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LDU DECOMPOSITIONS WITH L AND U WELL CONDITIONED
�

J.M. PEÑA
�

Abstract. We present, for some classes of matrices, ����� -decompositions whose unit triangular factors �
and � are simultaneously very well conditioned. Our examples include diagonally dominant matrices by rows and
columns and their inverses, Stieljes matrices and � -matrices diagonally dominant by rows or columns. We also
show a construction of an accurate computation of the ����� -decomposition for any � -matrix diagonally dominant
by rows or columns, which in turn can be applied to obtain an accurate singular value decomposition.

Key words. conditioning, diagonal dominance, pivoting strategies, accuracy, singular value decomposition.

AMS subject classifications. 65F05, 65F35, 15A12.

1. Introduction. A pivoting strategy that interchanges the rows and/or columns of an	�
�	 matrix



is associated with permutation matrices ����� such that � 
 ������� , where
� is a unit lower triangular matrix (i.e., a lower triangular matrix with diagonal entries equal
to one) and � the upper triangular matrix which appears after the elimination phase. If



is nonsingular, then (see also Section 4.1 of [8]), after obtaining the factorization �������
and so


 ������� (with � a diagonal matrix and � a unit upper triangular), the solution
to

�� �! may be found by solving �#"$�! (forward substitution), �&%'�(" and � � �!%

(backward substitution). Clearly, the well conditioning of both triangular matrices ����� is
convenient for controlling the errors of the computed solution because then the forward and
backward substitutions can be performed in a stable way (see [15] and the other references of
the same authors included there).

The traditional condition number of a matrix



with respect to the norm )�*+)-, is given
by ./,�0 
21�3 ��) 
 )4,5) 
7698 ):,<;

Examples of pivoting strategies which simultaneously control the conditioning of both
triangular matrices �=��� are the complete pivoting (of a computational cost of >?0 	A@ 1 com-
parisons beyond the cost of Gauss elimination with no pivoting) and the rook pivoting (see
[7], [15] and [9]), of lower computational cost (in the worst case, >?0 	B@ 1 comparisons be-
yond the cost of Gauss elimination with no pivoting). Both pivoting strategies get triangular
matrices such that the off-diagonal elements have absolute value bounded above by 1 (the
absolute value of the diagonal elements). As we recall in Section 2, an 	C
D	 lower matrix
with unit diagonal whose off-diagonal elements have absolute value bounded above by 1 can
have . , 0E� 1 � 	GFIH 698 , although it is usually much smaller. Let us also recall that there are
problems where the conditioning of the lower and upper triangular matrices can have different
importance: this happens, for instance, in the backward stability of Gauss-Jordan elimination,
where the conditioning of the upper triangular matrix is crucial (see [10], [13] and [14]).

In addition to the problem of solving linear systems, another problem where the simul-
taneous well conditioning of both triangular matrices ���J� is needed, corresponds to rank
revealing decompositions, which in turn can be used to obtain accurate singular value de-
compositions, as we shall recall in Section 4 (see [4]).

In this paper we present, for some classes of matrices, pivoting strategies leading to
�#�<� -decompositions such that KMLONQP-. , 0R� 1 �S. , 0T� 1�U?V F-	 and KMWIX�PY. , 0R� 1 �S. , 0T� 1JU?V	9Z . Besides, the corresponding pivoting strategies associated to such decompositions have
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low computational cost: in the worst case, >?0 	 Z 1 elementary operations beyond the cost of
Gauss elimination with no pivoting. We start by showing in Section 2 that diagonal dom-
inance implies very well conditioning of both unit triangular matrices ���J� . In Section 2
we also prove that if either a nonsingular matrix or its inverse is diagonally dominant by
rows and columns, then we can assure an �#��� -decomposition of



(without row or column

exchanges) with � and � diagonally dominant by columns and rows, respectively.
In Section 3, we find ����� -decompositions with � and � diagonally dominant by

columns and rows, respectively, in the cases of Stieljes matrices or
�

-matrices diagonally
dominant by rows or columns. As for this last class of matrices, we show in Section 4 how to
construct an accurate �#��� -decomposition (i.e., with small relative error in each entry of � ,
� and � ) satisfying the previous properties and with >&0 	 @ 1 elementary operations beyond
the cost of Gauss elimination with no pivoting.

In [5], Demmel and Koev also present a method to compute accurately an ����� -
decomposition of an 	 
 	 � -matrix diagonally dominant by rows. They use symmetric
complete pivoting and so they can guarantee that one of the obtained triangular matrices is
diagonally dominant and the other one has the off-diagonal elements with absolute value
bounded above by the diagonal elements, in contrast to our method, where we can guarantee
that both triangular matrices are diagonally dominant. Our pivoting strategy needs to increase
the computational cost of Gauss elimination in >?0 	 Z 1 elementary operations, and this cost is
greater than that of the symmetric complete pivoting (which only needs >?0 	BZ 1 comparisons).

