.1]. The case 7 = ¢ can
be dealt with completely analogous after checking the uniform boundedness of the sequences
{Voy {(vo)y=t} and {V,2}, {(V,2)~1}. But, this follows, by using Lemma 2.1, relation
(2.2), and the notation u = ¥p,, € im L,, , from

n
2 7T 2
IVl = — > @ @) lpn(27,)]
k=1

Lo
Sconst/ _—
-1

) 2

CCk ~

mn go’
\/7 ‘rkn) hn v
Z,/ Eo10g, (z

Analogously we get the uniform boundedness of the sequences {17,5’} and {(1775’)—1} .0

[p(a)*o(x) dw = coust |lul,;

and

vy te| =

<20° —2Z|5k 12 = 20

COROLLARY 2.6. The sequences {( (“1)) (Er(l“’z))*L%”)} converge weakly to zero
for all indices w1, ws € T with wy # ws .

Of course, all constructions in what follows depend on the choice of 7 = o or 7 = .
Nevertheless, we will omit the subscript 7 if there is no possibility of misunderstandings.

By F we denote the set of all sequences {A,,} = {A,},-, of linear operators A,,
im L, — im L, , for which there exist operators W,{A4,,} € £(X.) such that, for all
weT,

E@ A, (EW) LY — Wo{Au}
2.7

(B An(B) L) — WaiAn)”
holds in X, in the sense of strong convergence for n — oo . If we define, for A1, A\ € C,

)\1{An} + )\Q{Bn} = {)\1An + )\QBn} ,
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{AnH{ B} == {AnBn}, {An}* ={A.},

and
1A = s {4 Ll s n = 1.2},

then it is not hard to see that 7 becomes a Banach algebra with unit element {L,,} . From
Lemma 2.5 and Corollary 2.6 we conclude
COROLLARY 2.7. For all w € T and all compact operators T, € K(X,,), the se-

quences {44} = {(E,(f’))_ LYT,E “)} belong to F, and for wy # ws, we get the
strong limits

B g2 (pen)” Lﬁf“) —.0, (E,(l“’l)AS{"Z)(E,(fl))fllewl))* 0

COROLLARY 2.8. The algebra F is a C*-algebra and the mappings W, : 7 —
L(X,),w €T, are*-homomorphisms.

Proof. Of course, the mappings W, : F — L(X,), w € T, are homomorphisms.
Hence, it suffices to show that the operator sequences {E4) A* (ES) =1L} and the re-
spective sequences of adjoint operators are strongly convergent for all sequences {A,,} € F
and that W, {4} = (W,{A,})" ,w € T. Incase (ES))~1 = (EL))* this can be easily
verified. Consequently, due to (2.4), it remains to consider thecase r = o, w = 3,4.

For symmetry reasons we may restrict the prooftothe case r = o, w = 3. Let {A,} €
F . Using Lemma 2.4, the relation L,,— L,,_; = W,,L;W,, , the compactnessof L, : L2 —
L2 , and Corollary 2.7, we get

V, Arv !

(V2L — Wy L1 W) Ap (L + Wi LiW, )V, P, ]

N =

(P + V" W LiW, Vi P) (Ve AWV, R < (2P, — Vi ' WL, LW,V Py)

1
2
— (Ws{4n})".

The proof for the respective sequence {(V,, A%V, P,)*} is analogous.
Using Corollary 2.7, we define the subset 7 C F, of all sequences of the form

24:{ 1L°’)TE“’)} ()

where T, € K(X,,) and where {C,,} is in the ideal N* C F of all sequences {C,,} tending
to zero in norm, i.e. of all sequences with [|C', Ly || w2y — 0. Now, the following theorem
is crucial for our stability and convergence analysis.

THEOREM 2.9 ([11], Theorem 10.33). The set 7 forms a two-sided closed ideal of F .
Asequence {A, } € F isstable if and only if the operators W, {A,} : X, — X, ,w e T,
are invertible and if the coset {4,,} + J is invertible in /7 .

Furthermore, we will need the auxiliary algebra F» of sequences { A,,} of linear opera-
tors A, : im L,, — im L,, , for which (2.7) holds true for w = 1,2 . Moreover, we define
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the subset 7, C F» of all sequences of the form

2
S {EBD) T LOTLED ) + {Cu)
w=1

where T, € K(X,,) and where {C,,} is in the ideal N* C F . Obviously, the set 7> forms a
two-sided closed ideal of 7>, and F C F5, Jo C J .

In addition to the operator sequences corresponding to the collocation method applied
to compact operators, the sequences of quadrature discretizations of integral operators with
continuous kernels are contained in 7 , too. Indeed, we can formulate the following lemma.

LEMMA 2.10. Suppose the function k(xz,y)/p(y) , where p = \/vp = 9~ 1¢, is con-
tinuous on [—1,1] x [—1,1] and that K is the integral operator with kernel k(z,y) . Then
{M,KL,} € J» CJ.Moreover, if the approximations K,, € L£(im L,,) are defined by

n—1
Ko = (B) 7 (SR 10 o )P )P 0T 1,0) B L

where @¢ = w/n and 0¥ = «/(n + 1), then the operator norm of K,, — L,, K |im 1, tends
tozeroand {K,}isin J> .
Proof. Consider the case = = ¢ . Since

| e = [ g.0@0ewd = Te6s)?,
-1 -1

the operators K, can be written as M7 K,, , where
1
Kon)@) = [ oLk )e unl(0) dy.

Obviously, due to the Arzela-Ascoli theorem the operator K : L2 — C[—1,1] is compact.
Hence, lim ||M,KL, — LnKLnHL(Lg) = 0 (see Corollary 2.3), and it is sufficient to
show that lim |K, L, — KLy|c@wz ci-1,1) = 0. To this end, we introduce operators
K, :im L, — C[—1,1] by

_ 1

Ron)(@) = [ o) L31kw 00 1) (0 ) )

-1

Due to the exactness of the Gaussian rule we have, for j =0,...,n — 2,
Rnaj = <LZ[/€(1'7 ')pil]’ SDQUj>g = <L;‘l[k(£13, ')pilUj]’ 902>g = Knﬂj )

and, in view of relations (2.5), (2.6),



ETNA

Kent State University
etna@mcs.kent.edu

20 Collocation methods for Cauchy singular integral equations

Now, we deal with lim |\I~(nLn — KLyl £(rz,ci-1,1)) - We take an arbitrary u € L2

and get L,u = vp,, , where p,, is a certain polynomial of degree less than n. By k,(z,y)
we refer to the best uniform approximation to k(x, y)/p(y) in the space of polynomials with
degree less then n in both variables. Using (2.1) we get, forx € [—1,1],

|(KpLnu — K Lyu)(z)|

1
= ‘/1 o(y) (LG [k, )p~ 1 (y) — k(z,9)/p()) pn(y) dy‘
1
- ‘/ LG, )p " = ka2, )] (9)Pn () dy‘
-1

1
+ ’/_1 o)k, y)/p(y) = kn(z,y)](y)Pn(y) dy‘
1/2

1 2
< ([ e = kel ewar) o,

-1

1/2

+ (/ll‘k(:v,y)/p(y) - kn(w,y)‘zw(y) dy) [Pnlle

1/2
< (2_” > Jk(x,27,)/p(af,) — kn(:v,:vzn)IQ[so(:vZn)P) [ Lnull

k=1
+k(, ')p_l — kn(, ')HOOHIHwHLnu”V

< 3||k('7 ')pil - kn('7 ')HOOHleaHLnu”V'

Thus, since lim [|k(-,-)p™ " — kn(-,-)|leo = 0, we obtain

Jim. KnLn — KLn| zwz,cl-1,1)
< lim IKnLn — KLullz,cl-1p12Ln — Lo-1ll e

+ lim K (L = Ln-)ll 2wz .cr-10) = 0.

The proof in case of 7 = ¢ is similar and can be found in the proof of [7, Lemma 2.4]. O

3. Theoperator sequence of the collocation method. We will show that the sequence
{M,, AP, } corresponding to the singular integral operator A € £(L2) (cf. (1.2) belongs to
the algebra F, and we will compute W, {A,}, w € T'. We do this separately for multipli-
cation operators, for the singular integral operator 1, ~1.Su with a special weight 1 = p (see
Lemma 2.10), and for ;. ~1.S with a general 1 .

We will use the well-known relations between the Chebyshev polynomials of first and
second kind

(3.1) SoU, =iTpy1, S 'T, = -iU,_1, n=0,1,2,..., U_1=0,

and

1
(32) TnJrl = i(UnJrl_Un*l)v n:O,l,Q,... s U,1 =0.



ETNA

Kent State University
etna@mcs.kent.edu

P. Junghanns and A. Rogozhin 21

Furthermore, for the description of the occuring strong limits we need the operators

(33) JVE‘C(L12HL2 ) UHZ’WL u, un Ty,
(3.4) Jte L(LE12), ue Z —<u7Tn>gﬂn,
Tn
(35) VeLL), ur Y (i), in1,
n=0

with +,, as in (2.5), and their adjoint operators

Jp e LOLZL2), ue > ynu, Tn),lin,
n=0

J;*e L(L2L2), UHZ (u, wp), Ty,

V*e L(L2), uw— Z (U Upi1) T, -

Finally, we will use the following special case of Lebesgue’s dominated convergence theorem.

REMARK 3.1. If &, € 2, &" = {&1}, 1€7] < |ni|foralln > ng, and if lim &7 =&
forallk =0,1,2,...,then lim [[£" —¢|,. =0.

LEMMA 3.2. Leta € PC, A =al, A, = MyaL,, . Then {A4,,} € F. In particular,
Wl{An} = A, Wg{An} = a(l)I7 W4{An} = a(—l)[, and

Wo{A,} =

Proof. The proof in case of 7 = ¢ is given in [7, Lemma 3.8], and the proof in case of
T = o is very similar. Thus, here we only pay attention to the proof of the convergence of
(MZaLy)* and of W,, MZaW,, .
n—1

We write M7 f =Y o, (f)u; and get, for j = 0,1,...,n -2,

j=0
O/]jn(f) = <M7c1rf7 aj>y = <L01971fa @2U>
=0 Z 5 w,fZ 27)1205 (2,
= =3 @R (@) e(af, ) (0f,)
k=1

Forj=n—1,n > 2, we use relations (2.5) and (2.6) to obtain

agfl,n(f) = <Mgf7 an—l) <L(TQ9 1f7 n 1>
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- o Y A otaf, s 02,)
k=1 n

I
e
M=

f(‘rgn)y(xgn)(p(xgn)/EN—l(xgn) :

E
Il
—

Hence,
(36) o) = g > Flaf)v(afn)elef, )iy (af,).
k=1

wheree;, =1forj =0,1,...,n—2ande,_; ,, = 1/2. As an immediate consequence of
(3.6) we obtain, for u,v € L2,

n—1 n—1
(MaLyu,v), = S (o), S (u. i), (MSai, i),
j=0 =0
n—1 . n n—1
= Z 67”% Z a’(‘rkn) <u7 al>yal (‘TZn)V(‘an)SO(‘TZn):J7 (xZn) <U7 aj>y
7=0 k=1 =0
n—1 . n n—1
=2 > oa@g,) D e v, iy), iy (@, (@, ) (@, Ju(xg, ) (u, ),
=0 k=1 7=0
1 _
= §<u, (2L, — Lp—1)M]a(Ly, + Ly—1)v),, .
Thus,
1
3.7 (M7aL,)* = 5(2Ln —Lp_1)MZa(L, + Ly—1),

whence we have the strong convergence of (MZaL,,)* toal in L2 .
We verify the convergence of W, M7 aW,,u., for each fixed m > 0. Let n > m . With
the help of (3.6), the identity

ﬂn—l—m(:vin) - Zgiéni sD(iUZn)Un—l—m(iﬂZn)
(3.8) _ p(:clg )\/gsm (n — m)Z(ka 1)
(-1

= 70/7/me xdn )



ETNA

Kent State University
etna@mcs.kent.edu

P. Junghanns and A. Rogozhin 23

and the formula for the Fourier coefficients of the interpolating polynomial L? f ,

n

Z f(‘rzn)Tj (:Czn) )

k=1

SR

n—1
(3.9) Lf = a5,(NT; with af,(f) =
j=0
we get, using Lemma 2.2,
-1
WM aW, iy, = Z g1 (QTUn—1—m )Uj
j=0
n—1 . n
=D En-1-in > ey )n—1-m (@5 )V (28) (@, Jin—1-; (27, )

7=0 k=1
1

n

j=0 k=1
n—1 . n
= E Z a(‘an)(JVﬁm)(‘TZnTJ (‘TZn)J;lT]
j=0 k=1
=J ' Lead iy — J Yad, i, in L2,
Thus,
(3.10) W,M%aW, = J, 'L%aJ,L, — J 'aJ, in LZ.
0

LEMMA 3.3. Suppose A = p~tSpl, where p = 9~tp = /vp,and A, = M, AL, .
Then {4,,} € Fand

iJ oV T =0,
Wi{dn} =4, W2{A,}=

and W3/4{An} = :I:S W|th

<1 _ (_1)jfk B 1— (_1)j+k+1)0° .
Ti(j — k) T +k+1) )

, T=¢.

2(k+1) [1— (~1)+] |~
mi[(j +1)2 — (k+1)2]

J,k=0

Proof. The case 7 = ¢ is considered in [7, Lemma 3.9]. Thus, let us consider the case
T=0.

From (3.1) it follows that Spu,, is a polynomial of degree not greater than n if u,, €
im L,, . Hence, applying (2.2), Lemma 2.1, and the boundedness of the operator S : L2 —
L2 | we obtain, for u,, € im L, ,

_ 2 2
M7 o~  Spun, < 2Q%|Spun|

Sconst/ |(Spun)(z)|*o(z) dx

—1

< const ||pun||(27 = const ||UnH12/=
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which shows the uniform boundedness of { 4,,} . Again with the help of (3.1) as well as with
the help of Corollary 2.3 we see that, forn > m

M p= S ptiy = iMSp  Tpy1 — ip "Tpyr = p~ ' Sptiy, in L2,

Whence, the strong convergence of {A,,} to A is proved.
The well-known Poincaré-Bertrand commutation formula implies that, for v € L2 and
v E Li,l

(Su,v) = (u, Sv),

where (., .) denotes the L2(—1, 1) inner product without weight. Consequently, the adjoint
operator of S : L2 — L2 is equal to »~1Sv : L2 — L2 . Again, taking into account that
SpL,u is a polynomial with a degree < n (cf. (3.1), we get, for j = 0,...,n—2and u € L2 ,

(M7 p~'SpLyu,u;), = (L~ SpLau, 9?Uj),,
™ - (e (e (e
= n Z SPLWU’ ‘Tkn so(xkn)UJ(xkn) = (Sanu?Ln(pU7>g
k=1
= (SpLnu,ov™'LoU;), = (pLyu, v ' SoLU;),
= (u, Ly9So Ly piy),
and, using relations (2.5) and (2.6),
(MZp~'SpLyu,iin_1), = (LS "SpLyu, 9*Un_1),

™ (SpLnu)(z7,,)

o Tn-1(27,)
2n :v,m)

<Sanu7 LZ‘PUn—1>U

N = N =

(u, Ly9So Ly ptiy,—1), .
Hence, in view of (3.1)
(MZp~tSpL,)* = —L 2OSo LS p(Ly, + Ly—1) = —ﬁSaL"p(L +L,_1).

