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A NOTE ON THE EFFICIENCY OF RESIDUAL-BASED A-POSTERIORI ERROR
ESTIMATORS FOR SOME MIXED FINITE ELEMENT METHODS

�

GABRIEL N. GATICA
�

Abstract. In this paper we present a unified proof of the efficiency of residual-based a-posteriori error estimates
for the dual-mixed variational formulations of linear boundary value problems in the plane. We consider the interior
problem determined by a second order elliptic equation in divergence form with mixed boundary conditions, and the
exterior transmission problem given by the same equation in a bounded domain, coupled with Laplace equation in
the surrounding unbounded exterior region. The corresponding Galerkin scheme reduces to a mixed finite element
method with Lagrange multipliers for the first problem, and to the coupling of the mixed finite element method with
the boundary element method for the second one. Our analysis makes use of inverse inequalities in finite element
subspaces and the localization technique based on triangle-bubble and edge-bubble functions.
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1. Introduction. One of the main advantages in using dual-mixed variational formula-
tions lies on the possibility of introducing further unknowns with a physical interest, such as
stresses and fluxes, so that they can be approximated directly, thus avoiding any numerical
postprocessing yielding additional sources of error. This fact has motivated the utilization of
the mixed finite element method for the numerical solution of diverse problems in elastic-
ity, heat conduction, and other areas (see, e.g. [5]). However, in order to guarantee a good
convergence behaviour of these discrete solutions, one usually needs to apply a refinement
algorithm based on a-posteriori error estimates. These are represented by global quantities� that are expressed in terms of local estimators ��� defined on each element � of a given
triangulation. The estimator � is said to be efficient (resp. reliable) if there exists �	��

�
(resp. ����
�� ) such that ��� ������������������� ��� � .

The first results concerning a-posteriori error analysis of mixed formulations are given in
[16], where an estimator of explicit residual type is obtained for the Stokes problem. Then, es-
timators based on residuals and on the solution of local problems, using Raviart-Thomas and
Brezzi-Douglas-Marini spaces, are provided in [1] for elliptic partial differential equations
of second order. The main novelty of the approach in [1] is the use of a Helmholtz decom-
position to prove reliability and efficiency of error estimators for mixed finite elements. In
connection with Raviart-Thomas spaces, we also refer to [4] where a non-natural norm is
employed to derive residual error estimators. The drawback of the approach in [4] is the use
of a saturation assumption. This hypothesis is avoided in [7], where a Helmholtz decompo-
sition is also applied to obtain reliable and efficient residual-based error estimators for the
Poisson problem in the usual norm of  "!$#&%('*),+�-/.10 � !2+�- . In addition, the analysis from
[7] is extended in [8] to the linear elasticity problem with mixed boundary conditions. A
comparison of four different kinds of error estimators for mixed finite element discretizations
by Raviart-Thomas elements is presented in [14].

A-posteriori error estimators for the combination of the mixed finite element method with
other techniques have also been developed in recent years. In particular, a similar approach
to the one from [7] is utilized in [10] to derive a reliable residual-based a-posteriori error
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estimator for the coupling with the boundary element method of an exterior transmission
problem in the plane (see also [15] and [13]). These results are obtained, independently,
in [13], where the proof of reliability is also given in details. However, except for some
remarks given in [10] on the tools that should be used, which refer mainly to the analysis
in [6], [7], and [9], no explicit proof for the efficiency is available neither in [10] nor in
[13]. On the other hand, the mixed finite element method with Lagrange multipliers from
[2] is considered in [12] to obtain a reliable residual-based a-posteriori error estimator for the
Poisson problem with mixed boundary conditions in a bounded inner region of the plane. It
is important to remark that the estimators from [12] and [10] (or [13]), although related to
different problems, have several terms in common and other with the same structure.

According to the above, the purpose of this note is to present a unified and detailed
proof for the efficiency of the residual-based a-posteriori error estimators provided in [12]
and [10] (or [13]). Our analysis, which makes use of the inverse inequalities in finite element
subspaces and the localization technique based on bubble functions (see [18], [8], and [7]),
even for the terms involving boundary integral operators, could also be extended to other
dual-mixed variational formulations, such as the one studied in [3].

The rest of the paper is organized as follows. In Section 2 we present the boundary value
problems from [2] and [10], and state the associated dual-mixed variational formulations. The
mixed finite element schemes are described in Section 3, and the corresponding results on the
unique solvability, stability, and a-priori error estimates are also established there. In Section
4 we recall from [12], [10], and [13] the reliable residual-based a-posteriori error estimators.
Finally, the proofs of efficiency are given in Section 5. Throughout this paper, � and � , with
or without subscripts, denote positive constants, independent of the parameters and functions
involved, which may take different values at different ocurrences.

2. The boundary value problems. In this section we present the boundary value prob-
lems of interest, and provide the corresponding dual-mixed variational formulations.

2.1. An interior problem. We describe here the boundary value problem and the cor-
responding dual-mixed variational formulation studied in [2]. In fact, let + be a simply
connected domain in

� � with polygonal boundary � + , and such that all its interior angles lie
in ! ������� - . Also, let 	�
 and 	
� be disjoint open subsets of � + , with � 	�
������ 	
������ � , such

that � + ���	�
�� �	�� . Then, given ��� 0 � ! +�- , ���� �� � � �!�! !"	��/- , and a matrix valued function# � � ! �+�- inducing a strongly elliptic differential operator, we consider the model boundary
value problem: Find $%�  � ! +�- such that

& #&% '�! #(' $ - � � in +)�*$ � � on 	 
 � and ! #(' $ -�+-, � � on 	 � �(2.1)

where , is the unit outward normal to 	�� . We recall that the Sobolev space  � � �,�! ! !.	
�*- is

the dual of  �/�,�!�! !"	 � - , where  � � �! ! !"	 � -10 �32
4 � 57680 4 �1 � ! +�-9� 4:� � on 	 
1;=<
The corresponding duality pairing with respect to the 0 � !.	 � - & inner product is denoted by> +?�@+�A .