2. Auxiliary results and diagonal dominance. As we have commented above, the tri-
angular factors of the �#��� -decomposition appearing when we apply complete pivoting to an	M
 	 nonsingular matrix have off-diagonal elements with absolute value bounded above by 1
and then their condition numbers are bounded in terms of 	 . It is well known that this bound
is exponential. In fact, consider the unit lower triangular matrix � with ��� at each entry 0��S��� 1
with �
	�� . Then the corresponding entry of � 698 is F
� 6��R6Q8 and so . , 0R� 1 � 	GF H 698 . How-
ever, usually, small values for the condition numbers of � and � appear. This phenomenon
is similar to that of the backward error in Gauss elimination with partial pivoting, which is
usually much smaller than the theoretical exponential bound.

The following result shows that unit triangular matrices diagonally dominant by rows or
columns are always very well conditioned.

PROPOSITION 2.1. Let ��� 0�� � � 1 8������ � � H be a unit triangular matrix diagonally domi-
nant by columns (resp., rows). Then the elements of � 6Q8 have absolute value bounded above
by 1 and .�,�0�� 1�V 	 Z (resp., .�,�0�� 1 V F-	 ).

Proof. Let us assume that � is a unit lower triangular matrix diagonally dominant by
columns. If we compute � 6Q8 by a procedure similar to Gauss-Jordan elimination, but using
column elementary operations instead of row elementary operations and starting from the
last row, we can easily obtain the following bound for the absolute value of 0�� 6Q8J1 � � for any���$P�� �:;:;4; � 	 U and ����� : � 0�� 6Q8 1 � � � V(2.1) � � � � ����� � �R6Q8�� � ��� 0�� 698 1 ��� �R6Q8 ����� � �R6 Z � � ��� 0�� 698 1 ��� �R6 Z ��� *:*:* � � � �"! 8�� � ��� 0�� 698 1 ��� �"! 8 � ;

Let us first prove that
� 0�� 6Q8J1 � � � V � when �#	 � by induction on �$�%� . It holds when�&�'�&�)( because

� 0�� 6Q8:1 �*� � �+� and when �,�'�&�+� because
� 0�� 698J1 �"! 8�� � � � � � �"! 8-� � � V � .

Let us assume that it holds when �.�/� V10 and let us prove it when �$�/��� 0 � � . In this
case, if we apply the induction hypothesis to (2.1) we derive� 0�� 698 1 � � � V324�56 �

� �
4
� � V � ;
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Then )�� 6Q8 )4, V 	 and so .�, 0�� 1�V 	9Z .
If � is a unit upper triangular matrix diagonally dominant by columns, a similar proof

for the bound of the absolute value of the elements of its inverse can be derived and then
we get the same bounds for . , 0�� 1 . For the cases when � is diagonally dominant by rows,
analogous proofs can also be derived for the absolute value of the elements of their inverse
matrices and the bound for . , 0�� 1 holds because in these cases )�� ) , V F .

Remark 2.1. When � is a unit triangular matrix diagonally dominant by columns and
using . 8 0 
21 3 � ) 
 ) 8 ) 
 6Q8 ) 8 instead of . , , we can deduce, from )�� ) 8 V F and the
information provided in Proposition 2.1 on the elements of its inverse, that . 8 0�� 1 V F-	 .

By Proposition 2.1, we know that unit triangular matrices diagonally dominant by rows
or columns are very well conditioned. So our next goal will be finding �#��� factorizations
with � and � very well conditioned. Let us start by showing in the next result a first example,
where pivoting is not necessary.

PROPOSITION 2.2. If



(resp.,

 698

) is an 	�
M	 ( 	 � F ) nonsingular matrix diagonally
dominant by rows and columns, then the �#��� -decomposition of



satisfies .9,�0E� 1&V 	9Z

(resp., .�,�0R� 1 V F-	 ) and .�,�0T� 1 V F-	 (resp., .�,�0T� 1 V 	9Z ).
Proof. Let us first assume that



is diagonally dominant by rows and columns. It is

well known (cf. [16]) that diagonal dominance by rows or columns is inherited by the Schur
complements obtained when performing Gauss elimination. So, the ����� -decomposition of


satisfies that � diagonally dominant by columns and � diagonally dominant by rows and,
by Proposition 2.1, . , 0E� 1 V 	9Z and . , 0T� 1 V F-	 .