Using Lemma 2.2, we obtain the strong convergence of (M2 p~1SpL,)* to 95911 .
In view of (3.1), (3.2), (3.10), (2.5), and Lemma 2.2, we have, forn > m + 1,

WM p= S pWo i, = W, M p™ 1 Spitip_1-m
=iW,M2p T

%WnMgp_lﬁ_l (:ﬁn—m - ﬁn—m—2)

i _ ~ ~
= _QWnMg(p IWn(um-l—l - um—l)

= _%JV_ILZ‘P_lju(ﬂerl - amfl)
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i1

= §Ju an‘P 1(7m71Tm71 - "YerleJrl)
=i, Lo P Uy — i) YU

=iJ, U1 -

Obviously, W,, M p=tSpW, iy = iW,,MSp~*T, = 0. Hence, by means of the shift op-
erator V' introduced in (3.5) and by using the uniform boundedness of {MJ AL, }, we can
derive the strong convergence

(3.11) WM p~tSpW,, =iJ, ' LI pV*L, —iJ 'pV* in LZ.
Using (3.11), we get, forall u,v € L? ,
(W, M2 p= 1 SpW,u,v), = i(J, 'L pV* Lyu, Lyv),
=L pV* Lyu, J, *Lyv)s
T —

o > @)V Low)(23,) (], * Lov) (,,)
k=1

(W0 O V* Lyu, Lo~ " Lyv) g

i(V*Lyu, v o9 2 M p~ 1 * L),
i(u, L,VMZp~tJ * L), .

Thus, we have (see Corollary 2.3)

(WoMSp~SpW,)* = —iL,VMZp~*J *L, — —iVp 'J, * in L2.

Now, let us investigate the sequence {V,? MZ AL, (V,?)~*P,}.Forn > m > 0, we have

p

Wmn

Vi My p tSp(Viy) e = VP M p~tS

o
fmn

zvgz

k=1

_ { g (5905 (:c;'n)}

wmn

o7 @) (SPlin) (aZa) o

n
— Wmn

n

Jj=1

We compute, for x # x,, ,

(p™ " Splin) (@)

1 i/l eWTav) 4

P g, @ )y y—af,

1 11 /1 < 1 1 )
p(@)(xg VT (g Ymix—af J 4 \y—x y—af, o(y)Ta(y) dy
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and, taking into account (3.1),

1o 1 [t 1—y2
- T.(y)dy = = T, d
[ enwdr == [ T et dy
1 [t 1—2a? 1 1y2—w2
= ;11 y_xTn(y)a(y)dy— ;[1 = To(y)o(y) dy

i.e.

1
(3.12) 1 / L) Tuy) dy = (1 — 22U 1 (x).

TJ 1y—x
We remark that, forn > 0,

(313) Trll(l') = nUn—l(‘T) and T{z(‘an) = \/g%
kn

In view of w;,, = \/Ep(m';n) and (3.13), we have, for j # &,
n

Win oy 7T (an)]2Un—1(‘rqn) - [‘P(xzn)FUn—l(xZn)
I (50) () =[5 (-1 2 J
(o) -

wknp(‘rgn nl(‘rgn - xgn)

_ @(‘rgn) - (_1)j+k(p(x?n) _. S(n)
nl(‘rzn _x?'n) A

With the help of

d
E[(l — 22U 1 (2)] = (1 —2*)U,_ (x) — 22U, _1(2) = —2U,_1(2) — nT),(x)
we get
Win ( o ) o\ _ Tin . (n)
—  _(Sp¢ 7 )= ——En _ —. 5"
Wknp(zgn) Plin ( kn) nKP(IZn) kk
It follows
cos % Ak
- even,
(n) ni sin kgjnflw J
(3.14) Si = 4
k—j
COS Wﬂ' .
-———— , J+kodd,
ni sin %2

and consequently, for fixed kand 1 < j < norforfixedjand1 <k <n,

() Frjo1 0 JTRe
(3.15) s | < const
H ) j + k odd.
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Using Remark 3.1 we find, for fixed m > 0,

{SY:??MSQZZ’ "'78517:7)1107 } — { lim S(n)} = {Sjm} in 62,
j=1

n—oo Jjm

where s = lim,, 00 SSZ) ,i.e.

2

(3.16) sjk = ECALEEN _1- (—1)7=F 1= (—1)i+h—1

mi(j — k mi(j+k—1) "
2 | i+ kodd, (J—k) (J )
mi(j — k)

7+ k even,

Thus,

VIMZAL,(VZ) ' Py — S := (s(j11)(k+1)) in (2.

o0
J:k=0
Now it is easy to see that, in ¢2,

(VIMZ AL, (V)™ ' P,)*P, — S*,

VoM AL, (Vo) ' P, = WoVIMS AL, (V) "W, Py — —S,
and
(VOYMZAL, (V)™ P,)*P, — —S*.

O

Let us turn to the more general operator ;. —'.SuI and the corresponding sequence of the
collocation method.

LEMMA 3.4. Suppose A = p~*Sul and A,, = M, AL, ,where ; = v satisfies (1.4)
and (1.5). Then {A,,} € F,where W{A,} = A, Wa{A,,} = Wa{M,p~1SpL,} (comp.
Lemma 3.3), and

(3.17) Ws{A,} =S+ AL, Wi{d,} =-S—-A".
Here p = 91 and S are the same as in Lemma 3.3, and

- V_A*"W | 7=0,

3.18) A*x =B, +D,AD;'—-A-D, AD;'WV
(3.18) AL + +AD} +AD} + VAW L o,

with
( (2k +1)(1 — 0;) )°° ey
Tik+j+ 100 —k) ) =0 ’
(3.19) A = -
( 2(k+1)(1—0;%) ) —
T+ 12— (k+1)% )0 '
Dy ,B., W, and V. are diagonal operators
((2k+1)2Xi6jk)o.oi , T=o0,
%/ §,k=0 [e%s)
D, = - B. = (bgﬂaj,k)j’k:o :

(k+D)>60)7 0 T=0,



ETNA

Kent State University
etna@mcs.kent.edu

28 Collocation methods for Cauchy singular integral equations
(_1)k+1 o0 N
3.20 W = 0; , Vi:i=(d: 0 ,
( ) ( \/% jyk)j,k 0 + - ( k+1 Jk)jk 0
where x4 = 1+ 9 —y x_ =145 5 and choosing ¢+ = —xu, the b and d; are
defined by
2C+
2s
64 (—1)k+t >~ \@—Dr w) -
( ') / ((% iy : L steossds |, T=o,
(321) bi — i 0 ([(2k — 1)7T] — [28] )

k+1k S QCi_
— /= / 2351nsds , T=,

and,incase T = o,

2C+
* 2s
2 16 s (2k—1) -1
df = \/j / Zcossd
K T @k—DrJ, (k-2 s> 7%

2 [ [25]%% — [(2k — D)m] %+ 64 (1 + 2¢4)[28]%* — [(2k — 1)m) %%
+\/;/ {5125 (k= DaP—RsPP s (k= Dal - 2P

(322) +

sds

4 (4¢3 —1)[2s)%* — [(2k — 1)m]?** | 12coss + 12ssins — 452 cos s
3 [(2k — 1)n]2 — 232 [(2k — 1)m|1t2c

2 12coss* + 12 s*sin s* — 4(s*)? cos s* L [257]%% — [(2k — 1)7] %+
e (2 — D] 7% {32 k= DaP s

4 (14 2¢q)[2s%)%= — [(2k — 1)m) %+
T [(2k = Dr]? — 2572

where s* € (g 7”) is the solution of the equation cos s + ssins = 0, as well as, in case
T=9,

2Ci_
dki—2\/>/ I 2 s sinsds
2 s \2C+ s )26+ 1 s \ 26+
+4ﬁ/oo 2 |(3%) —1}+<i<a> @)
=/ COoS 8 (hm)Z — 52 (om)2 — 52 s.

The proof of this lemma in case of 7 = ¢ can be found in [7, Lemma 3.10], in case of
T = o it is given in the appendix.

4. The operators Ws{ A4, } and W,{A,}. In this section we show that the operators
W3 4{A,} belong to an algebra of Toeplitz matrices. For this we consider the C'*-algebra
L(¢?) of linear and bounded operators in ¢?. By alg 7 (PC) we denote the closed C*-
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subalgebra of £(¢?) generated by the Toeplitz matrices (95—1)5%=0 With piecewise continu-
ous generating functions

g(t) := ngtk definedon T:={teC:|tf|=1}
kEZ

and continuouson T \ {1} .

First we recall some results on the Gohberg-Krupnik symbol for operators belonging to
alg T (PC).

LEMMA 4.1 (see [9], Theorem 16.2). There is a continuous mapping smb from the al-
gebraalg T (PC) to a set of functions defined over T x [0, 1] . Foreach R € alg T (PC) , the
corresponding function smbg (¢, 1) is called the symbol of R . This symbol has the following
properties:

1. For any fixed point (¢,A) € T x [0,1] the mapping alg 7(PC) — C, R —
smbg (¢, \) is a multiplicative functional.

2. Forany t # +1, the value smbg(¢, A) is independent of A, and the function ¢ —
smbpr(t,0) is continuouson {t € T : Sm¢ > 0} andon {¢t € T : Sm¢ < 0} with

the limits
smbpr(1+0,0) := lim smbpr(t,0) = smbp(1,1),
t—=+1,8m t>0
smbg(1 —0,0) := lim smbg(t,0) = smbg(1,0),
t—+1,3m <0
smbpr(—1+0,0) = %im , 0smbpi(t,()) =smbpg(—1,1),
——1,Smt<
smbr(—1-0,0) := lim smbr(t,0) = smbgr(—1,0)

t——1,8mt>0

Moreover, the functions A — smbpg(+1, A) are continuous on [0, 1] .

3. Anoperator R € alg 7 (PC) is Fredholm if and only if smb (¢, \) does not vanish
onT x [0,1].

4. For any Fredholm operator R € alg 7 (PC), the index of R is the negative winding
number of the closed curve

I':= {smbg(e”,0):0<s<nm}U{smbp(-1,5):0<s<1}

U{smbpg(—€",0): 0 < s <7} U{smbg(l,s):0<s<1}

with respect to the point zero, where the direction of the curve I' is determined by
the parametrizations of its definition.
5. An operator R € alg T(PC) is compact if and only if its symbol function
smbp(t, \) vanisheson T x [0, 1].
For any Toeplitz matrix T'(g) = (g;-k)3%—o With piecewise continuous generating function
g(t) := Y4z Grt® defined on T and continuous on T \ {1}, the symbol is given by

g(t) , teT\{£1},

smb(g)(t: A) :{ Agt+0)+ (1= Ng(t—0) ,  t==%I.

LEMMA 4.2 ([1], Theorem 4.97). Any Hankel matrix H(g) = (§j+k+1)5%=¢ With

piecewice continuous generating function g(t) := ngtk defined on T and continuous on
kez
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T\ {£1} belongs to alg 7 (PC), and its symbol is defined by

0 , teT\{£1},

SmbH(g)(t’)\):{ —tilg(t+0) =gt =0/ A1 =A) ,  t==%1.

LEMMA 4.3 ([11], Lemma 11.4). Suppose the generating function g(¢) = ngtk of

keZ
the Toeplitz matrix (g;—x)3%— is piecewise continuous on T and continuous on T \ {+1},

and take a complex z with |Re z| < 1/2. Then the matrix

R= ([ +177058) k=095 -#) k=0 ([F + 1]70;,5) F=0

belongs to alg 7 (PC) , and its symbol is given by

9(t) , teT\{£1},
smbr(f,A) = ¢ Ag(t+0) + (1 = N)g(t — 0)e 27>

Nt (1= Ao ek

Furthermore, for any fixed Toeplitz matrix 7'(g) = (§j—&)3%—o € alg 7 (PC) with a gen-
erating function which is piecewise twice continuously differentiable, the operator valued
function

2= (U +1U770,8)50=0T (9)([k + 1]765.1) k=0 € alg T(PC)

is continuous on {z € C : |Re z| < 1/2} in the operator norm.

From this Lemma one can easily obtain the following result.

COROLLARY 4.4. Let the generating function g(t) = ", git' of the Toeplitz matrix
(9j—1)3%=o be piecewise continuous on T and continuouson T \ {1}, and take a complex
z with |Re z| < 1/2. Then the matrix

1177 o0 . 117 )
R:= <[J + 5] 5j.,k> (Gj—k); k=0 <[’f + 5} 5j.,k)
_ k=0
7,k=0 7

belongs to alg 7 (PC) , and its symbol is given by

g(t) , teT\{£1},
smbpr(t,\) = ¢ Ag(t+0) + (1 — N)g(t — 0)e~27=
At (1= Ne 272 ’

t==1.

Furthermore, for any fixed Toeplitz matrix 7'(g) = (§j—&)3%—o € alg 7 (PC) with a gen-
erating function which is piecewise twice continuously differentiable, the operator valued

function
) 1 -z o0 1 z [e’e]
z = <{J + 5} 5j,k> T(g) <{k + 5} 5j,k> €alg T(PC)
4,k=0 J:k=0

is continuous on {z € C : |Re z| < 1/2} in the operator norm.
LEMMA 4.5 ([12], Satz 3.3 and [7], Lemma 7.1). Suppose the Mellin transform

i(z) = /OOO m(e)o*L do
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of the univariate function m : (0, 00) — C is analytic in the strip
1/2—e<Rez<1/2+¢

for asmall € > 0. Moreover, assume that

k

~

%m@)(l D

sup
z:1/2—e<Re z2<1/2+¢

<oo, k=0,1,...

Then m is infinitely differentiable on (0, cc) , the operators M1, M_; € L(¢?) defined by

R A
o= (o) 1)
k+§ k+§ k=0

. 1 o0
. 5 1
M_q:= ((_1)J—km <]+21> 1)
k+§ k+§ k=0

belong to the algebra alg 7 (PC), and their symbols are given by

and

1
m|=+—1lo , t=1,
smbyy, (£, \) = (2 27 gl—/\)
0 , teT\{1},
1 A
m| =+ —log —— , t=-1,
smbys (¢, \) = <2 2m gl—)\)
0 . teT\{-1}.

From Lemma 4.1 and Lemma 4.5 we conclude the following corollary.
COROLLARY 4.6. For arbitrary ¢ > 0, an operator R € alg 7 (PC) admits the
representation

4.2 R=(gj—k)5k=0+My+M_ +R.+R.,

where the ¢2-operator norm of R, is less than ¢, where R. € £(I?) is a compact operator,
where the generating function ¢ of the Toeplitz matrix is piecewise continuous on T and
continuouson T \ {£1}, and where M € alg 7 (PC) are defined by

M+<m+<j+%> ! )OO
- 1 1
k+35/) k+3 k=0

Je),
1
k+ 27 j k=0
with suitably chosen functions my € C*(0, o) .
Now we prove that the operators W5 4{A,,} belong to the algebra alg 7 (PC) and cal-
culate the symbols of these operators.

and

N

M_ = ((—l)jkm (21

[N
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LEMMA 4.7. Let (1.4) and (1.5) hold, and let A,, := M,,(al +bu=*Sul+ K)L, . Then
the operators W5 4, { A,, } belong to the algebra alg 7 (PC), and their symbols are given by

SmbW3/4{An} (t7 A)

1 , Smt>0,
-1 , Smt <0,
. i
|cot<w{1+xj§+4—log1_/\}) , t=1,
= a(£1)£b(£1)
feot (w1 X - 0 joe A
feot {m |+ — ogl_/\ T=0
. t=-1
(4.2)

where the numbers y 1 are defined in Lemma 3.4.