For the derivation of the weak formulation, we define first the flux variable B80 � #�' $
in + as additional unknown. Then we integrate by parts in + and observe that the Dirichlet and
Neumann conditions become now natural and essential boundary conditions, respectively.
Thus, the latter is imposed weakly, which yields the introduction of the Lagrange multiplierC 0 � & $D� 576E�  �/�,�!�! !.	 � - .

In this way, as shown in [2], the dual-mixed variational formulation of (2.1) becomes:
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Find !.B �/$�� C - �  "!$#&%('*),+�-�. 0 � ! +�- .  � �,�! ! !"	��/- such that� !.B ��� -����*!�� ��! $�� C - - � � 	
�E�  "! #&% '*) +�- �

�/!.B � ! 4 ��� - - � &

��

� 4���� � > � ���
A�	 ! 4 ��� - � 0 � !2+�- .  �/�,�!�! !"	
�*- �
(2.2)
where

�
and � are the bounded bilinear forms defined by� !.B ��� - 0 �


��
! # � � B -�+�� ��� �

and �*!"B1��! 4 ��� - - 0 �

��

4 #&%(' B ��� � > B +�� ���
A <

THEOREM 2.1. There exists a unique !"B � $�� C - �  "!$#&%('�),+�-�. 0 � ! +�-�.1 � �,�! ! !.	 � -
solution of (2.2), and the following continuous dependence result holds

� !"B � $�� C - � � ��� � � �����! ��" � � � �$#&%�')( �*)*  5 6 ",+ <

Proof. See Theorem 2.1 in [2] for details.

2.2. An exterior transmission problem. We now describe the boundary value prob-
lem and the corresponding dual-mixed variational formulation studied in [10] (see also [15]
and [13]). Indeed, let + be a bounded and simply connected domain in

� � with Lipschitz-
continuous boundary 	�� . Then, given ���10 � ! +�- , and a matrix valued function # �1� ! �+ -
as in Section 2.1, we consider the exterior problem: Find $%�  �-/.�0 ! � � - such that

& #�% '*! # ' $ - � � in + � &21 $ � � in
� �43 �+)�

$ ! � - �65 !87�- as �?� � � ��9:��; �(2.3)

whose partial differential equations in + and
� � 3 �+ are coupled by the following transmission

conditions: <
%/=>@?�> *>�A � $ ! � - �

<
%/=>@?�> *>�ACB �)DFE� $ ! � - �<

%/=>@?G> *>�A � # ! � - ' $ ! � - +@, ! � ! - �
<
%/=>@?�> *>�ACB �)DFE� ' $ ! � -D+-,�! � ! -9�(2.4)

for almost all � ! ��	
� , where , ! � ! - denotes the unit outward normal at � ! .
In order to establish the weak formulation, similarly as in the previous section, we first

introduce the flux variable B 0 � #�' $ in + and the trace
C 0 � $D� 576 �  � � � !"	 � - as further

unknowns. Then, we perform integration by parts in + , and incorporate the boundary integral
equations arising from Green’s representation formula for $ in

� � 3 �+ , which, because of
(2.4) and the definitions of B and

C
, become

C �IH 7
�,J �LKNM C &PO !.B +-, -�� � on 	 � �(2.5)

and

B +@, � &NQ C � H 7
�,J & KSRTM"!.B + , - on 	 ��<(2.6)
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Hereafter, � is a constant, J is the identity operator, and O , K , K R and Q are the boun-
dary integral operators of the simple, double, adjoint of the double and hypersingular layer
potentials, respectively, whose explicit definitions and main mapping properties can be seen,
e.g., in [13]. Also, we let

> + �-+ A be the duality pairing between  � �/�,� !.	
�*- and  � � � !"	��*-
with respect to the 0 � !.	 � - & inner product, and define the spaces  � �,�! !.	 � -E0 � 2 � �
 � � � !"	��/- 0 > 7 ���
A � � ; ,  � �/�,�! !"	
�*- 0 � 2�� �  � � �,� !.	
�*- 0 > � �$7 A � � ; , and
 ! !$#�% '*),+�- 0 �82 � �  "! #&%('/) +�- 0 > � +-, �$7 A � � ; .

As shown in [10] (see also [15] and [13]), the dual-mixed variational formulation of
(2.3)-(2.4) reduces to: Find !.B � C �/$ - �  ! !$#&%('*),+�- .  � � �! !"	 � - . 0 � ! +�- such that� !,!"B � C -���!�� ��� - -G��� ! !�� ��� -�� $ - � � 	 !�� ��� - �  ! !$#�% '*),+�-�.� � �,�! !.	
�*- �� ! !"B�� C -�� 4 - � &


 �
� 4 ��� 	 4 � 0 � ! +�- �

(2.7)

where
�

and � are the bounded bilinear forms defined by� ! !"B�� C -�� ! � ��� - -�0 �

 �

# � � B +�� ��� � > �)+@, � O !.B + , - AG� > Q C ���
A
& > �)+-, � ! �� J � K - C AG� > ! �� J � K R - !"B +-, -�����A �

and �*! !.B � C - � 4 - 0 �

��

4 #&% ' B ��� <

THEOREM 2.2. There exists a unique !.B � C �/$ - �  ! ! #&%('�),+�-	.  � �,�! !.	
��-	. 0 � ! +�-
solution of (2.7), and the following continuous dependence result holds

� !"B � C � $ - � � � � � �$� �! � " <
Proof. See [10] and [15].