Let us now assume that

 698

is diagonally dominant by rows and columns. Given a
matrix � , let ��� be the matrix obtained from � by reversing the order of its rows and
columns (that is, ��� � ��� � , where � is the backward identity matrix). Besides, since
� 6Q8 � � , it can be proved that . , 0�� � 1 ��. , 0�� 1 . Clearly, 0 
 6Q8 1 � is also diagonally
dominant by rows and columns. Then, by the previous paragraph,

0 
 698 1 � � �#���(2.2)

with � unit lower triangular diagonally dominant by columns and � unit upper triangular
diagonally dominant by rows. Premultiplicating and postmultiplicating (2.2) by � , we can
deduce from (2.2) that


 6Q8 � � � � � � �
and so


 ��0 � � 1 698 0R� � 1 6Q8 0R� � 1 6Q8 ;(2.3)

Let us observe that ��� (and so its inverse) is unit upper triangular and that ��� (and so
its inverse) is unit lower triangular. Therefore, (2.3) gives the ����� -decomposition of



.

Since, by Proposition 2.1, .�,�0 0 ��� 1�698 1 ��./,�0 ��� 1 � .�,�0T� 1 V FI	 and .�, 0 0E��� 1�6Q841 �
.�,�0R��� 1 �5./,�0E� 1 V 	9Z , the result follows.

3. Decompositions for Stieljes matrices and
�

-matrices diagonally dominant. A
real matrix with nonpositive off-diagonal elements is called a � -matrix. Let us recall that if a
� -matrix can be expressed as


 �
	����
�&��� ��( ��	 ����0�� 1
(where ��0�� 1 is the spectral radius of � ), then it is called an

�
-matrix. Nonsingular

�
-

matrices form a subclass of � -matrices and have important applications, for instance, in it-
erative methods in numerical analysis, in the analysis of dynamical systems, in economics
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and in mathematical programming. Nonsingular
�

-matrices have many equivalent defini-
tions. In fact, in Theorem 2.3 in Chapter 6 of [3] appear fifty equivalent definitions. In
particular, given a � -matrix, the following three properties are equivalent:



is a nonsingular�

-matrix,

 6Q8

is nonnegative and all leading principal minors of



are strictly positive. A
Stieljes matrix is a symmetric nonsingular

�
-matrix (see [3]). Taking into account the pre-

vious equivalences for
�

-matrices, we can also define a Stieljes matrix as a positive definite
symmetric � -matrix. In this section, we shall consider factorizations of Stieljes matrices and
factorizations of

�
-matrices diagonally dominant by rows or columns. As we have com-

mented in the introduction, we are interested in �#�<� -factorizations and so, in the context of
symmetric matrices, in �#�&��� -factorizations. Moreover, �#�&��� is also sometimes preferred
over the Cholesky factorization: with tridiagonal matrices or when it is convenient to avoid
the calculation of square roots.

Given
0 � P � � F �:;4;:;J� 	 U , let �#� � be two increasing sequence of

0
positive integers less

than or equal to 	 . Then we denote by

�� � � ��� the

0 
 0 submatrix of



containing rows
numbered by � and columns numbered by

�
. For principal submatrices, we use the notation
�� � � 3 � 
�� � � � � . Gaussian elimination with a given pivoting strategy, for nonsingular matri-

ces

 � 0
	 � � 1 8������ � � H , consists of a succession of at most 	 � � major steps resulting in a

sequence of matrices as follows:


 � 
�� 8�
 ��� �
�� 8�
 ��� 
�� Z 
 ��� �
�� Z 
 ��� *:*4* ��� 
�� H 
 ���
�� H 
 � �<���(3.1)

where

 ��� 
 ��0
	 ��� 
� � 1 8������ � � H has zeros below its main diagonal in the first �.�3� columns and

��� is upper triangular with the pivots on its main diagonal. The matrix �
 ��� 
 � 0 �	
��� 
� � 1 8������ � � H

is obtained from the matrix

 ��� 


by reordering the rows and/or columns �J�"� � � �4;:;:;:� 	 of

 ��� 


according to the given pivoting strategy and satisfying �	
��� 
������)( . To obtain


 ��� ! 8�
 from �
 ��� 

we produce zeros in column � below the pivot element �	

��� 
��� by subtracting multiples of row� from the rows beneath it. We say that we carry out a symmetric pivoting strategy when
we perform the same row and column exchanges, that is, � 
 ��� � ����� , where � is the
associated permutation matrix.

In [12] we defined a symmetric maximal absolute diagonal dominance (m.a.d.d.) pivot-
ing as a symmetric pivoting which chooses as pivot at the � th step ( � V � V 	 ��� ) a row� � 0 ��� 1 satisfying � 	 ��� 
��� ��� � � 2

��� � � �
5
6 ���
� 	 ��� 
��� � � � K W-X� � ��� H P � 	 ��� 
� � � � 2

��� � � �
5
6 �
� 	 ��� 
� � � U ;

In order to determine uniquely the strategy, we suppose that we choose the first index � � 0 ��� 1
satisfying the previous property and such that 	 ��� 
��� ��� �� ( , and then we interchange the row and
column � by the row and column � � .