Proof. The proof in case = = ¢ is given in [7, Sect. 8]. So, let us restrict to the case
T = o. For the discretized multiplication operators (see Lemma 3.2), the statements are
obvious. It remains to consider the limit operators S and A’ (see Lemmata 3.3 and 3.4).
Moreover, since the diagonal entries in the diagonal matrices B and V1 tend to zero (see
(9.19) and (9.29) and since the compact operators belong to alg 7 (PC), we only have to
showthat S, A, and D ADZ" belong to alg 7 (PC) (see (3.17) and (3.18).

For the matrix S, we have the relation S = T'(¢) — H(¢), where T'(¢) and H(¢) are
Toeplitz and Hankel matrices, respectively, with the generating function ¢(¢) = sgn (Sm¢t),
t € T. From Lemma 4.1 and Lemma 4.2 we obtain that S belongs to alg 7 (PC) with the
symbol

1 , Smt>0,
smbg (¢, \) = -1 , Smt<0,
+2A -1 +2i/AN1-2)) , t=+1

4.3)
1 , Smt >0,
-1 , Smt <0,

. 1 i A
|C0t<ﬂ|:1iﬂlogm:|> y t==+1.

Now, we consider the operators D ADZ " . In [7, Sect. 7], the relation

22X+ 1

k(z) == (1 —x)m = 5/{(;&&(—1;;} I_C{B(C) —B(¢C+ 1)}ch7 x>0,

is proved, where max{—1/2, —2x1+} <1 < 1/4 — x4 and

B0y = -t (m (§ 1)) et (x (¢ s - 2)).
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Consequently, we get, for j # k|

H<j+%>_<1_j+%)(j+%)2xi 9 2
k+ 3 k+3) \k+1 - bts)
(k+3)
j+1\2X
() ey
=GR
such that
D, AD:!
(4.4) ¢ o0
Jj+3
L 1 (84) a-am
- 2 Ak B(¢) = B(¢+1) ¢ dC.
4,k=0

. . 1—9; < . . . . .
Obviosly, the matrix (ﬁ) is a Toeplitz matrix, and its generating function
Iy — k=0

g(e?™) = 300 A 1e¢™* = 1-125,0 < s < 1, is piecewise continuous on T and
continuous on T \ {1} . Thus, in view of Corollary 4.4, for any fixed ¢ € Cwith Re = v,
the matrix

§,k=0
belongs to alg 7 (PC), and its symbol is given by
1-—2s
Smch (t,A) = A—(1- )\)672”"C
A+ (1 — X)e2in¢

, =" e T\ {1},

, t=1

1—2s , t=¢e%m e T\ {1},

. 1 1 A
—|cot<ﬂ'{§+c+%logl_)\}) , t=1.

Note that the integral in (4.4) has to be understood in the sence of Bochner (see [15]). This
is possible since the operator function {¢ : ®¢ = ¢} > ¢ — T¢ is continuous (see Corollary
4.4) and uniformly bounded and since {¢ : ¢ = ¢} 3 ¢ — B({)— B(¢+1) is a continuous
and absolutely integrable function. Consequently, the integral representation (4.4) proves that
the operators D ADZ! are in alg 7 (PC) and their symbols are equal to

meiAD;(t, A) = %/{CéRc—w} smbr, (t, )\){B(O —B(C+ 1)} d¢

= % </ smbr, (t, 1) B(C) d( — smbr_, (t,A)B(C) dC) :
(CRC=y) {¢:RC=9+1}
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We observe that smbr, is 1-periodic with respect to the variable ¢, such that, applying the
residue theorem, we arrive at

meiAD;1 (t, /\)

=5 smbrenBO© - [ smbr, (£, )B(C) d¢
{¢:RC=p} {¢:RC=y+1}

0 , teT\{1},
(45 =smbrp, (L)) - 1 i A
B(E—Fz—logm) > t=1
1—2s , t=em e T\ {1},
- i cot 1+ + il A t=1
icot | m |7+ xe+ -log ) =1.

In particular, if x4+ = 0 we obtain that the operators D AD 7" are equal to the operator A .
Therefore A € alg 7 (PC) and

, t=em e T\ {1},

(4.6) smba(t,A\) =<¢ . 1+ i 1 A P
1CO Z E Ogl—)\ s = 1.

From this we conclude that Ws,,{A,} € alg 7(PC). Moreover, since the symbol of the
compact operators By, DL AD;'WV. , and VL A*W are zero, we get (4.2) in view of
(4.3), (4.5), (4.6) and (3.17), (3.18). O

5. Thesubalgebra A of thealgebra F. In this section we prove that further sequences
of approximate operators belong to the algebra F . Using these and the operator sequences of
the collocation method, we shall form a C*-algebra which is the basic algebra for the stability
analysis of the collocation method.

For R € alg T (PC), using the projections P,, and the notation Section 2, we define the
finite sections R,, := P,,RP,, € L(im P,) and form the operators R := (E¥) 'R, E¥L,,,
w € {3,4}, mapping im L,, into im L,, . We will show that the sequences { R3} and {R%}
belong to the algebra F.

Fork,n € Zandn > 1, let o = ¢}, denote the characteristic function of the interval

k-1 k

non Itiplied b v Tee
1 1 multiplied by
k 2’k+2 L T=0, vn+1l | 7=0¢.
n+l n+1

Then the operators

E, : é% - L2(R) ) {gk}ioz—oo = Z é.k(ZZ

k=—o0

and

(En)™'iimB, — 3, Y &P — (G2 o

k=—o0
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act as isometries. By L., we denote the orthogonal projection from L2(RR) onto im E,.
LEMMA 5.1 ([4], Prop. 2.10). For any operator R € alg 7 (PC) the sequence

E.R(E,) 'L, : L*(R) — L3(R)
is strongly convergent. -

Let W : £2 — (% be defined by W¢ = {(—1)*¢},—, ,and let LY, W2, V.0, V)2,
and M2 refer to the operators L., , W,,, V,,, I7n, and M, , respectively, in the special case
a=p=—3%(ie v=o) Inparticular, V0 : im LY — im P, and (V,")"! : im P,, —
im L2 are given by

T T T T T T n—1
Vo = {wlu(x],),...,wlu(z]),0,0,...} = {wnu(xkﬂ)n) 0
with
% 3 T=0 )
wy =@ = —
n+1i T=,
and
_ ~ 10 o 20
(Vno) 152 éiﬂ(’ g;l:—q-nv
]; w; y i sp(wkn)
respectively. One can easily check that
Lo=p'Lopl, W,=p "W,
(5.1) L
Vi =V2oI, V,=V%I, M,=p *M’I.
LEMMA 5.2. Let the operators V,, o be defined by
Voo timLno — im P, C 67, uw— {wiu(af ) Z;; ,

and

n—1
Lyo: Lg — Lg , U Z<U’Tk>"Tk .
k=0

Then the sequences {(V,7)~'V,,0J, Ly } and {J,lenng,;’Ln} belong to the algebra F .

Proof. The uniform boundedness of these sequences follows from the uniform bounded-
ness of {V,7} , {(V;7)~"} (comp. the proof of Lemma 2.5) and of {V,, 0} , {V,, 7 } , where,
foru € im L,, ¢, the equalities

n 1

2 7T o 2

Wl = Z - et )P = [ fute)Pota) do = ul?
k=1 -

have to be taken into account. Using

n—1
(V) Vo duLnw = (V7)™ Vo > (u, i), % Tk

=07 @) Y (i), (Joiin) (05,) 5
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and
n—1

(5.2) J, 'V, o ViiLyu=J IZp )Y (u, i), Uk (23,)65, = J, 'L pLyu,
k=0

as well as Lemma 2.2 and Corollary 2.3 we get, for n > m,
(Vo) Waody Lot = YmMZ p T — p v T = p~ T lim

and

I WV gV Lo = J; 'L iy, — plign, in L2
From (3.6), (3.9), and (3.8), for n > m , we get

W, (VO V0 Wy Ly,

- Wnanil'ynflfanflfm

n—1

-1 ~
= Z aszj,n(P Vn—l—an—l—m)uj
=0

n—1 n
e ~ ~
= Z En—l—j,ng Z p(xZn)’yn—l—an—l—m(xZn)un—l—j (xZn)uJ
7=0 k=1
n—1 . n
— Z En—l—j,ng Z p(xZn)am (‘TZn)WjTj (xZn)aJ
7=0 k=1

n—1

Zp xkn um xkn)T (xg’ﬂ,)Jl/ 1T - J 1Lapum
j=0 k=1

313

<

Consequently, due to (5.2),
Wi (V,2) ™ "WVaoduWnLn = J, ' LS pLy, = J; 'V, Vi Ly,
and
Wod 'V o VaWa Ly = (V7)™ WV odyLa

and the strong convergence of these sequences follows from the previous part of the proof.
Taking into account Lemma 2.4 and the fact that V7, = an()l one can easily conclude
the strong convergence of the respective sequences of adjoint operators. [
LEMMA 5.3. For any operator R € alg 7 (PC) , the sequences { R3 } and { R} } belong
to the algebra F . If R is the Toeplitz operator (§;_ k)f;szo then

Ws(R3) = Wiy(Rh) =R, Wi(R3)=Ws(R) =R, R:=(gk—j) 0

Proof. In case of 7 = ¢ the statements of the lemma have already been proved in [7,
Lemma 4.1 (ii)]. Nevertheless, here we give a proof for both cases by other means.
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Fork =1,...,n, define functions 7 _ : [-1,1] — R by

n k k—1
" — , cos—7m < x < Cos T,
Pro (1) = ™ n n
0o otherwise,
and
n+1 k+ % E—1
" , COS m < x < cos T,
P o(T) = ™ n+1 n
0 , otherwise,

and letby 77, ST : L2 — L2 refer to the operators

n

1 - 0 _ -1
= ('(7 Z U, (pk T g;;n = (Vf) ! {<u7 SOZ+1,T>(7 Z:O ) S:;’U/ = Z<u7 SOZ,T><TQOZ,T .
" k=1 k=1

Then, in view of the uniform boundedness of (V)1 (see (2.3) and the proof of Lemma 2.5),
1T ully < CZI = C|Squll < Clluly
k=1

i.e. the sequence {77} < L(LZ) is uniformly bounded. Moreover, for the characteristic
function u = x(, ) of an interval [z, y] C [-1,1], we have

<u7<pzyg>g—\f (27.) \f/ﬂ[ u(coss) —u(cos2k_1 )] ds

k k-1
0 , zyd¢ <cos —, cos 7T) ,
< n n
-, otherwise,
as well as
1 n+1 37 k
<u=$02,¢>a— s ‘\/TH— / [ coss)—u(cosnfl)] ds
1 _ 1
0 2 2
_ , :c,y¢<cosn+17r,cosn+17r> ,
e otherwise,
which implies
T — n T T n—1}|2 2m
1T = M3ul2 = [V~ {(s i ) —wiuera) )| <€

Consequently, T7u — w in L2 for all w € L2 . In particular, we get the equivalences
& €0

Z{g?;?—wt in L? < lim =0

n—oo

o
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= nIggOZIwTék (9 ol =0
=1

n
Y wréken. = Spull =0

k=1

<— lim
n—oo

[eg
n

= w, g $kpr, — u in L2.
k=1

Since T — I in L2 | the convergence (V,%) 'R, (V%) L4 — ¢ in L2 for some u € L2
is equivalent to

(V) RaVITTu = (V) Ro { (. e )o Vg — 9 i L2
and so, due to the previous considerations, equivalent to
n n
3 era'fl,k71<u,wﬁ,7>a<p}ﬁf — g in L2,

j=1k=1

where R = [rji] 5 -
The mapping 7" : L2 — L2(0, 1) defined by (T'u)(s) = \/7u(cos 7s) is an isometrical

isomorphism, whereby T'py = ¢, k= 1,...,n. Consequently, (5.3) is equivalent to
G4 xo1 Y ri-tk-1{xpoyTu B 2@ @), — XouTy in L*(R).
JEZ kEZ

The left-hand side of (5.4) can be written as XMEnR(En)—lan[m]Tu, and Lemma 5.1
guarantees the convergence of this sequence. Hence, we have proved that the strong limit
of (V))™1R,VOLY in L2 exists. Since pI : L2 — L2 is an isometrical isomorphism,
the strong convergence of V, 'R, V,,L,, = p~*(V?)"'R,, VOL0 Y oI in L2 follows, where we
have used (5.1).

To prove the convergence of {W,, R2W,,} , we remark that by definitions and by taking
into account (3.8) and

k+1ﬂ ( ® )7

anflfm(xfn) = (_1) m (L

we find that, for u € L2 , the relations

n—1
Vanu = Vn <Z <u7 ﬁm>uﬁn—1—m>

m=0

n—1 n—1
= karln Z U, um pln—1— m(karl n)
k=0

m=0

n—1 Jl/am od N n—1
— {(—1)%; Z(u,ﬁm>u{ o (T )N( k+1¢7 ) }}
k=0

(5.5)

xk+1,n)um(xk+l,n)
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are valid, where the operators V,,  are defined in Lemma 5.2. Consequently, for £ € im P, ,
we have

I Vo) 'We , T=0,
VoW , T=9,

WnVn_lg = {

and

(Vo) '\ PWRWP, V0L, , T=0,
V. P,WRWP,V,L, . T=.

J

(5.6) W,V, 'R,V,W, = {

Incase R = (g;j—k)5%=o i @ Toeplitz matrix with generating function g(t) = ngt’“ ,
keZ
t € T,weget WRW = R_, where R_ is the Toeplitz matrix with the generating function
g(—t). Hence, since W2 = I, WRW € alg T(PC) if R € alg T(PC). Thus, by (5.6)
and Lemma 5.2 we get the existence of Wa{R3} .
Obviously,

V,R3V.'pP, =V, V.'P,RP,V,,V,'P, = P,RP, — R in (?
foreach R € alg T (PC). In view of (2.3) we have
VoR3V-'P, =V, V. 'P,RP,V,, V. ' P, = W,,P,RW,, P, .

In case of R = (k)% this is equal to P, RP,, with R = (jx—;)35,—, - Morover, it is

well known that W,, P, RW,, P,, converges strongly in ¢2 for each R € alg 7(PC) (comp.
[1, Cor. 7.14]).

The strong convergence for the respective sequences of adjoint operators can now be
proved with the help of (2.4), Lemma 2.4, and the relations

WnLnfl - (Ln - LO)Wn ) Lnflwn = Wn(Ln - LO) .

The proof for { R} is analogous. O

By .A we denote the smallest C*-subalgebra of F generated by all sequences of the ideal
J , by all sequences { R~} withw € {3,4} and R € alg 7 (PC), and by all sequences of the
form {M,,(al + bu='Sul)L,}, a,b € PC, where p := v satisfies (1.4) and (1.5). We
shall check the invertibility of the coset { A,,} + J (of the collocation sequence) in F/.J (see
Theorem 2.9) by checking the invertibility in the quotient algebra .4/ 7 . For {A,,} € F, we
write { A,, }° for the coset {A4,,} + J € F/J .

6. Application of the local principle of Allan and Douglas. In this section we show
that the set C := {{M,,fL,}° : f € C[—1,1]} forms a subalgebra contained in the center
of the quotient algebra .4/ .7 . This result will enable us to apply the local principle of Allan
and Douglas in order to prove the invertibility of an element of .A/7 . Moreover, by A,
we will denote the smallest C*-subalgebra of F which contains all sequences of the form
{M,(aIl+bu='Sul)L,},a,b e PC, u=v70 satisfying (1.4) and (1.5), and all sequences
from the ideal 7 .