3. The mixed finite element methods. In this section we recall from [2] and [10] (see
also [15] and [13]) the Galerkin schemes associated with each one of the dual-mixed formu-
lations (2.2) and (2.7). For this purpose, we introduce first some necessary notations.

Throughout the rest of the paper, and for each polygonal domain + , we let 2���� ; ��� ! be
a regular family (in the sense of [11]) of triangulations of �+ by triangles � of diameter � � ,
where � stands for =
	�� 2 � � 0 �E� �
� ; . We assume that �
� satisfies the minimum angle
condition, which means that there exists � 
 � such that � � � � �� � � � � � ��� �� 		� �� � � where � � � is the area of � . Also, we let � � be the set of all edges of the triangulation � � ,
denote by ��� the diameter of each � ��� � , and given � � � � , � !$�	- stands for the set of its
edges. In addition, we write � � ! +�- 0 �82 � ��� � 0 ��� + ; , and for any subset � of � + we
set � � !�� - 0 � 2 � ��� � 0 ��� � ; . In addition, for each � � � � we let ��� ! ! �	- be the local
Raviart-Thomas space of order zero, that is

��� ! !$�	-�0 ����� 	� ! H 7
� M � H � 7 M � H � �� � M
" �

and given a non-negative integer # and a subset $ of
� � , %'&&!($ - stands for the space of

polynomials defined on $ of degree � # .
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3.1. The mixed finite element method with Lagrange multipliers. The Galerkin
scheme associated with (2.2), which constitutes a mixed finite element method with Lagrange
multipliers, is established here. We assume that all the points in �	

�� �	�� become vertices of�
� for all � 
�� . Then, the finite element subspaces employed in [2] for the unknowns B and
$ are given, respectively, by

 B� 0 �82 � �  "!$#&%('*),+�- 0 � � � ����� ! ! �	-�		� � �
� ; �
and

 ��� 0 ��� 4 � 0 � ! +�- 0 4 � ����% ! ! �	- 		� � �
��� <

In order to define the finite element subspace for
C �  � �,�! ! !.	 � - , we introduce an in-

dependent partition 2	�� � � �� � � <?< < � ���
 ; of 	 � , denote
�� 0 � =
	 � 2 � ��
� ��0�� � 2 7 � < <?< ��� ;=; , and

suppose that there exists � 
�� such that
�� � � � . Then, we set

 ���� 0 � � �)�  � � �! ! !"	 � - 0 �=� ���� � % � ! ��
� -�	�� � 2 7 � < <?< ��� ;
+

<

In this way, the Galerkin scheme associated with the continuous formulation (2.2) reads
as follows: Find !.B � �/$ � � C �� - �  B� .  �� .� ��� such that

� !"B � ��� -���� !�� ��! $ � � C �� - - � � 	4� �  B� �

� !"B � ��! 4 ��� - - � &

 �

� 4���� � > � ���
A�	 ! 4 ��� - �  ��� .� ���� <
(3.1)

THEOREM 3.1. Assume that the independent partition on 	D� and the one induced by � �
are uniformly regular. Then there exists � ! ��!$����7�� such that for all � � � ! �� the discrete
scheme (3.1) has a unique solution !"B � �/$ � � C �� - �1 B� .  �� .  ��� . Moreover, there exist

�D� � 
 � , independent of � and
�� , such that

�?� !.B � � $ � � C �� -@�?� � � 2 �?� � �?� � �  ��" � �?� �9�?� # %�')( �*)*  576 " ; �

and

�?� !.B �/$�� C - & !"B � �/$ � � C �� -@�?� � � %  	� ��� � � !
" A # B"$# #�%"&# #�'(" �?� !"B �/$�� C - & ! � � 4 ��� -@�?� <

Proof. See Lemmata 3.1, 3.2, 3.3, and Theorem 3.4 in [2].
Due to the sufficient but not necessary condition � � � ! �� , and since, as proved in

[2], the constant � ! is only known to live in !$� �$7�� , we assume from now on that each edge� � � � !"	��/- is contained in an edge �� � , for some �)� 2 7 � <?<?< ��� ; . Certainly, this implicitly
requires that the end points of �� � be vertices of �
� , which is also assumed in what follows.
Then, for each � ��� � !.	 � - we set

�� � 0 � � ���� � , where ��
� is the segment containing edge � .
3.2. The coupling of mixed finite element and boundary element methods. The

Galerkin scheme associated with (2.7), which becomes a coupling of mixed finite element
and boundary element methods, is provided now. Indeed, the finite element subspaces used
in [10], [15], and [13] for the unknowns B ,

C
, and $ are given, respectively, by

 B� 0 � 2 � �  ! ! #&%('/) +�- 0 � � � ����� ! !$�	-�		� � �
� ; �
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 �� 0 � 2 �)�  �/�,�! !.	
�*- 0 �=� � ��% ��! � -�	 � ��� � !.	
�*- ; �
and

 �� 0 � 2
4 � 0 � ! +�- 0 4 � � � % ! !$�	-�		� � � � ; �
whence the discrete scheme reads: Find !.B � � C � �/$ � - �� B� .� �� .  �� such that� !,!"B � � C � - � !�� ��� - -G� � ! ! � ��� -�� $ � - � � 	 !�� ��� - �  B� .� �� �� ! !"B � � C � - � 4 - � &


 �
� 4���� 	 4 �  ��� <

(3.2)

THEOREM 3.2. The discrete scheme (3.2) has a unique solution !"B � � C � � $ � - �  B� .
 �� .  �� . Moreover, there exist �D� ��
 � , independent of � , such that

� � !"B � � C � � $ � -@�?� � ���?� � �?� � �  � " �
and

�?� !"B � C � $ - & !"B � � C � �/$ � -@�?� � � %  	� ��� ! � �
" A # B" # #�'" # #�%" �?� !"B � C �/$ - & ! � ��� � 4 -@�?� <

Proof. See [10] and [15].