Remark 3.1. By applying Theorem 2 of [1] to

 � , a nonsingular

�
-matrix



always has

a diagonal element 	 �*� such that 0
	 � � � 1 � 	 � � � 	! �
5
6 � � 	 � � � and so this property is satisfied by

the pivot chosen by the symmetric m.a.d.d. pivoting strategy. Performing the corresponding
row and column permutation of the matrix


 � 
 � 8�
 produces again a nonsingular
�

-matrix
�
 � 8�
 . By [6], the Schur complement of an

�
-matrix is also an

�
-matrix. So, we can iterate

the previous argument to the nonsingular
�

-matrices

 ��� 
 � �J�4;:;:;:� 	 � and show that, if



is a

nonsingular
�

-matrix, then the resulting upper triangular matrix �<� is strictly diagonally
dominant by rows.

Let us now focus on Stieljes matrices. Although Gauss elimination without pivoting of
a positive definite symmetric matrix is stable, it does not guarantee the well conditioning of



ETNA
Kent State University 
etna@mcs.kent.edu

202 J. M. Peña

the triangular factors. So, we have to admit pivoting strategies and, in order to preserve the
symmetry, symmetric pivoting strategies. For positive definite symmetric matrices, it is well
known that we can perform symmetric complete pivoting (which increases in >&0 	BZ 1 compar-
isons the computational cost) and obtaining the triangular matrix � with elements of absolute
value bounded above by 1. However, if we have a Stieljes matrix and we apply the sym-
metric m.a.d.d. pivoting strategy, we get with a computational effort of >?0 	AZ 1 elementary
operations (as we shall recall at the end of the section) that the triangular factors are strictly
diagonally dominant, and they can be much better conditioned than those obtained with sym-
metric complete pivoting, as shown in Example 3.1. In fact, if we have a Stieljes matrix and
apply symmetric m.a.d.d. pivoting, then �&� � (and so � � ) is strictly diagonally dominant by
rows by Remark 3.1. Therefore � is strictly diagonally dominant by columns. So, we have
the following result.

PROPOSITION 3.1. If



is an Stieljes matrix and � is the permutation matrix associated
to the symmetric m.a.d.d. pivoting strategy, then � 
 � � �����&� � , where � is a unit lower
triangular matrix strictly diagonally dominant by columns.

The following example shows that applying symmetric complete pivoting to a Stieljes
matrix does not guarantee that the triangular factors are diagonally dominant. In fact, we
show a

� 
 � matrix for which the symmetric complete pivoting produces triangular factors
worse conditioned than those obtained by the symmetric m.a.d.d. pivoting. Moreover, the
condition numbers of the triangular factors associated to the symmetric complete pivoting do
not satisfy the bounds of Proposition 2.1 (which, in turn, are always satisfied by the triangular
factors associated to the symmetric m.a.d.d. pivoting by Proposition 3.1).

Example 3.1. Given the Stieljes matrix


 �
�� ��( ( ��� ( ��� (��� ( �����
	 F ������ ( ��� ���

��
�

then the permutation matrix associated to the symmetric complete pivoting is the identity and
 � �#�&� � , where

�C�
�� � ( (���
	 ��( � (���
	 ��( ����(�(�	 ��( � �

��
;

It can be checked that .�, 0E� 1�� � ; � and .�,�0R� � 1�� � ; � F . However, the symmetric m.a.d.d.
pivoting interchanges the first and second rows and columns in the first step of Gauss elimi-
nation and it still produces another row and column exchange in the second step. If � is the
permutation matrix associated to the symmetric m.a.d.d. pivoting, then � 
 ��� ���#�&� � ,
where

���
�� ( � (( ( �� ( (

��
� � �

�� � ( (� F 	 ����� � (������(
	 ���
� ������(�� (�	 �����
��� �
��
�

and so . , 0R� 1���� ; ��� and . , 0E� � 1�� F ; � � .
The following remark shows that the symmetric m.a.d.d. pivoting also can be applied to

an 	�
 	 � -matrix



of rank ��� 	 diagonally dominant by columns in order to obtain an
upper triangular matrix


 ��� ! 8�
 � �<� , whose � first diagonal entries are nonzero.
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Remark 3.2. Let



be a nonzero 	 
�	 � -matrix



of rank � � 	 diagonally dominant
by columns. Since by Theorem 1 of [1], an

�
-matrix



always has a diagonal element 	 � �

such that

0
	 � � � 1 � 	 �*� � � 2 �
5
6 �
� 	 � � � �(3.2)

this property is satisfied by the pivot chosen by the symmetric m.a.d.d. pivoting strategy. Let
P�� 8 �4;:;:;4� �

4
U

be the set of row indices for which the corresponding diagonal element satisfies
(3.2). Let us see that we can find a nonzero pivot satisfying (3.2). For this purpose, let us
assume that 	 � � � � ��*:*4* � 	 ���"��� ��( and we shall get a contradiction. From (3.2) we deduce
that all off-diagonal elements of rows � 8 �4;:;4;:� �

4
are also null. Since



is diagonally dominant

by columns, all off-diagonal elements of columns � 8 �:;4;:;:�"�
4

are also null. Then we form the
submatrix

�
obtained from



by deleting rows and columns � 8 �4;:;:;4� �

4
, which are null. It is

well known that the principal submatrices of an
�

-matrix are also
�

-matrices (cf. Theorem
4.3 of Chapter 6 of [11]). Hence

�
is an

�
-matrix and, again by Theorem 2 of [1], there

exists a diagonal element of
�

(and so of



) satisfying (3.2), contradiction which proves that
we can find a nonzero pivot satisfying (3.2). Performing the corresponding row and column
permutation of the matrix


 � 
 � 8�

produces again an

�
-matrix diagonally dominant by

columns �
 � 8�
 . By [6], the Schur complement of an
�

-matrix is also an
�

-matrix. So,
we can iterate the previous argument to the nonzero

�
-matrices diagonally dominant by

columns

 ��� 
 � �J�4;:;:;:� 	 � , � V � V � . The matrix


 ��� ! 8�
 � � � � �:;4;:; � 	 � is null. In conclusion,
the symmetric m.a.d.d. pivoting applied to an 	�
 	 � -matrix



of rank � � 	 diagonally

dominant by columns has produced the following sequence of matrices (instead of (3.1)):

 � 
 � 8�
 ��� �
 � 8�
 ��� 
 � Z 
 ��� �
 � Z 
 ��� *4*:* � � 
 ��� ! 8�
 � �����(3.3)

where ��� is an upper triangular matrix with its diagonal formed by the � nonzero pivots and	 � � zeros.

If we have an
�

-matrix



diagonally dominant by rows or columns, the symmetric
m.a.d.d. pivoting also provides an �#�<� -decomposition with � and � well conditioned as
the following result shows.

PROPOSITION 3.2. If



is an
�

-matrix diagonally dominant by rows or columns and
� is the permutation matrix associated to the symmetric m.a.d.d. pivoting strategy of



or
 � , respectively, then � 
 ����� ����� , where � is a lower triangular matrix diagonally

dominant by columns and � is an upper triangular matrix diagonally dominant by rows.
Proof. Let us assume that



is diagonally dominant by columns. By Remark 3.2,

� 
 ��� � �#��� , where the upper triangular matrix �<� (and so � ) is diagonally domi-
nant by rows. As we have recalled in Section 2, diagonal dominance by columns is inherited
by the Schur complements and hence � is diagonally dominant by columns.

If



is diagonally dominant by rows, we apply Gauss elimination with the symmetric
m.a.d.d. pivoting to


 � (which is an
�

-matrix diagonally dominant by columns) and so, by
the previous paragraph, there exists a permutation matrix � such that � 
 � ���'� �#��� , with
� a lower triangular matrix diagonally dominant by columns and � an upper triangular matrix
diagonally dominant by rows. So, � 
 ���(� � �G� �B� � , where ��� is a lower triangular
matrix diagonally dominant by columns and � � is an upper triangular matrix diagonally
dominant by rows.

Remark 3.3. If



is a nonsingular
�

-matrix strictly diagonally dominant by rows or
columns, since strict diagonal dominance by columns is inherited by the Schur complements,
one can deduce from the proof of the previous proposition and Remark 3.1 that in this case �
is strictly diagonally dominant by columns and � is strictly diagonally dominant by rows.
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As shown in Remark 4.6 and Proposition 4.7 of [12], if



is a nonsingular 	 
'	 � -
matrix, the symmetric m.a.d.d. pivoting strategy consists of choosing as pivot row in each
step the row whose elements give a maximal sum and it can be implemented in such a way
that it costs >?0 	GZ 1 elementary operations beyond the cost of Gauss elimination with no piv-
oting. Taking into account Remark 3.2, these properties also hold for singular

�
-matrices

diagonally dominant by columns. In fact, following the notations of Proposition 4.7 of [12],
let �

3 � 0 � �:;4;:; ��� 1 � and  8 3 � 

� , and let us assume that



is an 	 
 	 nonsingular

�
-

matrix (resp., an
�

-matrix



of rank � � 	 diagonally dominant by columns). The symmet-
ric m.a.d.d. pivoting strategy produces the sequence of matrices (3.1) (resp., (3.3)) and the
calculation of the corresponding sequence of vectors