6.1. A Subalgebrain thecenter of thequotient algebra.A/7. At first, we prove some
auxiliary results.
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LEMMA 6.1. Suppose x* and x” are continuous functions over [—1, 1] such that, for

€ [-1,1], [x%(@)|, |xb(z)| € [0, 1], such that x* has a small support with supp [x*ocos] C

[t —e°,t+&%], where cos is considered as a function defined on [0, 7], and such that x* has

a support with supp [x® o cos| N [t — &b, ¢ +¢e°] = (). Then, for any R € alg T (PC) and for
any € > 0, there exists a constant C such that */<* > C implies the locality property

n—1 n—1

H (Xb(x;+l,n)5.j7k)j7k:0 R, (XS (x;+l,n)5.7'7k)j7k:0

€,

| <
£(62)

n—1 n—1

H (Xs ($;+1,n)§.j7k)j,k:0 Rn (Xb (‘T;+1,n)§.j7k)j7k:0 S €.

Hc(ez)

Moreover, if the support of x* satisfies supp [x* o cos|] C [t — %, ¢t +&°] C [0,7 — &?], then
we get

S (T n—1
H (I - P,)RP, (X (xj+1,n)5j-,k)j,k:0Hﬁ(éz) se,
S (T n—1
H (x (xj“*”)&j”“)jvkzo PuR(I = P")Hﬁ(ﬁ) =¢

The proof is independently of the choice of = and can be found in the proof of [7,
Lemma 4.1 ()]
LEMMA 6.2. Let

T(¢) = (17;((3_7—1)/;)_19);—0

be the Toeplitz matrix with the generating function ¢ = sgnQm¢t¢,t € T, and let x, x be
continuous functions with supp x, supp ¥ C (—1, 1) . Then the sequence

{MS XL [MZp~ SpLy, — [T($)|2 )M XL}

belongs to the ideal 7> € J° .
Proof. In view of (3.14) we have

. n—1
j—k
_ L) 1= (it 2 o T
- 1 . 3 — o 1 — n
ni sin T
5k=0
(6.1)
| jrk—1 \"
R GO Ve T VL
2 k-1 me
ni sin =————7
2n 7,k=0

Now we define functions k1 (¢, s) and k2(t, s) on [0, 7] by

t—s

x(cost)x/(cos s) 1 €os

kX (t,s) :== —
(t.5) mip(cost)d(coss) |t—s . t—s
sin —
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and

t+s
cos

t)x(cos s)
K21, 5) i 2008 .
(t,5) mip(cost)d(coss) o t+s

Clearly, these functions are continuous, and the integral operators K' and K2 with the ker-
nels k! (arccos z, arccos y) and k2 (arccos x, arccos y) , respectively, can be approximated by
quadrature methods K}, K2 € £(im L,) such that

_ n—1
62) K= ML vt |2 e VoL, MIXL,,
nT e " T —k) .. j—k n nXEm s
nisin ™
n 7,k=0
CO: j k-1 "
S———T
2 o o\—1 2n o o=
nsin ————7
2n j,k=0

and {K}}, {K2} € 7> (see Lemma 2.10). Furthermore, in view of (5.5), we obtain
PaWP, = Voo, WV P, and  P,W P, = VoW, J V) Py
Using these relations together with (6.1), (6.2), and (6.3), we can write

MEXLn[Myup~tSpLy, — [T(4)]3]| MnXLn

n

1 o\ — — — o
= _[K} - K? - §(Vn )" Va0 W WalK) + KW, J, 'V VI Ly,

Now, the assertion of the lemma follows immediately from Lemma 5.2. O
LEMMA 6.3. Let M, be the operators defined in Lemma 4.5, and let x, x be continuous
functions with supp x, supp X C (—1, 1) . Then the sequences

{MSXLn [M:tl]?zMg%Ln}

belong to the ideal 7> € J° .
Proof. Setting

k(z,y) = x(@)x(y) arccos T 1
ny= p(x)d(y) " arccosy /) arccosy’

the operator {MZxL,[M;1]3 MSXL,} takes the form K,, of Lemma 2.10 and, conse-
quently, {MSxL,[M ]2 MSXL,} € Jo C J° .

The proof for M _; is analogous. O

In case of 7 = ¢, the following lemma can be found in [7, Lemma 5.1]. Taking into
account the previous results of the present section, the proof in case 7 = o is completely
analogous.

LEMMA 6.4. For f € C[—1,1], the coset { M,, f L,, }° belongs to the center of A/ .
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Due to the last lemma the set C = {{M,,fL,}° : f € C[-1,1]} forms a C*-subalgebra
of the center of A/J . This subalgebra is *-isomorphic to C[—1,1] via the isomor-
phism {M,fL,}° — f, and, consequently, the maximal ideal space of C is equal to
{Z; : 7€ [-1,1]} with Z; := {{M,,fL,}°: f € C[-1,1], f(t) =0} . By J; we denote
the smallest closed ideal of .A/J which contains Z, , i.e. J; is equal to

clos 4, 7 {Z{Ag;Mnijn}o {AIY €A, f; € C[-1,1], f;() =0,m =1,2,.. } .

j=1

The local principle of Allan and Douglas claims the following.

THEOREM 6.5. The ideal 7; is a proper ideal in A/ J for all t € [—1,1]. An element
{4, }° of A/J is invertible if and only if {A,,}° + J; is invertible in (A4/7)/J, for all
tel-1,1].

6.2. Thelocal invertibility at the points¢ € (—1,1). This section is devoted to the
invertibility of {A4,,}° + J; in (A/J)/J; for ¢ in the interior of the interval [—1, 1] (see
Theorem 6.5).

LEMMA 6.6. Let {A,,} € Ao . If the limit operator W;{A,,} : L2 — L2 is Fredholm
then the coset { A,,}° + J; is invertible in (A4/7)/J; fort € (—1,1).

Proof. The case 7 = ¢ is considered in [7, Section 6]. Since the proof of the lemma in
case of 7 = o is completely analogous we give only an outline of it. We fixat € (—1,1) and

set
0 if —-1<xz<t,
hi(z) := .
1 if t<ax<l1.

The subalgebra of (A/J)/J: containing all cosets { M7 (al + bu=tSpl)L,}° + J; is gen-
eratedby e = {L,}° + J;,

({Ln}o + {MgP_ISPLn}O) +Ji, and ¢:= {Mghth}o + T

N~

pi=

Obviously, ¢ is a selfadjoint projection. We prove that the same is true for p. We have ([7,

(6.4)])

1, -
(6.4) p ' Sppp~tSpl = oI + Ko, Kou= —Emuo)up‘lTo.
Due to (3.1) we can write
n—1
MG op™ ' SpLuu = MZpp™"Sp > (u, Uik) ik
k=0
n—1 n—2
=M (u,tik)y Thpr = IMIO Y (u, k) Tsr
k=0 k=0

= 0p 'SpLy1u=p " Sp(Lp = W L1 W, )u..
Together with (6.4), we get the identity

MEZp=*SpL,MZpp 'SpL, = MZ (ol + Ko)(Ly — W, L1W,,)
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and, consequently,

{M;p™  SpLn}*{ M p~ ' SpLn}® + i

1 — o o — o
= W{Mﬁp YSpLn Y {MZp~ ' SpLn}’ + T

_ ﬁ{M{{((pI + Ko) (L — WLt W)}° + i

= (ML + Ty = (L) + T
o(7)

Hence, p? = p. Now, the proof of p* = p and also the proof of the fact that the spectrum of
pgp in (A/J)/J, coincides with the interval [—1, 1] are the same as in the case of 7 = ¢.
It remains to apply the so-called two-projections lemma (comp. [7, Lemma 7.1]) and the
Fredholm criteria for singular integral operators with piecewise continuous coefficients (see
(3.0

6.3. The local invertibility for ¢ = +1. In this section we analyze the invertibility
of {A,}° + Jy1 in (A/T)/T+1 (see Theorem 6.5) and show that the invertibility of the
operators W3{ A, } and W,{ A, } imply the invertibility of {A,,}° + J,1 and {A,,}° + J_1
in (A/J)/J+1, respectively. For symmetry reasons, we may restrict our considerations to
the invertibility of {A,}° + J1in (A/J)/J1 .

The proof of the following lemma does not depend on the choice of + and can be found
in[7, Lemma 7.2, i)].

LEMMA 6.7. Suppose R € alg 7 (PC) is invertible and consider the sequence R2, then
the coset {[R™1]2}° + J; isthe inverse of {R3}° + J1in (A/T)/ T .

Let C; denote the class of continuous functions f : [—1,1] — [0, 1] satisfying f(1) = 1.

LEMMA 6.8. Let a sequence {C,,} € A be the sum of two sequences {4,,} and {B,,}
and assume that

inf inf supH[Mn FLnlAn[MyfLn] + JnLn

FEC1 {Jn)€T meN £L2)
and

inf  inf s HMn LB, M, fL.| + J. L., -

A2, (L sup [ M Lnl Bl Mo f L] £a3)

Then {C,}° € J1 .
Proof. Due to the assumptions we have that, for each ¢ > 0 there are functions
fae, fB.e € Cy and sequences {JA<}, {JB<} € 7, such that, forall n € N,

)

Mo e Ll An M e L + T L

<
L(LZ)

<e.

M fB eLn|Bu|Mpyf5.oLn) + JBCL,
H[ fB,a ] [ fB,E ]+ n L(L?/) =

For n € N, it follows

H [Man,EfB,aLn](An + Bn)[Man,afB,aLn]
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+[MnfB,5Ln]J;I4£[MnfB,sLn] + [Man,sLn]JnB’E[Man,sLn]

< const €,
L(L3)

Consequently,

fiencflH{M"fL"}O{C"}O{M"fL"}O AT

and {C,}° € 7.0

LEMMA 6.9. Suppose (1.4) and (1.5) to be fulfilled and consider A, = M,[al +
bu=tSul + K]L,, aswell as R := W3{A,}. Then the cosets { R3 }° + 71 and {4, }° + J1
coincide. In particular, { A,,}° + J is invertible if R is invertible.

Proof. The proof of this lemma in case of 7 = ¢ is given in [7, Lemma 7.2, iii)]. The
case 7 = o can be treated very analogous.

We have to prove that { B> — A,,}° belongs to 7; . In view of Lemma 6.8, it is enough
to show that (see Lemmata 3.2, 3.3, and 3.4)

(6.5) {[au)f]i — MnaLn} e,
3 1 0
(6.6) {[S]n ~ My~ San} e,
(6.7) inf  inf supHMn FLAV BV Mo fLy + JuLn —0,
fEC {In}ET nen L)

inf inf supHMn FL V' Dy ADI "W,V Vi Moy f Ly, + JnLn

9

fEC1{Jn}ET neN L(L2)
(6.8)
6.9) inf inf supHMn FLaV oV AW Ve My f L + Jn L, -
fe€C1{Jn}ET neN L(LZ)
(6.10) inf inf supHMn FLaV YAy — PyAP Vi My f Ly + Ju Ly, —0,
fECT {JL}ET neN L(L3)
(6.11)  inf inf supHMn FLAV A, — PuFP VMo fLy + JuLy -
FEC1 {Jn}ET neN L(L3)

with F,, = D,A, D! and F = D+AD;1, since the operators B, V. A*W | and
DJrADjrlwar are compact (see (9.19), (9.29) and comp. the beginning of the proof of
Lemma 4.7).

Due to lim¢—,1 a(t) = a(1) we have

fi€n(f:1H{Mnan}o{[a(1)I]i — M,aL,}°

n—1

< . o _ g .
<0 ot swpl|(F(asr.0)la() — e )lin) ) g

)

Hg(z?) -

and (6.5) is proved.
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To show (6.6) we introduce the bounded function

coss 1 [3 3]
g(s)i=————, sE€ T, =T .

sin s S 4 "4

In view of the defition of S and due to (3.14), the entries r/, of

Vo ([SI2 — Myup~'SpL, )V,

0<j<%,0<k<n,canbe estimated by
| 1—(=1)"* 1 1— (=1)d+k+t
T = —_ f—
grk i (j—k) iT j+k+1
1—(=1)7"%cos LEm 1 — (=1)ithkt1 cos Lty
2ni sin %w 2ni sin ”anﬂw
L= () k41 N 1= (1) -k | _C
= v — ™ — .
omi  J\ 2n omi \ 2n =7

Consequently, due to (fn = (f(zg+17n)5j7k);k;lo)

fgng{AinfL"}o{[Sﬁi—‘Afnp_lsan}o{A4nan}OHA/J

< const inf sup
7€CipeN

faVa ([S12 = Mup™ ' SpLy)V, ! frn

£(62)

< const inf sup H

)n 1
1,
FEC1 neN J+ TL 7,k=0

Hg(zz)
we get, using a Frobenius norm estimate and choosing f € C; with supp(f o cos) C [0,¢],
a bound less than const e , where € > 0 can be chosen arbitrarily small.

Now, let us introduce the function ®(s) = cos /s, s € [O, %2} . Then the function

72]° D'(s) 1
h {O’ﬂ —R D=5 Tem 5ot

is bounded and, for s,¢ € [0, %] , we have

sns % 20 % 0
cost—cost 212 B(s?) - D(17) 512
Hence, we get, for j, k < 21
(7 11 ) B 2%k + 1
ni(xf g, —254,)  mi(k+5+1)( - k)
1 2/§+1 1 222:17‘_
(6.12) = 7 cog 2EEL COSMW_E T e
2n (5" = (357 )
2 2k +1 2%+1 \? /2+1 \? k
nt n 2n omn n2
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Furhermore, the entries of PnDJrADjran — D, A, D, can be written in the form

25+ 1\ Ck+1)(1—d;0) x@,) @@, —d5k)
2% + 1

mi(k+j+1)(j — k) X(xzﬂ,n) ni(xf,, , —

x?+l,n)
_ X(‘I?Jrl,n)

2k + 1 B (@7 11.0)
X(Ig-g-l,n)

mi(j+Ek+1)(j—k)

)‘| (1 - 6]'7/@)

y o o
m(zk+1,n “Titin

2
L X3 (27' + 1)2X+ (2k+1)(1 - d;0) 4 (B5Ea) ™
2k +1 mi(k+j+ D0 -k x@f,)

(
L (2’;:%)2’“] <2j+1)2’<+ (2k+1)(1=dj0)
( 2k +1 mi(k+j+1)(j — k)

Denoting the first addend on the right-hand side by 77 , using (6.12), and taking into account
(9.13), we obtain the Frobenius norm estimate

n—1
iIéEH( 1) ka(x’““”))ak OH L(£2)

const

=0
2j11<2¢ 2kt 1<2¢

const
4X+ E k2—4x+
n2
1<5< <2ns

1<k<2ne

_ const /(ne) DT /(ne)3— 1+

3 = const g2
n

forany f € Cy with supp(f o cos) C [0, e] . Furthermore we get

inf supHMn fL.V;'[D,A,D;' — P,D,AD'P,|V,,

fEC1 neN L(L3)
< inf HMn LoV ) L VM
fl€nc1 ilelg f n (7’],1@)],1@70 £(L2)
n—1
+const inf sup [|P, | f(271.,) [1— Lﬂn) 0k P, *
FECH nen n j+1ln Ax- (2]2'::17_‘_)2X+ Js - n
(6.13) " o
L A (AP T
* ||PnD+AD+ Pn||£(l2) Pn f(karl,n)g—éj;k P"
X($k+1,n) =0
J» £(12)
1
+const flencfl sup |P.D+AD; P"Hg(zz) *
n—1
gx— (2k+1 ) 2XH
* || P, <f(:cg+1)n) [1— ((+7T)) 05k P, =0,
XTk+1n gk=0  llce2)
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since % — 1ifz — 0and since the operator D, AD " is bounded. Consequently,
(6.11) is true. Completely analogous we get that (6.10) holds and that

(6.14) inf supHM FL.VYAY — Py A* PV, .

feCi1 peN

For fixed ko, the projection Py, € L(¢?) is a compact operator. Hence the sequence
{V. 1 Poy VP P, A*W P, V,, L, } belongs to 7 and, in view of (6.14) and (9.29), we arrive
at

foinf H My fLo]V 'V AW, Vi [Mi f L
2L, ity sl S .