4. The residual-based a-posteriori error estimates. In this section we recall from [12]
and [10] (see also [13]) the reliable a-posteriori error estimates for the discrete schemes (3.1)
and (3.2), respectively. To this end, we need to specify some notations. Given a vector-
valued function � 0 � ! � � � � � - � defined in + , an edge � � � ! �/- � � � ! +�- , and the unit
tangential vector

� � along � , we let ��� � + � � � be the corresponding jump across � , that is��� ��+ � � �
0 � !�� � � & � � �	� -@� �D+ � � , where � R is the other triangle of � � having � as edge. Here,
the tangential vector

� � is given by ! & � � � � � - � where , � 0 � !)� � � � � - � is the unit outward
normal to � � . Also, for each � � � � we denote by ��� the orthogonal projection from 0 � ! � -
onto % ! ! � - , that is � � !�
 - 0 � 7� � 
 � 
 �
� 	�
3� 0 � ! � - , for which there exists � 
 � ,
independent of � , such that the following approximation property holds:

� 
 & � � !�
 - ��� �  � " � ��� � � 
 � # '  � " 	�
 �� � ! � - <
In addition, given vector and scalar functions � and 4 , respectively, we let ����� < ! � - be the

scalar ��� �� > ' & ��� '� > � , and we denote by �������,! 4 - the vector  & � �� > � � � �� > '"! � .
THEOREM 4.1. Let !"B � $�� C -1�1 "!$#&%('*),+�- . 0 � !2+�- .  � �,�!�! !.	
��- and !.B � � $ � � C �� - �

 B� .  �� .  ��� be the unique solutions of the continuous and discrete formulations (2.2)
and (3.1), respectively, and assume that the Neumann data � � 0 � !.	
�*- . Then there exists
��� 
 � , independent of � and

�� , such that## ## !"B � $�� C - & !.B � � $ � � C �� - ## ## � � � � 0 � ���%$'&
� A)( " � ��+* �/�,� �(4.1)

where for any triangle �8� � � we define

� �� 0 � �?� � � #&%(' B � �?� �� �  � " � � �� ## ## �,��� < ! # � � B � - ## ## �� �  � " � � �� ## ## # � � B � ## ## � - � �  � "/. �
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224 Gabriel N. Gatica� &� A��  � " � � "  ��" ��� ## ## ��� ! # � � B � -D+ � � � ## ## �� �  � " � &� A��  � " � � "  5�� " ��� ## ## ! # � � B � -D+ � � ## ## �� �  � "
� <

��� � 7�� � �� !"	
�*-�� &� A��  � " � � "  5 6 " �� � �?� � & B � +-, �?� �� �  � "

� &� A��  � " � � "  5 6 " ��� $ #### #### ! # � � B � -D+ � � � � C ��� � � #### #### �� �  � " � ## ## C �� & ����! C �� - ## ## �� �  � " * �(4.2)

with

� �� !.	
�*- 0 � =
	 � ! � ���� �
� �� � � 0 � 	 & � � � 7=�
	 ��� � 2 7 � < <?< � � ; " <(4.3)

Proof. See Theorem 3.1 in [12].
We remark here that the first four terms in (4.2) are the standard and well known ones

for the mixed finite element method without Lagrange multipliers (see, e.g. [7]). Since we
are using Raviart-Thomas subspaces of order zero for B � , we also observe that when # is a
piecewise constant diagonal matrix, the second term in the definition of � � vanishes.

THEOREM 4.2. Let !"B � C �/$ - �  ! !$#�% '�) +�- .  � � �! !"	��*- . 0 � !2+�- and !"B � � C � �/$ � - �
 B� .  �� .  �� be the unique solutions of the continuous and discrete formulations (2.7)
and (3.2), respectively. Then there exists ����
 � , independent of � , such that

� !"B � C � $ - & !"B � � C � � $ � - � � � ��� 0 � � � $ &
� A)( " 
 �� * �/�,� �(4.4)

where for any triangle � � � � we define


 �� 0 � �?� � � #&%(' B � �?� �� �� � " � � �� ## ## �,��� < ! # � � B � - ## ## �� �  � " � � �� ## ## # � � B � ## ## � - � �  � "/. �
� &� A��  � " � � "  ��" ��� ## ## ���(! # � � B � -D+ � � � ## ## �� �  � "

� &� A��  � " � � "  576 " � � $ ���� ! # � � B � -�+ � � & � 
 �� � � ���� �� �  � " � ��� � � �� �  � " � �?� 
 � & � � !�
 � -@�?� �� �  � " * �

(4.5)
with
 � 0 �IH 7

� J � KNM C � & O !"B � +@, - and � � 0 � H 7
� J � K R M"!.B � +@, -G� Q C � <

Proof. See Theorem 3 in [10] or Theorem 4.1 in [13].
It is important to remark, as stated in Section 1, that not much details are provided neither

in [10] nor in [13] for the efficiency of � , and the readers are just referred in [10] to the related
analysis in [6], [7], and [9]. In particular, it is mentioned that the arguments for quasi-uniform
meshes on the boundary given in [6] can also be adopted in this case.
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5. Efficiency of the a-posteriori error estimates. In this section we give a unified
proof for the efficiency of the a-posteriori error estimates � and � . In other words, we show
the existence of ��� � ����
�� , independent of � , such that