 8 �  � 8�
8 ��� � 8 �
8�
 ���  � Z 
8 ��� � 8 � Z


 ��� *4*:* ���  ��� 
8 � � 8 ���


�

where � � 	 (resp., � � � � � ) increases in >?0 	 Z 1 elementary operations the computa-
tional cost of Gaussian elimination. Then the maximal component among the last 	 � 0 � �
components of  ��� 
8 gives the

0
th pivot of the symmetric m.a.d.d. pivoting strategy (take into

account that each of those components of  ��� 
8 gives the sum of the elements of the corre-
sponding row of the submatrix of


 ��� 
 � 0 ;:;4;:� 	 � , which is also an
�

-matrix and so it has
nonnegative diagonal entries and nonpositive off-diagonal entries).

The next example shows that applying symmetric complete pivoting to an
�

-matrix
diagonally dominant by columns does not guarantee that the upper triangular factor is di-
agonally dominant, in contrast to the symmetric m.a.d.d. pivoting, where both triangular
factors are diagonally dominant. In fact, the condition number of the upper triangular factor
corresponding to the symmetric complete pivoting is considerably larger than the condition
number of the upper triangular factor corresponding to the symmetric m.a.d.d. pivoting.

Example 3.2. Given the
�

-matrix diagonally dominant by columns


 �

�
�
�
� � ( � F (
	 � � F (
	 � � F (
	 �� F � ��	 � � � � 	 � F ������	 F �� � � � 	 F � ��	 � � � � 	 ���� � � F 	 � ��� 	 � ����	 F

�
�
�
�
�

then the permutation matrix associated to the symmetric complete pivoting is the identity and
 � � 8 � 8 � 8 , where

� 8 �

�
�
�

� � ( ( (��� 	 � � ( (� � 	 ��( � �
	 � � � (��� 	 F � �
	 � � � �
�
	 � � �

�
�
�

�
� � 8 �

�
�
�

� � � F 	 � � F 	 � � F 	 �( � ��� 	 F ��� 	 �( ( � � ��	 � (( ( ( �

�
�
�

�
;

If � is the permutation matrix associated to the symmetric m.a.d.d. pivoting, then � 
 � �$�
� Z � Z � Z , where

� �

�
�
�

� ( � ( (( ( ( �( ( � (� ( ( (

�
�
�

�
� � Z �

�
�
�

� � ( ( (� �
	 � � � ( (��� � 	 � � � � ( � ��	 F �
� � F � (� ��(�	 � � ��� F � � 	 ���
� F � � (�� (
	 � � � � �

�
�
�

�

and

� Z �

�
�
�

� � �����
	 F � � � � � 	 � ��� ��� F 	 � �( � � � ( � 	 � � � � � � � (
��	 ����� F( ( � � F ���
� (�	 � � � (��( ( ( �

�
�
�

�
;
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Both lower triangular matrices inherit the diagonal dominance by columns and so their con-
dition numbers satisfy the corresponding bound of Proposition 2.1: ./,�0E� 8 1 � ��� ; ��� and
. , 0E� Z 1 � � � ; � � . On the other hand, the upper triangular matrix � Z obtained by the sym-
metric m.a.d.d. pivoting is diagonally dominant by rows and satisfies . , 0T� Z 1 � F ; � � . In
contrast, the upper triangular matrix � 8 obtained by the symmetric complete pivoting is not
diagonally dominant by rows and its condition number does not satisfy the corresponding
bound of Proposition 2.1 and is considerably greater than that of � Z : . , 0T� 8 1 �1� � ; F .

4. An efficient and accurate algorithm for the LDU-decomposition of diagonally
dominant M-matrices. A rank revealing decomposition of a matrix



is defined in [4] as a

decomposition

 ���'����� , where �D��� are well conditioned and � is a diagonal matrix.

In that paper it is shown that if we can compute an accurate rank revealing decomposition
then we also can compute (with an algorithm presented there) an accurate singular value de-
composition. Given an

�
-matrix diagonally dominant by rows or columns, by Proposition

3.2 and Proposition 2.1 the �#��� -factorization associated to symmetric m.a.d.d. pivoting is
a rank revealing decomposition. In this section, we show that we can compute accurately this
�#��� -factorization. For this purpose, we shall assume that we have an 	 
 	 � -matrix



of

rank � diagonally dominant by columns (if it is diagonally dominant by rows we can apply
the construction to


 � ). In [2] it is shown that, given an
�

-matrix



diagonally dominant by
rows (resp., columns), the off-diagonal elements and the row sums (resp., column sums) are
natural parameters in many applications and that small relative changes in those quantities
produce small relative changes in the entries of