"llewe)

VoIV VM, fL,V,  [AL — PyA*P, VM, fL,V,

= £€C1 neN Mlles)
+ inf supHM FLVNI = Poy )V ViV L P A*W P,V M,
F€C1 neN L(L2)

1

< const inf sup ||P,(I — Py,) (f (2] Sy n)dj+16.7;k);lk o Pn

FECI neN £(2)
< ¢ 1 const
< constsup sup — = —n

neN ko<k<n/4 k° kg

for some € > 0. Consequently, we have proved (6.9). Similarly, we can show that (6.8) is
true.

It remains to prove (6.7). We have kg, {V,, ' P, B,V, L,} € J for fixed ko . Conse-
quently, in view of (9.19), we get

£ inf HM LIV 'B,V,[M,fL
AR, nL  sup||[ M LalVe "BVl Mnf Ll

"llewe)

—1
I P a b, 4. n P
= fec, neN ko f ( ]+1,n) j+1 ,7,/@)]716:0 n £
< t 1 const
< constsup sup —
neN ko<k<n/4 ke kS

forsome e > 0, and (6.7) is shown. O

7. Stability of the collocation methods. At first let us study the stability of sequences
from A .

THEOREM 7.1. Asequence {4, } € Ay is stable if and only if all operators W,,{4,} :
X, — X, ,w=1,2,3,4, are invertible.

Proof. The necessity of the conditions follows from Theorem 2.9. To prove that the
conditions are also sufficient we have, due to the same theorem, to show that the invertibility
of W, {A,} implies the invertibility of the coset {A,}° in /7. By Lemma 4.7 and by
the fact that the mappings W3/, : F — L(£?) are *-homomorphisms we conclude that
Ws,4{An} € alg T (PC). This, together with Lemma 6.7, Lemma 6.9, and the relation (see
[7, (7.1

[R1)3/*[Ro)¥/* — [RiRo)¥/* € Ji1, Ry, Re € alg T(PC),
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implies that the cosets {R?/‘l}" + J+1 and {A,}° + J41 coincide in (A/J)/J+1 for
R = W3,4{An} . In particular, {A,,}° + Jx1 is invertible if W3,4{A,} is invertible. The
invertibility of {4,,}° + J, for t € (—1, 1) follows from Lemma 6.6 and the invertibility of
Wi{A,} . It remains to refer to Theorem 6.5. O

The remaining part of this section is devoted to the case 4,, = M, (al + u~*buS +
K)L,, ,a,b € PC, which is associated to equation (1.1) or, which is the same, to equation
(1.2). At first we recall the Fredholm conditions for the operator al + bS : L2 — L2 (see

[3, Theorem 9.4.1]). Define ¢(x) = % ,and, for (x,A) € [-1,1] x [0,1],
(1=XNec(x—0)+Ae(x+0) , ze(-1,1),
c(z,\) = c(1) + 1 —e(D)]fa(N) , x=1,
14 [e(—1) — 1)fs(N) , w=-1,

where

sin T

sin Ta e—ima(A-1) , Q€ (—17 1) \ 0,
fa(N) =

A , a=0.

Note that, for z1, 22 € C, the image of the function z; + (22— 21)f,(\) , A € [0, 1], describes
the circular arc from z; to z5 such that the straight line segment [z1, 25] is seen from the points
of the arc under the angle 7(1 + «) , i.e., in case a € (—1,0), the arc lies on the right of the
segment [z1, z2] and, in case « € (0, 1), on the left. Thus, if the numbers c(x + 0) are finite
for x € [—1, 1] the image of c(x, \) is a closed curve in the complex plane which possesses
a natural orientation. By wind c(x, \) we denote the winding number of this curve w.r.t. the
origin. Furthermore, note that, for —1 < x < 1,

(7.1) {f—QH()\) tAE [07 1]} = {fﬁ()‘) tAE [O’ 1]} )

where

A

fe(N) = N (L= Nz

LEMMA 7.2 ([3], Theorem 9.4.1). Let a,b € PC. Then the operator al + bS : L2 —
L2 is Fredholm if and only if a(z - 0) — b(x +0) # 0 for all z € [-1, 1] and c(z, \) # 0 for
all (z,\) € [-1,1] x [0, 1] . Inthis case, the operator is one-sided invertible and its Fredholm
index is equal to ind (af 4+ bS) = —wind c(z, \) .

Define d(z, A) in the same way as c(z, A) by using a — 2y and 8 — 26 instead of a and
3, respectively.

COROLLARY 7.3. Since the multiplication operator I : L2 — Lia,zw,% is an
isometric isomorphism, the operator A = al + u~*bSp : L2 — L2 is invertible if and only
ifa(x£0)—b(x+0)#0forallx € [-1,1],ifd(z,\) # 0forall (z,\) € [-1,1] x [0,1],
and if windd(z,A\) =0.

LEMMA 7.4. The operator Wo{MZ (al + pSul)L,} is invertible in L2 if and only if
the operator a + bS : L2 — L2 is invertible.

Proof. Let A,, = MZ(al + bS)L,, . Due to Lemma 3.2, Lemma 3.3 and Lemma 3.4 we
have that the operator W5{A,, } is equal to J, * (a.J,, 4 ibpV*) the invertibility of which in L2
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is equivalent to the invertibility of the operator B : L2 — L2 with B = p~!(aJ, +ibpV*).
With the help of (3.1), (3.2), and the three-term recurrence relations

Tiy1(x) = 22Tk (x) — Ye—1Tk—1(2) , Ugy1(x) = 22Uk () — Ug—1(z), k=1,2,...,
we find that
Ju = plel —ipp~'Spl), and V* =l +ipp~'Spl,

where ¢)(x) = x. Hence, the operator B is a singular integral operator the invertibility of
which is equivalent to the Fredholmness of B with index zero or to the Fredholmness of BV
with index —1 . With the help of (6.4) we get

BV = a(pl +ipp ' Spl)(YI —ipp~tSpI) +ibl
= —iap?p 1 Spl —iayp?p~'Spl + ibI
=i(bl —ap~'Spl) + K

and the assertion follows from 2=¢ =

i . 2 2
with a compact operator K : L; — L Ta

—1
— (g—fg) , Lemma 7.2, and the fact that pI : L2 — L2 is an isometric isomorphism. O

LEMMA 7.5. Let A,, = M, (al + bS)L,, . Then the operator W2{ A, } is invertible in
L2 if the operators W, {4, } : L2 — L2 ,w = 1, 3,4, are invertible.

Proof. We consider the case 7 = o . (The case 7 = ( is dealt with in [7, Section 8].) Let
the operators W;{A,,}, j = 1,3,4, be invertible in L2 . Then, due to Lemma 7.2, Lemma
4.1, and Lemma 4.7, the curves

(1=XNec(x—0)+Ae(x+0) , z€(0,1),
= c(1)+[1 —c(D)]fy—ae() , =1, Dz N) e [-1,1] x [0,1] 5,
L+ [e(—=1) = 1] f5-p5/2(N) ;o v=-—1

1 «

SN PSS [P R

[\)

uday+p@yicot (72— Liia]) oz Az —ool )
271

and

@

+

Ty:= {a(—l) — b(—1)icot <7r

it stion (s[5 L] ) o2z

do not run through the zero point, and their winding numbers vanish. For 2™ = lf—al ,
AL €10,1],and —1 < k < 3, we get

1 1— A — Aje 127w
_icot<ﬂ' {E—i—n—i-i/\}) ! L€

—6+i/\D :—OOSASOO}

r 1
N =

T 1-— A+ )\1€_i2ﬂ'“ ’
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a(l) + b(1)icot (m [§ + & +iA]) B
(72) T (1) [1 = e(D)fn(l = A),

and

a(=1) = b(—=1)icot (7 [2 + K +i}A])
a(=1) = b(=1)

=14 [e(—1) = 1f_n(l = A1)

Thus, if W3{A,} and W,{A,} are invertible in L2, then the invertibility of W,{A,} :
L2 — L2 is equivalent to the absence of zero on the curve

(1=XNc(x—0)+A(z+0) , z€(0,1),
Iy := C(l) + [1 - C(l)}fl/él()‘) ,oe=1, : (:Cv)‘) € [_17 1} X [O’ 1]
1+ [e(=1) = 1]f1/a(X) ; r=-1

and its vanishing winding number, since zero is not contained in the domains enclosed by the
curves I's and Iy . It remains to apply Lemma 7.4. 0
Let ag,bg € Cwithag by # 0, set cg = Zg—fzg , and consider the arc

G (ag, bo) :== {ao—l—boicot (ﬂ' {% —|—/§+i/\}) -0 <AL oo} ,

where —% <K< % . The point zero does not lie in the convex hull of this arc if and only if

M(ao — bo) + (1= Ay) {ao—l-boicot <7T B +n+iAm £0

forall (A1, \) € [0,1] x [—o0, co] or, which is the same (comp. (7.2),
)‘1+(1_Al)[f—ﬁ(l_)‘)+00fm()‘)]= 0< A, AL,
This condition is equivalent to

(1= 1-—X .
/\1+(1—>\1)Co75—f f((/\) )Z— 3 e?m™ 0 < A\, A< 1.

The last condition can be written in the form

)\1+(1—A1)CO ¢ei2’m[—oo,()], OS )\1 S 1.

This means that ¢y can be represented in the form

(7.3) co = |colemro

with
1 1.

(7.4) ——+kKk<rkry<=- if k>0
2 2

and
1 1 .

(7.5) ——<rKky<z-+kr if K<O.

2 2
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Moreover, the point zero is contained in the interior of the convex hull of the arc G (aq, bo)
if and only if ¢ is of the form (7.3) with

1 1
—— < Ko< —=+k if >0

2 2
and
(7.6) ! < <1 if <0
. 5 Kk < Ko 5 I K .

Now, assume that the operator A = al+bu~tSul : L2 — L2 with a, b € PC is invertible.
Then, due to Corollary 7.3,

1 1 «
and
1 1 Jé]
— -1 —_— === .
27Targc( ) # 5 (2 6)—i—k7 kelZ

Hence we can define two numbers

I N S M ESICED)

and
1 1 1
ﬁ_zﬁargc(—l)e(—5—(§—5>,5—<§—6)> .

LEMMA 7.6. Let the operator A = al + bu~'Sul : L2 — L2 be invertible, a,b €
PC, and set A,, = M, AL, . Then the operators W3 ,4{A,} : £* — ¢ are Fredholm with
index zero if and only if

1 .
Ki_z <§ if w=o¢
and
1 1 .
Ki—f—z <§ if w=ep.

Proof. Let w = o . In this case the operator W3{A,,} : 2 — ¢? is Fredholm with index
zero if and only if the point zero is not at the curve I'3 or in its interior. Since I's is the union
of the two arcs G'¢ —(a(1),b(1)) and G_1 (a(1),b(1)), this holds true if and only if eighter

() zero is not contained in the convex hulls of the arcs G (a(1),b(1)) and

G_1(a(1),b(1)), or
(b) zero is contained in the interior of both convex hulls, or
(c) if both arcs are located on the same side of the straight line from a(1) + b(1) to

a(l) = b(1),ie. if $ —~ <0, zerois on this straight line.
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Condition (a) is equivalent to (see (7.4) and (7.5))

1< <1 (a ) £ « -0
2 R4 5 2 Y 1 5 Y s
1 o 1 o
———(=- S i Z—4<0
2 (2 7)<””+<2 gt
and

1+1< <1

14l g z

2 "g g

i.e., taking into account (7.7), equivalent to

1 1 1
(7.8) —§+Z<FL+<§.

Condition (b) can be written as (see (7.6))

<0, —ic <1 (o‘ )
5 V<0, —5 <my 5 (37
and
L1
L T
2 "Mt Ty

which is, due to (7.7), equivalent to

1 1 1
7.9 - Z 4
(7.9) 5 < ky < 5 + 1
Finally, condition (c) is equivalent to
1
(7.10) %—7<0 and ry = .

Summarizing (7.8), (7.9), and (7.10) we get

I€+—Z <§

1 ‘ 1

The proof for W4{A,} is completely analogous, and the proof in case of w = ¢ is given in
[7, Section 8]. O

8. Splitting property of the singular values. The singular values of a matrix A €
C™*™ are the nonnegative square roots of the eigenvalues of A*A . In this section we study
the asymptotic behaviour of the singular values of operator sequences {A4,,} € Aoy, where
an operator A,, : im L,, — im L,, is identified with one of its matrix representations, for
example in the basis {@ }_, or in the basis {Zm},g‘:1 .

Let F, denote the C*-algebra of all bounded sequences { A,,} of matrices A4,, € C"*"™,
provided with the supremum norm and elementwise operations. Further, let A/ be the two-
sided closed ideal of F consisting of all sequences {A4,,} € Fo with lim,, , ||An|| = 0.

For {A,} € Fo, by A,,(A,) we denote the set of all singular values of A,, . We say
that the singular values of a sequence { A, } € Fy have the k-splitting property if there is a
sequence {&,,} of nonnegative numbers and a real number d > 0, such that lim,, . £, =0
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and A(4,,) C [0,e,] U [d, c0) for all n, where, for all sufficiently large n , exactly & singular
values lie in [0, &,] .

CaseT = ¢ . With the help of Theorem 7.1 and relations (2.4), one can easily check that
in this case the algebra A, is a so called standard algebra (for a definition, see [5, p. 258]).
Consequently, from [5, Theorems 6.1(b), 6.12] we get the following theorem.

THEOREM 8.1. Let {4, } € Ay and let {4,,} + J¢ be invertible in AJ /7% . Then the
operators W#{A,} : X, — X, ,w = 1,2,3,4, are Fredholm and the singular values of
{A,,} have the k-splitting property with

4
k= dimker W{A,}.

w=1

Caser = o . Inthis case A is not longer a standard algebra (see Lemma 2.4). Hence, in
the following we give another proof for the k-splitting property of the singular values (comp.
[8, Section 5]), which applies in both cases.

For this aim, we continue with recalling some definitions and facts from a Fredholm the-
ory for approximation sequences (comp. [5, 13]). Given a strongly monotonically increasing
sequence  : N — N, let F,, refer to the C*-algebra of all bounded sequences { 4,,} with
A,, € C1mxn(n) “and write A, for the ideal of all sequences {A,,} € F,, which tend to zero
in norm. Further, let R, : Fo — F,, {An} — {A,n)} denote the restriction mapping,
which is a *-homomorphism from F;, onto F,, mapping A/ onto V,, . For a C*-subalgebra
of %y, let B,, = R, (B) which is a C*-algebra, too. A *-homomorphism I : B — C from
Bintoa C*-algebraC is called fractal, if, for any strongly monotonically increasing sequence
n : N — N, there is a *-homomorphism W, : B, — C such that W = W, R, . The
algebra B is called fractal, if the canonical homomorphism « : B — B/(B N N) is fractal.