��� ����� !"B �/$�� C - & !.B � � $ � � C �� - � � � < � < � < �(5.1)

and

� � � ��� !.B � C �/$ - & !"B � � C � �/$ � - � � � < � < �-< �(5.2)

where
� < � < � < denotes one or several terms of higher order. Similarly as in [7] and [8], our

analysis is based on the localization technique introduced in [18] (see also [1]) and the inverse
inequalities in finite element subspaces (see [11]). This procedure is even applied to the terms
in � involving boundary integral operators.

5.1. Preliminaries. We first recall from [17] that given # ��� � 2 � ; , � � � � , and� ��� !$�	- , there exists an extension operator 0 0�� ! � - 9 � !$�	- that satisfies 0	!
	 - ��% &&! �	-
and 0 !�	 - ## � � 	 	�	�� %'&&! � - . In addition, we define � � 0 � � 2 � R � �
� 0 � � � !$� R - ;
and let 
 � and 
 � be the usual triangle-bubble and edge-bubble functions, respectively (see
(1.5) and (1.6) in [18]), which satisfy � � �
� !�
 � - � � , 
 � � %�� !$�	- , 
 � � � on � � ,
� � 
 � � 7 in � , � � �
� !�
 � - � � � , 
 � � � � %���! �/- 		� � � � , 
 � � � on � � 3 � , and
� � 
 � � 7 in � � . Additional properties of 
 � , 
 � , and 0 , are collected in the following
lemma.

LEMMA 5.1. There exist positive constants ��� , ��� , and ��� , depending only on # and the
shape of the triangles, such that for all � ��%�&�! �	- and 	 ��%'&�! � - , there hold

� 
 ��� � ����! � " � � � � �� �! � " � ��� � 
 �/�,�� � � ����  � " �(5.3)

� 
 � 0 !
	 - � �� �! � " ��� 	 � �� �  � " � � � � 
 �/�,�� 	 � �� �  � " �(5.4)

� � �� ��� � 	 � �� �! � " � � 
 �/�,�� 0	!
	 - � ����! � " � � � ��� � 	 � �� �! � " <(5.5)

Proof. See Lemma 1.3 in [17].
The following inverse estimate will also be used.
LEMMA 5.2. Let � � � ����� 2 � ; such that � � � . Then there exists a positive constant

� , depending only on # , � , � , and the shape of the triangles, such that

� ��� #��  � " � � � - � 
� � ��� #��  � " 	�� � %'&&! �	- <(5.6)

Proof. See Theorem 3.2.6 in [11].

5.2. Upper bounds for the terms defining � and � . In this section we bound each one
of the terms defining the reliable a-posteriori error estimates � and � . To this respect, we
observe that the first four terms defining � coincide with those of � , and hence the proofs of
the corresponding upper bounds serve for both estimates.

Throughout this section, we assume for simplicity that ! # � � B � --� � , ! # � � B � - + � � � � ,
�9� � , 
 � � � , and � � � � are polynomials for each � � � � , � � � � , and � � � � !"	��/- (last 3
functions), respectively. Otherwise, additional higher order terms, given by the errors arising
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from suitable polynomial approximations, which is guaranteed by the corresponding local
regularity of the discrete solutions, will appear in the bounds below.

Since #&% ' B � & � in + , we note that � � ��#&%(' B � �����  � " � � #&% '*!"B & B � - �����  � " ,
and hence &

� A)( " � � � #&%(' B � � �� �  � " � � #�% '�!"B & B � - � �� �  ��" <(5.7)

In order to bound other components of � and � , we consider a Helmholtz decomposition
of the error B & B � . In fact, let � �  � !2+�- be the weak solution of the boundary value
problem: & #&%('*! #(' � - � & #&% ' B � in + , � � $ on � + . Since #&%('�!"B � & #(' � - � � in + ,

and + is simply connected, it follows that there exists � �  � ! +�- , with

 �

� ��� � � , such

that B � & # ' � � �)� �"� !�� - . Thus, using that B � # ' $ and that ������� !�� - is � 0 � ! +�-�� � -
orthogonal to ' !  �! ! +�- - , we find that

B & B � � #�' ! $ & � - & �)� �"� !�� -(5.8)

and

�@# � �/�,� !.B & B � - � � - � �  ��"/. � � �-# � � �,� ' ! $ & � - � � - � �  ��"/. � � �-# � � �,� �����"� !�� - � � - � �  ��" . � <(5.9)

The following three lemmata provide the corresponding upper bounds for the remaining
three terms that are common to � and � .