(and of


 698
if



is nonsingular). In con-
clusion, we assume that, if



is diagonally dominant by columns, we know the off-diagonal

entries and the column sums.
Let us consider the sequences of matrices (3.1) (if ��� 	 ) or (3.3) (if � � 	 ) obtained

when applying symmetric m.a.d.d. pivoting to

 � 
 � 8�
 . Since


 � 8�

is an

�
-matrix, it has

nonnegative diagonal entries and nonpositive off-diagonal entries and since

 � 8�


is diagonally
dominant by columns, the vector � � 8�
�3 � � � 
 � 8�
 provided by the column sums of


 � 8�

is non-

negative. When applying symmetric m.a.d.d. pivoting, we can calculate the corresponding
sequence of vectors:� � 8�
 ��� �� � 8�
 ����� � Z 
 ��� �� � Z 
 ��� *:*4* ����� ��� 
 � �� ��� 
 �

(where � � 	 if � � 	 and � � � � � if � � 	 ), giving � ��� 
 and �� ��� 
 the column sums of
the corresponding matrices


 ��� 
�� 0 �:;4;:; � 	 � and �
 ��� 
�� 0 �4;:;:;:� 	 � , respectively. If



is a singular�
-matrix of rank � � 	 diagonally dominant by columns, then there will be � nonzero pivots

and the Schur complement

 � ! 8�
 � � � � �:;:;4; � 	 � will be null.

Let us see a simple relation of the last 	 � 0 components � � � ! 8�
� (��� 0 � � �:;4;:; � 	 ) of

the vector � ��� ! 8�
 and the components of �� � � 
 . In fact,

� ��� ! 8�
� �
H2� 6 � ! 8 	

��� ! 8�
� � �
H2� 6 � ! 8

�
�	
��� 
� � � �	

��� 
� �
�	
��� 

� �

�	
��� 

� �	� �(4.1)

H2� 6 � ! 8 �	
��� 
� � � �	 ��� 
� �

� H2� 6 � ! 8 �
	 ��� 
� �
�	
��� 

� �
� ;

Taking into account that

H2� 6 � ! 8 �
	 ��� 
� �
�	
��� 

� �

� �� ��� 
� � �	 ��� 
� �

�	
��� 

� �

�
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we deduce from (4.1) that

� ��� ! 8�
� �
H2 � 6 �
�	
��� 
� � � �	

��� 

� �
�	
��� 

� �

�� ��� 
�

and so

� ��� ! 8�
� � �� ��� 
� � �	
��� 

� �
�	
��� 

� �

�� ��� 
� � � � 0 � � �:;:;4; � 	 ;(4.2)

Remark 4.1. We have commented in previous sections that if a matrix �
 ��� 
 is diagonally
dominant by columns, then its Schur complement


 ��� ! 8�
�� 0 � � �4;:;4; � 	 � is also diagonally
dominant by columns. If, in addition, the matrix �
 ��� 
 is a nonsingular

�
-matrix, we can

apply formula (4.2) and deduce that the diagonal dominance by columns is increased. In fact,
since �	

��� 

� � V ( , �	 ��� 
� � 	3( and �� ��� 
� 	�( , we derive from (4.2)

� ��� ! 8�
� � �� ��� 
� ;(4.3)

Remark 4.2. Given a nonsingular 	�
 	 � -matrix



diagonally dominant by columns,
(4.2) also shows that we can calculate the vectors 0 � � � 
 1 Z � � � H from � � 8�
 with an additional
cost of >?0 	 Z 1 elementary operations to that of Gauss elimination with symmetric m.a.d.d.
pivoting. As we have commented above, we assume that we know the off-diagonal entries
and the vector � � 8�
 of column sums.

We say that we compute an accurate �#�<� -decomposition if we compute with small
relative error each entry of � , � and � , that is, the relative error of each mentioned entry is
bounded by >&0 �

1
, where � is the machine precision. Given an algebraic expression defined

by additions, subtractions, multiplications and divisions and assuming that each initial real
datum is known to high relative accuracy, then it is well known that the algebraic expression
can be computed accurately if it is defined by sums of numbers of the same sign, products and
quotients (cf. p. 52 of [4]). In other words, the only forbidden operation is true subtraction,
due to possible cancellation in leading digits.