LEMMA 8.2 ([5], Theorem 1.69). Let B be a unital C*-subalgebra of Fy. Then B is
fractal if and only if there exists a family {W, };cr, of unital and fractal *-homomorphisms
W, : B — C, from B into unital C*-algebras C; such that, for every sequence {B,} € B,
the following equivalence holds: The coset { B,,} + BN A is invertible in B/(B N N) if and
only if W;{B,} is invertible in C; forall t € T} .

COROLLARY 8.3. The algebra Ay is fractal.

Proof. Due to Theorem 7.1 and Lemma 8.2 we have only to show that the unital *-
homomorphisms (see Cor. 2.8) W, : 49 — L(X.),w = 1,2,3,4, are fractal. But, this
is evident since the images W,{A.,}, {4,} € Ag, are strong limits which are uniquely
defined by each subsequence of {A,,} .0

Let BB be a unital C*-algebra. An element k& € B is said to be of central rank one if, for
any b € B, there is an element r(b) belonging to the center of 5, such that kbk = r(b) k .
An element of B is called of finite central rank if it is the sum of a finite number of elements
of central rank one, and it is called centrally compact if it lies in the closure of the set of all
elements of finite central rank. Let 7(B) denote the set of all centrally compact elements of
B.

LEMMA 8.4 ([8], Theorem 5.6). Let 15 be a unital and fractal C*-subalgebra of F;
which contains the ideal . Then, K(B) = J(B) .

LEMMA 8.5 ([13], Theorem 3). Let BB be a unital C*-algebraand = : B — L(H) an
irreducible representation of 5. Then =(J (B)) C K(H).

Since every *-homomorphism between C*-algebras, which preserves spectra, also pre-
serves norms, we can conclude from Theorem 7.1 that the mapping

smb : Ay — L(L2) x L(L2) x L(£?) x L(£?),
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{An} = Wi{An}, WalAn}, Wa{An}, Wa{As})

is a *-homomorphism with kernel \V'. Since K(X,,) C W,,(Ap) forallw € T', we can easily
check that every W, : Ay — L(X,),w € T, is an irreducible representation of Ay .
Hence, the mapping

smb : Ay — L(L2) x L(L2) x L(£?) x L(£?)
is an irreducible representation of Ay , too. Lemma 8.5 implies
smb(J(Ap)) € K(L2) x K(L2) x K(£?) x K(£?).

Recalling the definiton of the ideal (7 and the fact that every compact operator can be ap-
proximated as closely as desired by an operator of finite dimensional range, we find that
J C K(Ap) . Thus, due to Lemma 8.4, 7 C J(Ap) . Obviously,

smb(J) = K(L2) x K(L2) x K(€2) x K(£2).

Thus, we have proved the following.

LEMMA 8.6. The homomorphism smb maps 7 (Ag) onto K(L2) x K(L2) x K(£?) x
K(?).

We say that a sequence {B,,} € Fy is a Fredholm sequence if it is invertible modulo
J(Fo) . Due to [13, Theorem 2] (or [5, Theorem 6.35]) the Fredholmness of a sequence
from F; is equivalent to the fact that the singular values of this sequence have the k-splitting
property. A C*-subalgebra 13 of Fy, is called Fredholm inverse closed if 7(B) = BNJ (Fo) .

LEMMA 8.7 ([8], Theorem 5.8). Let B be a C*-subalgebra of F, and let {J,} €
J(Fo) N B. Then, for every irreducible representation = : B — L(H) of B, the operator
w{J,} is compact.

Let B be a unital and fractal C*-subalgebra of Fy which contains the ideal A/. A central
rank one sequence of B is said to be of essential rank one if it does not belong to the ideal A/ .
For every essential rank one sequence { K} , let 7{ K, } refer to the smallest closed ideal of
B which contains the sequence { K} and the ideal A/ .

In [13, Cor. 2] (see also [5, Cor. 6.43]) there is shown that, if {K,,} and {J,} are
sequences of essential rank one in B, then eighter

(8.1) T{Kn} =TI} or J{K}NT{J}=N.

Calling {K,} and {J,} equivalent in the first case we get a splitting of the sequences of
essential rank one into equivalence classes, the collection of which we denote by S . More-
over, with every s € S there is associated a unique (up to unitary equivalence) irreducible
representation W* : B — L(H,) such that W*(J{K,}) = K(H,) and that the kernel of
the mapping W* : J{K,} — K(H,) is N (see [13, Theorem 4] or [5, Theorem 6.39]).
From [13, Theorem 10] (or [5, Theorem 6.54]) and [5, Theorem 5.41] we infer the fol-
lowing.
THEOREM 8.8. Let 3 be a unital, fractal and Fredholm inverse closed C*-subalgebra
of Fo which contains the ideal /.
(@) If {B,} € B is a Fredholm sequence, then the operators W*{B,,} are Fredholm
operators for all s € S, there are only finitely many s € S for which W#{B,} is
not invertible, and the singular values of { B,,} have the k-splitting property with

k=) dimkerW*{B,}.
seS
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(b) Let the family {WW*}.cs be sufficient for the stability of sequences in B, i.e., the
invertibility of all operators W#{B,,} implies the stability of {B,,} . Then the se-
quence {B,,} € B is Fredholm, if all operators W*{B,,} are Fredholm and if there
are only finitely many among them which are not invertible.

Now we are ready to prove the following.

THEOREM 8.9. The singular values of a sequence {A,} € A have the k-splitting

property if all operators W, {A,},w = 1,2, 3,4, are Fredholm. Moreover,

4
k= dimker W,{A,}.

w=1

Proof. Due to Corollary 8.3, Theorem 8.8, and Theorem 7.1 we have to show that the
algebra Ag is Fredholm inverse closed and that we can identify S with {1,2,3,4} and W«
with W, .

Let c denote the set off all convergent sequences of complex numbers. Since the center of
Ao is equal to {{%In} A} € c} (I, denotes the idetity matrix of order n) every central

rank one sequence in Ay is also a central rank one sequence in o, i.e. J(Ag) C J(Fo).
Hence for the Fredholm inverse closedness of Ay, it remains to show that .4y N J(Fp) C
J(Ap) . For this, let {K,,} € Ao N T (Fp) . By Lemma 8.7 we get

smb{K,} € K(L2) x K(L2) x K(£?) x K(¢%),
and Lemma 8.6 implies the existence of a sequence {.J,,} € J(Ao) such that
smb{K,} = smb{J,}.

Hence, {K,, — J,} e N and {K,,} € J(Ao).
Now, we show that, for each essential rank one sequence { K}, there exists an wy €
{1,2, 3,4} such that

82) T{K)} = Ju, = {{(E;ww)—ngw)Tng) + Cn} T € K(Xa,), {Ca} € N} .

For some w € {1,2,3,4}, let K, = (E$) 1L EX . Then {K,} € J. and, con-
sequently, 7{K,} C J,. This implies W, (J{K,}) C W,(J») = K(X.). Hence,
W (T{K,}) = W(T,) and T{K,} = J. . On the other hand, for an arbitrary essen-
tial rank one sequence { K,,} € Ay, we get, using smb(J (Ag)) = smb(J), J{K,} C J .
This implies, due to (8.1), the existence of an wy € {1, 2, 3,4} such that (8.2) holds. O

9. Appendix: Proof of Lemma 3.4 in case 7 = o. At first we collect some known
results needed in the sequel.

LEMMA 9.1 ([14], Lemma 4.13). If w € C%" with > 1[1 + max{a, 3,0}] , then the
commutator wS — SwI belongs to KC(L2, C%*) for some A > 0.

LEMMA 9.2 ([11], Prop. 9.7, Theorem 9.9). Assume that a,b € C°%7 are real valued
functions, where n € (0,1) and [a(z)]? + [b(x)]?> > 0 for all z € [—1,1]. Furthermore,
assume taht the integers A satisfy the relations

ap = Ay +g(1) € (=1,1) and fo:=A_ —g(~1) € (-1,1),
where g : [-1,1] — R is a continuous function such that

a(z) +ib(z) = v/[a(2)]? + ()] ™, x e [-1,1].



ETNA

Kent State University
etna@mcs.kent.edu

56 Collocation methods for Cauchy singular integral equations

Then there exists a positive function w € C%7 such that, for each polynomial p of degree
n, the function a v®-%ow p + i S bv*-Powp is a polynomial of degree n — , where k =
—Ay+ — A_ and where, by definition, a polynomial of negative degree is identically zero.

Suppose v, > 0. By C, s we denote the Banach space of all continuous functions
f:(=1,1) — C, for which v f is continuous over [—1, 1] . Moreover, by fﬁw we refer
to the Banach space of all functions f such that v f belongs to L?(—1,1). The norms in
C,sand L, , are defined by

||f||»y,5,oo = HU’MfHoo ) Hf”i’;aﬁ = HvaﬁfHLP(fl,l) :
We introduce the operator T, 5 by

' [1_0”@)] uly)

(@) ] (y—=z)

—1l<zx<l1.

(T s)e) = |

-1

LEMMA 9.3 ([6], Corollary 4.4). If p > 2,

de L1 u ! 1 ! 0 < x < mi L 11 + ! +0
——, == -1 - = mms§ - — —, — -

’77 47 p p7 2p Y X 4 2p7 4 ’Y? 4 Y

then the operator 7, 5 : ff’w L, — C 1 51 iscompact.

Of course, the assertion of this lemma remains true if one of the numbers ~ or ¢ is equal
to zero. _
LEMMA 9.4 ([6], (2.9)). The sequence {W,} converges weakly to 0 in the space Lﬁj

with o = oFHE - IS5

Proof of Lemma3.4incaser = o :

Since (1.5) holds, we can choose integers A such that ag — Ay and A_ — [y are in
(—1,0). Moreover, by g(x) we denote a linear function such that g(1) = a¢ — A4 and
g(—1) = A_ — By. Then, a(x) := — cot[rg(z)] is a continuous function on [—1, 1] and
a(z) —i = /[a(x)]2 + 179 . Due to Lemma 9.2 there exist a positive function w €
ﬂne(o,l) C%7 such that (al + iS)uwus,, is a polynomial of degree less then n — k for each
Uy € im L,, , where k = —A; — A_ . Now we use the decomposition

9.1) ptSul = ial —i(pw) ™t (@l +iS)pwl + (pw) ™ (wS — Sw)ul .

The uniform boundedness of {M,,aL,,} follows from Lemma 3.2. Taking into account (2.2),
Lemma 2.1, and the boundedness of S : L2, ., , s — L2, ., , .; we get, for u, €
im L, and ¢, = (al +iS)pwu,

_ 2 ol ae 12
My (1) " anll, < 205107 o (pw) ™ g
1
(9.2) gconst/ |qn|219_2<p2,u_2adx
-1

= const ||gnll}, > < const [|pwu, |, > < const [[un | ,

which proves the uniform boundedness of the second term in (9.1) corresponding to the
collocation method. To handle the third term we set H, := wS — Sw. Due to (1.4),
we have $[1 + max{a — 2v,8 — 26,0}] < 1. Thus, in view of Lemma 9.1, we have
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H, € K(L}, ., C%), for some X > 0, which implies =" H,p € K(L3). Moreover,
choosing a € > 0 such that

- < mi 1+ a 1+a 1+ 51—1—,6’
min — —

2 T2 T3 '
and applying Corollary 2.3, we get {(M,, — L, )w 'u=tH,uL,} € N and, consequently,
9.3) {Mpw 'y 'H,uL,} € T .

Using decomposition (9.1) together with Lemma 3.2 and Corollary 2.3, we infer that for
each fixedm =0,1,2,...,

M, aL,t,, — al,,
M, (pw)~H@l + S)puw Lyt — (uw) ™ @I + S)pwiiy, ,
M, (pw) ™ Hoypn Ly, — (pw) ™ Hoy pit, -

Thus, {A,,} converges strongly to A .
With the help of (3.2) and Lemma 2.1 we obtain, for u,, = ¥p,, € im L,, ,

(9.4) [Mnaunll? < 2[lall3.Q5 10~ w9pal* < const [|a]|Z, unl -

To prove the strong convergence of {A*}, at first we consider sequences of the form
{M,bobu=1SuL,} , where by € PC and b is a differentiable function with b’ € C%1[—1,1]
and b(£1) = b'(£1) = 0. We use the decomposition

bu=tSul = bp~tSpl + = Y(bS — SOI)ul 4 p= (Sbup™ T — bup=1S)pI
(9.5)
= bp 'SpI+ K| + K.

In the same way as for (9.3) one can show that {M,,K;L,} € J,j = 1,2. Due to Lemma
3.2 and Lemma 3.3 the inclusion {M,,bobu=1SuL,} € F follows. Using this fact and the
estimate (see (9.4))

|| M (b — b)ﬂ_lsﬂLnHﬁ(Lg) = || My (b— b)LnMn/L_lsﬂLnH/;(Lﬁ)

(9.6) N
< const ||b — b0

we get

9.7) {Mubu=*SuL,} € F forall bePC with b(£l)=0.

Now, for fixed m , we take the function ¢ ~',, . This function belongs to L2 and fulfills the
conditions of Corollary 2.3 such that M,, o~ '4,, — ¢4, . Because of (M,,p~1L,)* =
(2L, — Ln,l)Mngpfl%(Ln + L,_1) (see (3.7), which is also true for a = o) we get

lim (M, p = SpLy)* tm

= lim (Mpp 'L, M,op = SuL,)* tm

n—oo

= lim (Muou ' SpLy)* (2L, — Ly 1) Mue™!

1
n—oo 5

= Wi{Mupp ™' SpLn} o~ i,

(Ln + Lnfl)ﬁm
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inL2.

To prove the strong convergence of {W,, M,,u~1SuW,, } we write
(9.8) wtSul = p~tSpl + p Kl

with K := S — p~'uSu~1pI . Moreover, for p > 2, we set
=it TE NG = gt ST G i E g

By assumption (1L4)we have —1 < 14 o < 3and -1 < 1455 < 3. Thus, together
with (1.5) we can apply Lemma 9.3 for sufficiently large p and sufficiently small x > 0 to
conclude the compacness of

-1 1p #oTp K
KH.—/L KMI'L¢—>L1Z—>CHTQ*’Y*X»¥*5*X%CHTQ*X»#*X'

Using the decomposition (9.8) together with Lemma 3.3, it remains to prove that

Wiy My, K, Wy, t,y, cOnverges to zero in L2 for each fixed m = 0,1,2,... . As a consequence
of Corollary 2.3 and the compactness of the operator K, we get

Jim [[(Mn = DEpllgs pz =0

—L2

for some p > 2. Together with the uniform boundedness of W, : iﬁj — f,ﬁ (see Lemma
9.4) this leads to

nhigo HWn(Mn - I)K#Wn||f‘i~>Ll2, =0
Again Lemma 9.4 and the compactness of the operator K, imply, for some p > 2,

Jim [[Wo K Wull, =0, ue LY.

It remains to remark that u,,, € f,fb forallp >1..