LEMMA 5.3. There exists � 
 � , independent of � , such that for each � � ��� there
holds

� �� � �,��� < ! # � � B � - � �� �! � " � � �-# � � � � �)� �"�,!�� - � �� �  � " <(5.10)

Proof. See Lemma 6.1 in [7].
LEMMA 5.4. There exists � 
 � , independent of � , such that for each � ��� � ! +�- there

holds

� � � ���(! # � � B � -�+ � �&� � �� �� � " � � �-# � � � � �)� �"� !�� - � �� �� ����
"
<(5.11)

Proof. See Lemma 6.2 in [7].
As a consequence of the estimates (5.9) - (5.11), and using the fact that the number

of triangles in � � is bounded, independently of � , which follows from the minimum angle
condition satisfied by � � , we deduce that&
� A)( " � �� � �,��� < ! # � � B � - � ����  � " � &� A�� "  � " � � � ��� ! # � � B � - + � �&� � �� �� � " � � � B & B � � � - � �  ��" . � <
(5.12)

LEMMA 5.5. There exists � 
 � , independent of � , such that for each � � ��� there
holds

� �� � # � � B � � � - � �  � " . � � � � � $ & $ � � �� �  � " � � �� � B & B � � � - � �  � " . � + <(5.13)
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Proof. We adapt the proof of Lemma 6.3 in [7]. In fact, applying the estimate (5.3), using
that # � � B � ' $ and that ' $ � � � on � , and integrating by parts, we find that

� # � � B � � � - � �  � " . � � � � � 
 � � �� ! # � � B � - � � - � �  � "/. � � ���


� 
 � !

# � � B � -D+ ! # � � B � - ���
� � �



� 
 � !

# � � B � -D+�� ' !"$ & $ � - & # � � !"B & B � -�� ���
� & � �

! 

� #&%('*! 
 � !

# � � B � - - ! $ & $ � - ��� � 
 � 
 � ! # � � B � -D+ # � � !"B & B � - ��� " <

Then, Cauchy-Schwarz’s inequality, the inverse inequality (5.6), and the estimate (5.3)
yield

� # � � B � � � - � �  � " . � � � � � � �� � $ & $ � �$� �  � " � �@# � � !.B & B � - � - � �  � "/. � � � # � � B � � - � �  � " . � �
whence

� # � � B � � - ���! � " . � � � � � � �� � $ & $ � �����! � " � � B & B � � - � �  � " . � � �
which implies (5.13) and completes the proof.

It follows easily from the previous lemma that&
� A)( " � �� � # � � B � � � - � �  � " . � � � � � $ & $ � � �� �  � " � � � � B & B � � � - � �  ��" . � + <(5.14)

The following lemma provides the upper bound for the fifth term defining � .
LEMMA 5.6. There exists �/
�� , independent of � , such that for each � ��� � !"	 
 - there

holds

� � � ! # � � B � -�+ � � � �� �  � " � � �@# � �/�,� �)� �"� !�� - � ����  � �
"
<(5.15)

Proof. Since $ � � on 	 
 we observe that ! # � � B - + � � � ' $ + � � � � , and hence
! # � � B � - + � � � # � � !.B � & B - + � � on 	 
 . Then, denoting 4 � � ! # � � B � - + � � on � ,
applying the estimate (5.4), considering that 0 ! 4 ��- � 4 � on � and that 
 � � � on � � 3 � , and
using Gauss’s formula, we find that

� 4 � � �� �  � " � ��� � 
 �/�,�� 4 � � �� �  � " � ���

 � � � 
 � 0	! 4 � - ! # � � !"B � & B -D+ � � - �
�

� � �
! 


� � # � � !"B � & B - + �����"� ! 
 � 0	! 4 � - - ��� � 

� � 
 � 0 ! 4 � - �,��� < ! # � � !"B � & B - - ��� "

� � �
! 


� � # � � �)� �"�,!�� -D+ �)� �"� !�
 � 0 ! 4 � - - ��� � 

��� 
 � 0 ! 4 � - ����� < ! # � � !"B � & B - - ��� " �

where the last equality makes use from (5.8) that # � � !.B � & B - � # � � �����"� !�� - & ' !"$ &
��- , and that ������� !�
 � 0 ! 4 � - - is � 0 � ! +�- � � -orthogonal to ' !$ �! ! +�- - . We also observe, since# � � B � ' $ , that �,��� < ! # � � !"B � & B - - � ��� � < ! # � � B � - .
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Next, applying Cauchy-Schwarz’s inequality, Lemma 5.3, the inverse estimate (5.6), and
then (5.5), we obtain that

� 4 � � �� �  � " � � � �@# � � �,� �����"� !�� - � - � �  � �
" . � � 
 � 0	! 4 � -@� # '  ����

"
� � 
 � 0	! 4 ��- ��� �� � �

"
� ����� < ! # � � B � - ��� �  ���

" +
� � � � �� � 
 � 0 ! 4 � - �$� �  � �

"
�@# � �/�,� �)� �"�,!�� - � - � �  � �

"/. �
� � � � �/�,�� � 4 � ��� �  � " �@# � � �,� �����"� !�� - � - � �  � �

" . � �(5.16)

whence � � � �� � 4 � �$� �  � " � � �@# � � �,� �����"� !�� - � - � �  � �
" . � �

which yields (5.15) and finishes the proof.
Applying (5.15), the fact that the number of triangles in � � is bounded, independently of� , and using (5.9), we get&� A�� "  5�� " � � � ! # � � B � -D+ � � � ����  � " � � � B & B � � � - � �  � " . � <(5.17)

The following two lemmata give the upper bounds for two similar terms appearing in the
definitions of � and � , respectively.