Let us see that we can can compute accurately the ����� -factorization associated to Gauss
elimination with symmetric m.a.d.d. pivoting of an

�
-matrix


 � 
 � 8�
 diagonally dominant
by columns if we know the off-diagonal elements 	 � 8�
� � 0 V ( 1 ( � �� � ) and the column sums� � 8�
� 0 � ( 1 (� � � �:;4;:; � 	 ) of the matrix. Since we know the off-diagonal elements and all are
nonpositive, then we can calculate accurately their column sums:

	
� 8�
� �

H2� 6 8�� �
5
6 � 	

� 8�
� � � � � � �:;4;:; � 	 ;(4.4)

Clearly, calculating 	
� 8�
� , ��� � �4;:;4;:� 	 , requires 	 0 	 � F 1 sums. Again, when applying

symmetric m.a.d.d. pivoting, we can calculate the corresponding sequence of vectors:

	 � 8�
 ��� �	
� 8�
 � � 	 � Z 
 ��� �	

� Z 
 ��� *:*4* ��� 	 ��� 
 ��� �	
��� 
 �

(where � � 	 � � if



is nonsingular and ��� � if rank

 � � � 	 ) giving 	 ��� 
 and �	 ���



the

column sums of the off-diagonal elements of the corresponding matrices

 ��� 
�� 0 �:;4;:; � 	 � and
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�
 ��� 
�� 0 �:;:;4; � 	 � , respectively (see (3.1) or (3.3)). Observe that

	
� � ! 8�
� �

H2� 6 � ! 8�� �
5
6 � 	

� � ! 8�
� � � � � 0 � � �:;:;4; � 	 ;(4.5)

We can calculate by (4.5) the column sums of the off-diagonal elements 	
��� ! 8�
� with an addi-

tional cost of >?0 	G@ 1 elementary operations.
In conclusion, given the off-diagonal elements and the column sums, we have seen that

we can calculate accurately 	
� 8�
� 0 V ( 1 (� � � �:;:;4; � 	 ) and then we can perform accurately the

following steps:
1. Calculation of the diagonal elements of


 � 
 � 8�
 : 	 � 8�
� � � � � 8�
� � 	 � 8�
� , � �1� �:;4;:; � 	 .
2. After applying the symmetric m.a.d.d. pivoting in order to choose the first pivot and

forming the matrix �
 � 8�
 (whose column sums �� � 8�
� coincide, up to the order, with those of
 � 8�

), we calculate the multipliers

� � 8 � �	
� 8�
� 8
�	
� 8�
8S8 0

V ( 1 � �B� F �:;4;:; � 	 ;
3. Calculation of the off-diagonal elements of


 � Z 
 � F �4;:;4; � 	 � : 	 � Z 
� � � �	
� 8�
� � � � � 8 �	 � 8�
8 �

(observe that �	
� 8�
� � and � � � 8 �	 � 8�
8 � are both nonpositive).

4. Calculation of the column sums of

 � Z 
 � F �4;:;:;:� 	 � by (4.2) for

0 � � (observe that

�� � 8�
� and � ���� ������
���� ���� � �� � 8�
8 are both nonnegative).

5. Calculation of the column sums of the off-diagonal elements of

 � Z 
 � F �:;:;4; � 	 � by

(4.5) (observe that all elements 	 � Z 
� � , � � P F �:;:;4;J� 	 U � P-� U , are nonpositive).
Now we can iterate the previous procedure with the corresponding sequence of matrices
 � Z 
 � F �:;4;:; � 	 � �4;:;4;:� 
 � H 698�
 � 	 � � � 	 � , until obtaining ��� from which we also can compute

accurately � and � (if rank

 � � � 	 , we can stop after calculating � matrices of the

sequence because the matrix

 ��� ! 8�
 � � � � �:;:;4;:� 	 � is null).

Remark 4.3. The computational cost of the previous procedure to compute accurately
the ����� -factorization associated to Gauss elimination with symmetric m.a.d.d. pivoting
of a nonsingular 	 
C	 � -matrix diagonally dominant by columns is >&0 	B@ 1 elementary
operations. This follows from the following facts: calculating 	

� 8�
� , � � � �:;4;:; � 	 requires
>&0 	9Z 1 elementary operations, the symmetric m.a.d.d. pivoting strategy can be implemented
so that it adds >?0 	GZ 1 elementary operations to the >?0 	 @ 1 elementary operations of Gauss
elimination (as shown at the end of the previous section), the iterated application of step 1
of the previous procedure increases a total cost of >?0 	BZ 1 elementary operations, the iterated
application of step 4 of the previous procedure increases a total cost of >?0 	BZ 1 elementary
operations (see Remark 4.2), the iterated application of step 5 of the previous procedure
increases a total cost of >&0 	 @ 1 elementary operations and obtaining � and � from �<� adds
>&0 	9Z 1 elementary operations.

By Propositions 3.2 and 2.1, the �#�<� -factorization associated to symmetric m.a.d.d.
pivoting of a nonsingular 	7
 	 � -matrix diagonally dominant by columns is a rank revealing
decomposition and, by Remark 4.3, we can compute it accurately with >&0 	B@ 1 elementary
operations. Finally, let us take into account that the algorithm of [4] for computing an accurate
singular value decomposition from a rank revealing decomposition has a complexity of >?0 	 @ 1
elementary operations.
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