For fixed m , the function @*%Tm belongs to L2 and fulfills the conditions of Lemma
2.2 such that

(9.9) Lo 5Ty — ¢ 3T, in L2.
Using (3.10) we get, for all u,v € L2,
(WaMpaWnu,v), = (J, ' Ly ad, Lyu,v) | = (LyaJ, Lyu, J, *Lyv)

n

— g > a(@9,) (o Lou)(25,) (Jo " Lav)(23,)

Jj=1

= (JuLypu, LjaJ, *Lyv) = (u, J;L3aJ, *Lyv)

(W M,aW,)* = JELSaJ; * Ly, .
Together with (9.7) and (9.9) we conclude, for all fixed m ,
(W My L SpWo )t = (WM™ 5 Wy, Wi M o® = S W) i
= (W M3 = SuW, )  J* Lo 0™ 3 J* Ly,

— Wo{ Mo = S} T3 I i,
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inL2.

To get the strong limits of the sequences {V,,A,,V, 1P, } and {(V,,A,,V, ' P,)*} we
consider the structure of the corresponding matrices more closely. Setting B := p~*Sul —
p~'SpI and B,, = M, BL,, and using (3.12) and (3.13) we compute, for z # x¢,_ |

(BEZ,)(x)

_ 1 {u(y) B p(y)} D) T (y) dy
u(z)  p(z) | Ig, )T (27,)(y — 27,)(y — 2)

1 1/_11 [u(y)_p(y)] [y LI 1x]z9(y)Tn(y)dy

1
(g, )Ty (xg,) 27, —wmi Joy [p(@)  pla)] ly—ag, y-
B 1 L
o Hag )T, (xF,) 27, —
LML (e e 11
i J_y p(x) [p(y) p(z)] {y—xin y—x]w(y)T"(y)dy
_ 1 L J1 [ eeg)  pGf)] 1 e@)Ta)
" I, wzn—w{wi [ G- L%) y—ag, Y

e ({u(y) p(y)} 1)_{#(17%”) p(min)} (1 )w(y)Tn(y) ay
p p(x p

miJoo \Lu(@)  p(@)] ply () pl2) | p(ag,)) y—af,
1t [u(y) B u(iv)} PWTn(y)
miJ o) Ley)  pl@)] y-=
1 1 _ p(zkn
(@] { p

1 p(afn) [p@g,)  paf,)] , GO 1 p@g) ooy m
- { [ w(xz)  p(w) } V2r niop(z) PR i

_1\k+1 P
L so(:v)d"(:v)},

where
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Consequently, we get

n—1
— W(i+1)n Do a
WBWﬁ&Z(jﬁ%@%mM%%H>

4,k=0
(9.10)
=B,+D,A,D,' —A, -D,A,D'W,V, - V,A*W,, ,
with
i (101,)  1-6
~ n- P\Tr1,n — 05k

B, ::(Bl”. AR ) . A, = L : :

(Bl ) (@n)0i j,k=0 ( nioxg, —iv?+1,n> k=0
and

n—1 n—1
(—1)k+1 n—1 P71 0)
W, = <75jk Vo= (A 658) ", Dy o= | 5225,
" \/ ’ . ’ n N/ 4,k=0 " n o s )
27 j,k=0 ) j

M(ijrl,n k=0

where the diagonal elements in A ,, are equal to zero by definition. We have to show that, for
any fixedm = 1,2, ..., the sequences

(VoA Vo Pre1}y and {(Va AV ' P) e 1}

converge in ¢ to A’ e,,—1 and (A% )*e,,—1 , respectively.
a) At first we turn to the limits for the operators A, . We define

o P@Ti,) 1 -6k

Gk =

0<5,k<n-—1.

3

n ‘Tz+1,n - ‘T;r+1,n
We observe that, for fixed j and k with k& # j and forn — oo,

(n) 1 sin 21;:1—1 ™ 1 2k +1
o\ —

9.11 R : - =
(9.11) ik ni2sin%wsm%w—>7Ti(k+j+1)(j—k)

and, forfixedkand j =0,1,...,n—1,7 # k,andn > 2k,

2k +1
lj—kl(k+j5+1)

(9.12) |a§-2) | < const

The same estimate holds true for fixed j and £k = 0,1,...,.n — 1,k # j,and n > 2k.
Using (9.11) and (9.12) together with Remark 3.1, we see that A, e,,_1 — Ae,,—1 and
Aren_1 — A¥e,_q forany fixedm =1,2,...

b) In this item we consider the convergence of the operators D,,A,,D* . We introduce
the function () := p(z)[u(z)]~* = (1 — 2)X+ (1 + x)X- with

1 «
9.13 =4 = - =
(9.13) X+ =7+t5-7 X+
and define

oy X@900,) e((@ L) 1—6,

Yk = (x9 ) ni z9 — a9
X\Tpy1m j+in = i+
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Then, condition (1.4) is equivalent to

1 3
9.14 -—=< < -
(9.14) 1S XE<g
We observe that, for fixed j and k£ with k& # j and forn — oo,
. 2 . 2x—
~(n) sin %w X Ccos %w X 1 sin 21;—:;17r
a . = e — 7 — T T
ik sin 2];—:177 cos %ﬂ' ni 2 sin %ﬂ'sin %ﬂ'
(9.15)
2j+ 1\ 1 2% + 1 ~
— =:ajk -
2%k + 1 mik+ji+0G—k O F

For0 <j,k < 5 and j # k, we have the estimate

. 2x—
) 2j 4+ 1\2XF (1 2\ 2k + 1
|a;,’| < conts _ - .
ik | = 2k + 1 1 2kt lj = kl(k+5+1)

For fixed k,n > 3kandn > j > 5 we get, if x_ >0,

~(n)| n\2x+ 1k El—2x+
|ajk | < const (E) EE = const m

and, if x_ <0,

~(n 2% (9 —2i —1\ X" 1 k 2 12k
|a§‘k) < const (%) ’ <L> — — < const (n =) )

2n
Thus, for fixed kand j = 0,1,...,n— 1,5 # k,and n > 3k, we have
1 n
~(n i3 +e 2’
(9.16) |a.§.k)| < const 1 Jz 1 n
n (n— )it
with some ¢ > 0. For fixed j,n > 3j,andn > k > 5 we get, if x_ <0,
SN\ 2X+ 2X +
~(n) (1) L g
|aj),’| < const (n) - < const pEET R
and, if y_ >0,
2n — 2k —1

n 2n

—(n) AN 2n Xl —2%k—1
|ajk | < const - —_— -

(n — k=2 2
n2(+x4+—x-)

< const

3

Thus, we obtain, for fixed jand k =0,1,...,n— 1,k #j,andn > 3j,

1
—— it k<,
(9.17) )| < Qeonst ¢ KT . n
N T
ne (n— k)§+ 2

nn n2(1=x++x-)

61
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with some ¢ > 0. Using (9.15), (9.16), and (9.17) together with Remark 3.1 we conclude

n
P n—1 00

2
Jm |30 -t 30 @PE 3 fan) =0
J=0,j7#k J=5+1.J#k J=5+1.5#k
and
% n—1 e’}
J (S fa —anl o X @Y Y fal | =o,
k=0,j7k k=%+1,j#k k=15 +1,j#k

which imply the ¢2-convergences
(9.18) D,A,D;'e;, - D AD;'e; and (D,A,D,')*e; — (DLAD;')%e;,

where A and D are defined in (3.19).
c) Next we compute the limits b: = lim, . b}, Where we have set b} :=
(BY7,)(x7,,) - In particular, we shall show that, for somee > 0,
const

9.19 b < k=1,2,...
( ) |k|_min{k,n+k—1}5’ y &y )

At first we consider the case n > 2k — 1. Defining

¢(x) = [p(@)] " pule) = [x(@)] 7' = (1 - 2)¢ (1 +2)¢

and using (3.13) we get

oo L / { ny) e L?( )ﬂ(y)Tn(y) iy
T

mi Joa L) P(Iin) T (a7, )y — 27,)?

_ (= ((y ﬂf;m) e(y)Tn(y)
B 277 nl/ xkn (y xkn) d

-3 I2k n 2(1+Ikn 1
- / +f / ) N LU ALY
% zg 1 (14=¢,)

2

where 23, | = max {—3, cos 2171 and

(=D 1 p(y) (ly) = ¢(x)
T i ((z) (y—2)?
We observe z , > 0forn > 2k —1.For—1 <y < —3,wehave2 > [y — 27 .| > § and

2>1—y> 3. Thus,

s
F(y,x) := COSS, Y =COS—.

1
" const 1 T2 o 1
1 < —— [ s et by
(9.20) ’
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since —% < (+ < i (recall (9.14) and {4+ = —xz). From (9.20) we conclude
lim, s 'y =0 and
(9.21) b = lim (I3, + I}, + 1)) = lim G(s,z%,)ds,

n— o0 ’ ’ ’ n—oo [q
where
1 2
—F(cosi,:zc)sinE if 0<s<§n,
G(s,x) = " " "
. 27
0 if ?n <s.

Now, we consider the case £ (1+7,,) < y = cos £ < 1, whichis equivalentto 0 < s < s7!,
where 2i-tr < g1 < 2L Thusy — 27, > (1 —2f,,) and

¢+
st 1-—
|G(s,z7,)| < cons [( i ) +1

n 1—a7,
(9.22)

<const (§)2<++1 i(ﬁ)4i<const (£)2<++1 9
Y n\k) 2=k [\k o

(1l-y? 1 s
mgSlHﬁlCOSﬂ
kn

Consequently,

2k—1
q = 2¢
(9.23) 13y ] < %rft/ 2 {(f) ++1} s2ds < CO}Iﬂlst.
0

k
For the case 73, , <y = cos £ < §(1+x7,) we have s < s < min{(2k — 1), 3*n} and

o) (/)| | coss —cos T
cag) | s 2% — 1

T
kn/ | cos — — cos
n 2n

L2k —1 2k — 1
w@ﬂd@ﬂ|(ésm[ > ”*A(“‘ 2 ”}dw

o 1 _ _
(@) l/ sinl [2k 17T+)\<s— 2k 17T):| d\
n Jo n 2 2

1 s .
) W/k ) sin u du
e(y) 1¢'(¢)] S R il
n (g, 3 _ _
(k)l/zsinl[m€ 17r—|—)\<s—2k 1#)} dA
0 2 2

|F(y, x7,,)| < const

™

= const

< const

n n

, { 2k — 1 1}
. min< 1, (s — s
< const £ ()
n2

for some ¢; € (Eg,m, 1+ xgn]/z) . Since in this case

1 1
1_y>1_§(1+x2n):§(1_1‘$n)
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and
2k — 2k —1
1—y<1—cos 7r:2sin22—7r
n

2k
=2 (1 + cos

—1 2% — 1 .
7T) (1—cos ™ 7r> 41 —z7,),

wegetl —y~1—-x7 ~1-C(,

1 s n2 n? 2% —1 |7"
G(s,xf, §const—£n—n—min 1,|s — il
kn nnk?k n2
(9.24)
52 2% —1 |7!
:constﬁmin 1,|s — T ,
and
(Qkfl)ﬂ Qk _ 1 -1
|I§fk|§constﬁ SQmin{l, §= =5
0
(9.25)
2k — 1

S — ™

1 (2k—1)m
< const—/ min < 1,
k Jo

Inthe last case —3 <y < 5, ,,i.e. (2k — 1) < s < 2Zn, we obtain the relations

-1
1+ logk
}—const%.

2k —1
2—
2n T

T = 2sin

2k —
1—y>1-—cos

2k —1 2k —1
=2 (1+cos w) (1—005 w) >2(1—2a%,),
2n
and
o o 1
(9.26) l-y>af, —y=0-y) -1 -af)>50-y).
Consequently, we get
G+ 1
const 1—y (1—-y)2
F(y,25,)] < 1| —2
and
" const [ /s\26+ n® s 5 26+ 1
027)  |Gls,af,)| < = {(E) + 1} 2 = const {(E) n 1} -

Since 2(1 — ¢4) > 1, we obtain the estimate

8\ 26+ 1 const
[(—) +1L—2ds§ =,

oo

(9.28) 1135] < const/ k:

(2k—1)m
From the estimates (9.22), (9.24), and (9.27) we conclude that the function
£s) max{s?++2 2} if 0<s<(2k—1)m,

S =
(s%+ +1)s72  if 2k—1)7m<s<oo,
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with the constant C' depending only on {1 and k , is an integrable majorant for the functions
G(s,zf,),n > 2(2k — 1), in (9.21). Thus, we can change the order between the limit and
the integration, and we obtain

bt :/ lim G(s,z%,)ds
0

n—oo

_1\k+1 o 2 s ¢~
— ( 1) / lim { LQ sin E (2 sin 277,) (2 COS 277,) = -1
m 0 n ™| (2sin® 2=17) o (2 cos? 2k=1 )

1

2 (2k—1)m—2s 2 (2k—1)m+2s
sin
4an 4an

G R T T (4n)" cos s
B /0 A [<(2k - 1)77) 1] 4([(2k — D)2 — [25]2)? s

98 2¢+
= 64(—1)k*! /OO (M) ! s2 cos s ds
mi o ([(2k — )72 — [25]?) .

. s
coss sin— p ds
n

4 sin

Hence, formula (3.21) is shown.
Due to the estimates (9.20), (9.23), (9.25), and (9.28) we have |b}}| < const k¢ for some
e>0andforl <k < 2t Letuscon5|derthecase Ml ck<n,j=n+1-k.lIt

follows 1 < j < 2L and inviewofz | ., = -z7%,, tp( y) = <p( ),and T, (—y) =
(=D)"Tu(y),
{ly 5n) o) Tn(y)
V2 nl/ (y—mjn)Qd ’

where C(y) = ¢(—y) . Hence, we get b7| < constj=° = const (n + 1 — k)~= for 2L <
k <mn,and (9.19) is proved.
d) Now we compute the limits d; = lim,, ., d} with

k — xkn / < Ikn) @(Z) Tn(y) dy

In particular, we shall show that, for somee > 0,

const
9.29 dy| < k=1,2,...
( ) | k|—min{k7n+1_k}aa y &y )

At first, let n > 2k — 1 and consider the polynomials

1 1

Snp(z) = I Thy1(z) — n_1 Tha(z)| ,
for which we have the relations (see (3.2) and (3.13))
(9.30) Ta(a) = 5 [Un() ~ Un2(a)] = 5 S4(x).
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We obtain, forn > 2,

1 (n+1)m 1 (n—1)r
Sp(z] ) = —
(27) n+1 o8 2n n—1 o8 2n
1 ™ 1 . <0
= — sin — — sin —
n+1 2n n-—1 2n ’
and
1 3 1 1 3(n—1
Sp(xg,) = cos (n+ Dm _ cos (n = m
n+1 2n n—1 2n
_ 1 . 3m n 1 . 3w 50
_n—i—lsm2n n—lsm2n '

Moreover, since S, (z) = 2T, (z) and T,,(z) < 0 for z € (235,,,x],), we get that S,,(z)
decreases monotonously on the interval («3,,, z7,,) . Consequently, the polynomial S,,(z) has
exactly one root in the interval (z3,,,7,,) . We denote this root by = . Obviously, ;> has

the form

. 3
(9.31) z} = cos Snoowith I o< sy < °
n 2 2

Now, we take an arbitrary s € (3, 37”) and compute, for sufficiently large n ,

S 1 n+1 1 n—1
Sp(cos =) = cos s — cos s
n n—+1 n n—1 n
1 [ s . . s} 1 [ s . . s}
= —— |coss cos— —sins sin—| — COS S cos — — sin s sin —
n—+1 n n n—1 n n
1 1 s 1 n 1 . .S
= — COS S COS — — sin s sin —
n+l n-—1 n n+l n-—1 n

2cos s 1 2nsins | s 1
-2 o ()] - F R o (7))

9 :
_ [coss—&—ssms]_i_O(%) ’
n

n?—1

which means that there exist constants ¢,d € R and N € N such that, foreach s € (%, 2F)

and foranyn > N |

d
—2[cos s + ssins] + °< (n* —1)S,,(cos f) < —2[coss + s sins] + —.
n n n

*

Since S, <cos S—") = 0 the inequalities
n

< 2[cos s}, + s; sinsy] <

S

Slo

are fulfilled. Whence we conclude that s? tends to s*, where s* € (Z

27
lution of the equation coss + ssins = 0. Define z;, = —z;} and taki

37 is the so-
ng into acount
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Sp(—x) = (=1)"*tLS, (x), we obtain S, (z) = 0. In view of (9.30) we get, by apply-
ing partial integration two times,

dy = REREC / at I(m’“") e(y)Tn(y) dy
kn kn k

mn

R CATES) ( / / ) _I:f” p(y)Tn(y) dy

i ST ) - ) — ) — ag,)
A / [@(y) v — 20,

(W) = ¢ag)]

—¢'(y) p— w(y) dy
= (s (/ /) Ix’“” o(y)T(y) dy
kn kn kn
Sue) [, 4 Cla) — Claf,) — zeta ) aF —of,)
TG, ol [“’( 2 (vF —af, )P

£\ _ (O @b
() w] + / " By, ag,) dy

In — 'rkn

_.om,l mn,1 m,2 m,2 m
I i

where
Suly) = —— () + ————— T 5(y) — ——To(y)
e m A Dmro) Y T ey Y T e oY
and
=~ _ Suly) C(y) — C(z) = ")y — =) + 5¢" (y)( )?
Fov) = mew {2@” UETE
2 (y) ) —¢@) Yy —a) o) C(y) —¢(z)

(y —x)? y—a
Forn > 5, the term d};{ can be estimated (remark that in this case z,, < —%) by

Tp

(1+y)'/?