LEMMA 5.7. There exists ��
 � , independent of � and
�� , such that&� A�� "  5 6 " � � ���� ! # � � B � -�+ � � � � C ��� � � ���� �� �  � " � ��� � C & C �� � �# ' ( �* *  576 " � � B & B � � � - � �  ��"/. � + <

(5.18)

Proof. Let us define 4 � 0 � ! # � � B � - + � � � � C ��� � � on � � � � !.	
�*- . Then, using that

# � � B � ' $ in + and that $ � & C
on 	�� , we deduce that 4 � � �� � � ! C �� & C - � # � � !"B � &

B -�+ � � on � . Hence, applying the estimate (5.4) and the fact that 0 ! 4 � - � 4 � on � , we obtain
that

� � � 4 � � �� �  � " � ���
! � � 
 � 
 � 4 � �� � � ! C �� & C - � � � � � 
 � 
 � 0	! 4 � - # � � !"B � & B -D+ � � � � " <

(5.19)
For the second integral on the right hand side of (5.19) we proceed exactly as in the proof

of Lemma 5.6 and find (see (5.16)) that

��� 
 � 
 � 0	! 4 ��- # � � !.B � & B -D+ � � �
� � � � �/�,�� � 4 � ��� �� � " �@# � � �,� �����"� !�� - � - � �$ � �
" . � �

which, using Cauchy-Schwarz’s inequality, the fact that the number of triangles in � � is
bounded, independently of � , and equation (5.9), implies that&� A�� "  5 6 "� � 
 � 
 � 0	! 4 � - # � � !"B � & B -�+ � � � � � � �� � &� A�� "  5 6 " � � � 4 � � �� �  �

"�� �
�
�/�,�
� B & B � � - � �� ��" . � <

(5.20)
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On the other hand, let us define 
 0 � ��� 
 � 4 � on each � � � � !"	 � - , and introduce the

trivial extensions �
 0 �
! 
 on 	��
� on 	�
 and �C 0 �

! C �� & C
on 	
�

� on 	

 . Then, it is easy

to see that �
 and �C belong to  � � � !"	 - , and that � �
 � # ' ( �� 5 " and � �C � # ')( �  5 " are equivalent to� 
 � # ' ( �* *  5 6 " and � C �� & C � # ' ( �* *  5 6 " , respectively.

According to the above notations, using an inverse inequality for the piecewise polyno-
mial �
 , applying the boundedness of the tangential derivative (as an operator from  �/�,� !.	 -
into  � � �,� !.	 - ), and noting that � � 
 � � 7 and that � � � � , we get&� A�� "  5 6 " � � 
 � 
 � 4 � �� � � ! C �� & C - �
� �



5 �


� �C� � � �
� � � �
 � # ')( �  5 " ����� � �C� � � ����� # %�')( �� 5 "
� � � � � �,� � �
 �$� �  5 " � �C � # ')( �$ 5 " � � � � � �,� � �
 ��� �  5 " � �C �� & C ��# ')( �*)*  5 6 "

� �
�� � &� A�� "  5 6 " � � � 4 � � �� �! �

" � �
�
� �,�

� �C �� & C �$# ')( �* *  5 6 " <(5.21)

Finally, it is not difficult to see that (5.18) follows from (5.19), (5.20), and (5.21).
LEMMA 5.8. Let 
 � 0 � ! �� J �SK - C � & O !.B � + , - . Then there exists � 
 � , independent

of � , such that &� A�� "  5 6 " � � ���� ! # � � B � -�+ � � & � 
 �� � � ���� �� �  � "
� � � � C & C � � �# ')( �� 576 " � � B & B � � �#  ���� ��� ��" + <

(5.22)

Proof. We define now 4 � 0 � ! # � � B � - + � � & � 
 �� � � on � ��� � !.	
�*- . Since # � � B � ' $
in + and $ � C � ! �� J � K - C & O !"B + , - � � on 	 � (cf. (2.5)), we deduce that 4 � ��� � � !�
 & 
 � - � # � � !.B � & B - + � � on � , where 
 0 � ! �� J � K - C & O !"B +�, - . Thus, using the

same arguments of the proof of Lemma 5.7, one can show that&� A�� "  5 6 " � � ���� ! # � � B � -D+ � � & � 
 �� � � ���� �� �� � " � � � � 
 & 
 � � �# ')( �  5 6 " � � B & B � � � - � �  � " . � + <

Next, replacing 
 � by ! �� J � K - C � & O !"B � +-, - , and applying the continuity properties
of the boundary integral operators K and O , we find that

� 
 & 
 � � �# ' ( �� 5 6 " � � � � C & C � � �# ')( �$ 5 6 " � � B + , & B � +-, � �# %�')( �� 5 6 " + �(5.23)

which completes the proof.

The upper bounds for the remaining two terms defining � are given in the following two
lemmata.
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LEMMA 5.9. There exists �/
 � , independent of � and
�� , such that for each � � � � !.	 � -

there holds

���� � � & B � + , � �� �  � " � � � � B & B � � � - � �  ���
" . � � � � � #&%('�!"B & B � - � �� �  � �

" +
<(5.24)

Proof. We adapt the proof of Lemma 6.5 in [8]. Applying the estimate (5.4) and Gauss’s
formula, noting that B + , � � on 	�� and that 0	! � & B � + , - � ! � & B � + , - on � , we deduce
that

� � & B � +@, � �� �  � " � � � � 
 � � �� ! � & B � +-, - � �� �  � " � � �


� 
 � ! � & B � +@, - � �
�

� ���
! 

� #&%('�!"B

& B � - 
 � 0 ! � & B � +-, - ��� � 

� !"B

& B � -�+ ' ! 
 � 0	! � & B � + , - - ��� " �

where � is any triangle contained in � � . Next, Cauchy-Schwarz’s inequality, estimate (5.5),
and inverse inequality (5.6), give

� � & B � +-, � ����! � " � � � � #&%('�!"B & B � - �$� �  � " � 
 �/�,�� 0	! � & B � +-, - ��� �  � "
� � B & B � � - � �  � " . � � 
 � 0 ! � & B � +-, -@� # '  � " +

� � � � � � �� � #&%('�!"B & B � - �$� �  � " � � � �� � � �,�� � B & B � � - � �  � " . � + � � & B � +@, ��� �  � " �
which, using that ��� � � � , yields

� � & B � +-, ��� �  � " � � � � � �,�� � #&%('*!"B & B � - �$� �  � " � � � �/�,�� � B & B � � - � �  � " . � + <

The above inequality and the fact that ��� � �� � � �� � � � , imply (5.24) and complete the
proof of the lemma.