(1+y)° y
(1—ag,)/?

(1 —=ag, )5+

|d2£| < const/

—1

+1

(1 + x;;)3/2+¢- N (1+x;,)3/?
(1 =g )t/2e (1 —ap, )1/

< eomst | (Y757 (n Wi 1 m
= cons n (k) n3 k

= const [
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1 1
2 —C g T 2

< const

such that lim,, .o, "> = 0 and

(9.32) dit| < k3—0/2
To consider dZ:i we use the substitution y = cos = and get
P /1 ot ) dy </max{zix%(1+min)} +/1 ) H{y.2%.)dy
’ xh xb max{z, 3 (1+=,)}

s min{s%,sP 1\ _
—</ +/ )H(s,zzn)ds—:J{fk—l—Jgk
min{s} s} } 0

with s = narccos (1 + 27,

_ /2 e(y) C(y)—C(x)COSS —eost
H(y’x)‘\/;o@)c(x) y—z SR

and

Ifsf <s<s;,ie ) <y=cost < i(l+zg,),we havethe estimate

ely) [¢(G)]

p(egn) C(7,)

forsome (1 € (7}, 3(1+2,)) . Sinceinthis case (1—y) ~ (1 —xf,,) ~ (1—(1), we get

|H (y,z7,,)| < const

3

g S n
|H (s, z5,)| < 2T T m and  [J{'| < o 13

| ®
o

3
~ const 2 const s> const [27 const
ds < ——.
n

For J3, , we have 0 < s < s}, which equivalent to (1 + 27,) <y = cos £ < 1. Hence

y_zgn > %(1_13211)7

1/2 C+
1—y 1—y 1
H g < t 1| ———
(et < const (71 l(l—xz) s
and
~ const s [/s\2¢+ n? s  const [/s\2¢+
H , (e < —_ (_) 1 _——= — (—) 1 2 .
Thus,
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Consequently,
const
(9.33) |dz+| < e

and the functions H (s, 27, ) possess an integrable majorant,

~ 3
’H(s,zzn) SC[82+2<+—|—52] , 0<s< ;,

where the constant C' depends only on ¢, and k. So, we can change the order between the
limit and the integration and obtain

*

lim dZi —/ lim H(s,zy,)ds

n—oo n—oo

\/7/ y 25\ %+ 1| 8n? cos s i
im -1l = s
e 2k —1 [\ak—1 2 [(2k — 1)a]? — 252
+

C -1
2k 1 9
\/72k_1/ 2k = D) ]25 cossds.

To estimate d}j 1 we remark that Sp(—z) = (—1)"Sn(:v) and write

T~ _ cos(n+2)t  cos(n—2)t  2cosnt
\/;Sn(COSt)_(n—i—l)(n—FQ) m—Dm-2 n2—1

= [(n+ 1)1(n ) 4 o 1)1(n - 2):| cos nt cos 2t — o cosnt
1 1 . .
(9.34) + {(n Dm-2 miDmt 2)} sinnt sin 2¢
[ (2n® +4) cos2t ] 6n . .
= |:( —1)(712—4) _n2_1:| cosnt + mﬁnnt sin 2t

2n2(cos 2t — 1) cosnt + 4 cos 2t cosnt + 8 cosnt + 6n sin 2t sin nt
(n?2 =1)(n% —4)

8 cosnt + 4 cos 2t cos nt + 6n sin 2t sinnt — 4n2sin®t cosnt
(n? —1)(n? —4) '

Forn > 5, the term d};’i can be estimated by (comp. (9.31))

* * s* C+ %\ 2¢-—2
"2 1+ 55+ (57)2 )l+2<+ su | (k) s
2« 2" T \On) (10 n (2 on
|dk"7| < const nt (k n n + n
T
+— (=) +(=
sk n n

ceomtJ L L, 11 1
e E T Rl M e R
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such that lim,, ., d;"*> = 0 and

const
(9.35) dip? | < 7

For the term dZi , there are two possible cases z,} > (1 + 27,) and 25, , < =} <

n
(1 +9,) . Inthe first case, we have z;7 — z7, > (1 — z¢,,) and

|d | < const (_)1+2C+ l E 2C+ l 2C+ N l 2¢4—2 k_2 TL_4
nt \k n | \n n n n? | k4

+

B ) 1 5 . 1 5+2¢+ . 1 3 . 1 3+2¢4 § const
O\ k 2 k k IO
In the second case, we have

14+2¢4+ 1
a2 < 2 ()T L i@l alcl)

forsome (1, ¢z € (2}, 3(1+,,)) . Sinceinthiscase 1 — (12 > (1 —xf,,) , we conclude

na, _ const rm\1+26+ [ 1 [k 204 —4 1\ 26+ 2 ) )
|di | < A (E) poull s tnl - = const 4 =+ 75 0

Consequently,

const
(9.36) |dk+ < k3/2

and, taking into account (9.34),

lim d" 2

n—oo

1 /2 . 8coss’ +4cosst + 12s% sin s — 4(s%)? cos s 81/2H¢+
im

4V e (2 —1)(n% — 4) 91/2+¢-
(o) () ())
*([(216—1)67:?4 2s3]2)7 %n ( >2<+ [C_ ?2{:? } [(2F — 1;722— [257)

353 | e
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B \/512 coss* + 12s* sin s* — 4(s*)? cos s* 395* [25%]2%+ — [(2k — 1)7) %+
m [(2k — D)m]t+2cs { " [k - - 2522

4 (1+2¢)[25" ] — [(2k — 1)m]*+ }
s* [(2k — 1)m]2 — [2s*]2 '

+

Finally, we write

% 12kn
</ /1 / /) (Y, 2%n) dy—Ilk+IQk+I3k+I4ku
2 Toon

Wherex%n—max{ z} = min{z},3(1+2f,)} . Forz, <y <
, we have 2 > |y — x,m| > 2and2 > 1—y > 3. With the help of the relations
—x; =z and S, (—y) = (—1)"S,(y) together with the substitution y = cos = we obtain

N
=~ C Zn, 1 . -
|Il,k| < W/l {(1—y)2 [(1—y)<7 2+(1—xkn)€+]

< . s g4 s2 1 §%¢- d
< cons ﬁ+m+ﬁ+n2(1*<++C—)kl+2<+ S

(ME

1 1 £ 1
P TRy A RS TN > 2
1 logn 1 const
< — e — i = —_ <
< const 1 - + n1*2<+1k1+2<+ if (- % ==
" + n20—C+C) 120, if (< 9

for some e > 0. Consequently, lim,, ffk =0,

const
ke

(9.37) 17 <

and
oo

(9.38) d;‘ = hm dk 4= hm 12 kT I3 kT I4 = lim G(s x5, ds,

n—oo
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where
. ™
0 if 5 <s< sy
~ ~ s LS8 . N 27
G(s,z) = EF(COSE’I)SIHE if sp <8< o,
21w
0 if ?n <s.

Now, let 2(1 + z7,) < y = cos£ < =}, which is equivalent to s} < s < s}, where

2k—1 2k—1 1
ST < sy < #—=m.Hence,y — 27, > 5(1 —27,) and

~ s /s\2 (RN rs\206-2 k2 s\ 2044
|G(s,27,,)| < constg — (—) + (= + (_) =+ (_) —
n n n n n n n

o
6

| S|

n 5\ 2¢+ k 20+ s\26+-2 k2| pt
G G) Q)T e
9.39 n3 s\ 2¢+ k 2¢+ n2 nN 1+2¢4 g3
639 ST G) R
g4+2¢+ §21+2¢+ 26+ st 52 1
< ConSt{k7+2C+ + =T + RS + 7 + = + ﬁ}
§2C+ 1
< const {k3+—2<+ + E}
Consequently,
2k—1
Tn T % 1 const
(9.40) 7l < const/1 {k3+—2<+ + ﬁ} ds < 5
2

For the case 75, < y = cos£ < 7 < (1 + zf,), we have max{s},s;} < s <

min{(2k — 1), %’Tn} and, for some (1, (s,(3 € (’fgkﬂn, :Ejg) , the estimate

o o gﬂ(y)
Flo et = g et

Because of (1 —y) ~ (1 —7,) ~ (1 — (1,2,3) we get

NI+ [k RN (RN p3 R\ T3 A3

(e < _ _ _ _ _ . _ .

|G(s, )| < const (kz) n (n) + k (n) + k3 (n) nb
(9.41)

($@IC" () + 16 WIIC @)+ " WIIC ) -

const
SR
and

~ const (k=17 const
9.42 < —=— ds <
( ) | 3,k| — k2 /77/2 $> k
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In last case —% <y<ag,,ie 2k—1)m<s <2 =-n , we have the relation (comp. (9.26))
“(1-y).

l—y>af, —y>

Consequently,
1+2¢+ | s 5\ 2¢+ k 26+ nd
< = = _ _
|G (s, 2% )| < const (k:) {n [(n) + (n) ] s6

(9.43) +

1
< COHbt{ 0= <+)/€1+2<+ + @}

and, since 2(1 — ¢4) >

~ o 1 1 const
(9.44) |15),| < const /(%_1)7T {—52(14+)k1+2<+ + s%} ds < ——— —

From the estimates (9.39), (9.41), and (9.43) we conclude that the function
(s) = C max{s%¢+ 1} if g <s<(2k—-1)m
(s%+ +1)s72 if (2k—1)7 < s < o0,

with the constant C' depending only on {1 and &, is an integrable majorant for the functions
G(s,xf,),n > 3(2k — 1), in (9.38). Thus, we can change the order between the limit and
the integration and obtain

g — /OO 1 \/7 12coss + 12ssins — 4s2coss 81/2+¢+ n 14204 .
k= n—»oo TL2_1)( _4) 21/2+<7 (2I€—1)7T

L) ()

= zi (W)m Fz_ B 8[32122} (k- Si?:— PIRE

s 2¢ (_) {(CJF (. )64n* (2 — (. 8(_(yn?
[

3 ] 8n?
2s]4 4 [2s]2 | [(2k — 1)7]2 — [2s]?

2[5 |t

20 2% (2s>2<+ [g_ 8¢, n?

s 8+ \'n

n 8+

8n2
2 [2¢)2 } [(2k — D7) — [25]2

a [g + Z_j] 2% l(%)m a (@)2@] [(2k — 1;3:]22 —[2s]2 }% ds
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3 [ [25]26F — [(2k — 1)m]26+ 64 (1 +2C4)[2s]2%5+ — [(2k — 1)m]2¢+
/ {5125 (k= DaP PP T s (k- el — 2177

*

sds

4 (4¢2 —1)[28)%+ — [(2k — 1)m]*+ | 12cos s + 12ssin s — 452 cos s
$3 [(2k — 1)7]2 — [25]2 [(2k — 1)m]1+2¢+

Formula (3.22) is proved.

Due to the estimates (9.32), (9.33), (9.35), (9.36), (9.37), (9.40), (9.42), and (9.44) we
have |df| < const k—< for somee > 0and for 1 < k < L. Additionally, let 2 < k <n
andj=n+1—k.Thenl < j < 2l and, |nVIeW0f:13n+1 —in = %0, p(=y) = ¢(y)
and To,(—y) = (—1)"T,.(y),

Dl / Z@)jﬁ_x;‘»n) o) 1 0 dy.

e(zf,)
where ((y) = ¢(—y) . Hence, we get |d¥| < constj—¢ = const (n + 1 — k)~ for 2 <
k < n,and (9.29) is proved.
€) Using the estimates (9.12) and (9.17) together with (9.29) and Remark 3.1, we get, for
each fixedm = 1,2, ... , the £2-convergences

VnA:;Wnem_l —_— V+A*W€m_1
and
D,A,D,'W,V,e;,_1 — DLAD "WV, e,

as well as the corresponding limit relations for the adjoint operators, where the operators V..
and W are defined by (3.20). Together with items a),b), c), and Lemma 3.3, we obtain the
strongly convergence of the sequences {V;, A, V,~ 1P,y and {(V, A,V 1P,)*}.

The strong convergence of V, A, V 1p, and (V A, V L p,)* follows from the previous
considerations and the relations

o

(n) (p(xnfk,n) 1- 5n717j,n717k
Ap 1 —jn—1—-k — : o _ .0

nt ‘rnfk,n xnfj,n

P27 41.0) 1— ik .
= — +.’" J: _—a(z), 0<,k<n-1,

o o

n Leiin ~ Ljrin

~(n) _ X5 ;) ‘P@Z—k,n) 1= 0n—1—jn—1-k

. o _ .0
X(‘In—k,n) n In—k,n ‘rn—j,n

X(@T41.0) P(@F41.0) 1—6;k

= —— ‘U ’ — = ]70 ) Ogjukgn_1>
X(zk+1,n) nt Trtin ~ Tjtin
N ) k 1 / C(y Tpi1- kn) o(y)Tn(y) dy
+1—k —
" n+1 k, n) (y - ‘r;‘lJrl*k,n)

dy, 1<k<n,

(=Dt / {(y wkn) () Tn(y)

=) (y—af,)?



where X(y) = x(=y), C(y) = ¢(—y). The numbers a k a;
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C n+1—k: n) so(y)
mn
k= / T, (y) dy
" C n+1 k, n n+1 k,n ‘P($Z+1—k,n)

n+1
/ < ‘rkn) @(Z) Tn(y) dy, 1 < k Sn’
‘Tkn xkn (p(xkn)

a™ b, and dy are defined in

items a),b), ¢), and d), respectively.

(1]

[2]
31

(4]
(5]
6]

(71

(8]
(9]

[10]
[11]
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