As a consequence of the estimate (5.24), and using that the independent partition of 	��
is uniformly regular, we deduce the existence of � 
�� , independent of � and

�� , such that<
��� � 7�� � �� !"	��/- � &� A��  � " � � "  5 6 " �� � �?� � & B � +@, � � �� �  � "
� ��� � B & B � � � - � �  ��" . � � � � � #&% '*!"B & B � - � �� �  ��" + <(5.25)

LEMMA 5.10. Assume that
C

is locally smooth, say
C � � �  � ! � - 	 � � � � !"	��/- .

Then there exists �/
 � , independent of � and
�� , such that for each � ��� � !"	
��- there holds

� C �� & ����! C �� - � �� �  � " � � � C & C �� � �� �  � " �3��� � � � C � �# '  � " <(5.26)

Proof. Applying the approximation property satisfied by ��� , we easily obtain

� C �� & � � ! C �� - � �� �  � " � � C �� & � � ! C - � �� �  � " � � � C & C �� � �� �  � " �E� � C & � � ! C - � �� �  � "
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� � � C & C �� � �� �  � " ����� � � � C � �# '  � " �
which finishes the proof.

The estimate (5.26) yields the existence of � 
 � , independent of � and
�� , such that&� A�� "  576 " � � � C �� & � � ! C �� - � �� �  � "

� �
�� � � � C & C �� � �# ' ( �*)*  5 6 " � � � &� A�� "  5 6 " � C � �# '  �

" � �
� <

(5.27)

In this way, the efficiency of � (cf. (5.1)) is obtained from the estimates (5.7), (5.12),
(5.14), (5.17), (5.18), (5.25), and (5.27). In particular, we conclude from (5.27) that the
corresponding h.o.t. is of 5 ! � � � � - .

The following two lemmata provide the upper bounds for the remaining terms defining
� .

LEMMA 5.11. Let � � 0 � ! �� J � K R - !"B � + , - � Q C � . Then there exists � 
 � ,
independent of � , such that&� A�� "  5 6 " ��� ��� � � �� �  �

"
� � � � B +-, & B � +@, � �# %�')( �  5 6 " � � C & C � � �# ' ( �  576 " + <(5.28)

Proof. We first recall from (2.6) that ! �� J � K R - !"B + , - � Q C � � on 	�� . Hence,
including this null expression into the definition of � � , and then applying the estimate (5.4),
we find that

��� ��� � � �� �  � " � � � ��� � 
 � �,�� � � � �� �  � "
� � � ��� 
 � 
 � � � ! ! 7�,J � KSR(- !"B � + , & B + , - � Q ! C � & C - " � � <

Then, we let 
 0 � � � 
 � � � on each � ��� � !"	
��- , and observe that 
 �  � � � !"	��/- . Hence,
using an inverse inequality for the piecewise polynomial 
 , and applying the continuity prop-
erties of the boundary integral operators K R and Q , we deduce that&� A�� "  5 6 " � � � � � � �� �� �

"
� � �

�

 � H 7� J � K R M !"B � + , & B +-, -�� Q ! C � & C -��

� � � 
 � # ')( �  5 6 " ���� H 7�,J �LKSR M"!"B � +@, & B +@, -G� Q ! C � & C -
���� # %�')( �  5 6 "

� � � � � �,� � 
 ��� �  5 6 " � � B +-, & B � + , � # %�')( �  576 " � � C & C � � # ')( �  576 " � �

which, noting that ��� � � and � � 
 � � 7 , yields (5.28) and finishes the proof.
LEMMA 5.12. Assume that

C
is locally smooth, say

C � � �  � ! � - 	 � � � � !"	��/- ,
and let 
 � 0 � ! �� J � K - C � & O !"B � + , - . Then there exists � 
 � , independent of � , such
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that &� A�� "  576 " � � � 
 � & � � !�
 � - � �� �  � "
� �

�� � � � C & C � � �# ' ( �  576 " � � � B +@, & B � +@, � �# %�' ( �  5 6 " � � � &� A�� "  5 6 " � C � �# '  �
" � �
�

<

(5.29)

Proof. As in Lemma 5.8, we let 
 0 � ! �� J �NK - C & O !"B)+ , - on 	
� , and note from (2.5)
that

C & � � ! C - � 
 & � � !�
 - . Then, using the approximation property of � � , we get

� � � 
 � & ����!�
 � - � �� �  � " � ��� � 
 � & ����!�
 - � �� �  � "
� � � � � � 
 � & 
 � �� �  � " � � C & ����! C - � �� �  � " + � � � ��� � 
 � & 
 � �� �  � " � � � � � C � �# '  � " + �

and hence&� A�� "  576 " ��� � 
 � & ����!�
 � - � �� �  � " � �
�� � � � 
 � & 
 � �# ' ( �  5 6 " � � � &� A�� "  5 6 " � C � �# '  �

" � �
� �

which together with (5.23) complete the proof.
Consequently, the efficiency of � (cf. (5.2)) is obtained from the estimates (5.7), (5.12),

(5.14), (5.22), (5.28), and (5.29). In particular, we conclude from (5.29) that the corres-
ponding h.o.t. is of 5 !(� ���,� - .
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