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DISCRETE SOBOLEV AND POINCARE INEQUALITIES FOR PIECEWISE
POLYNOMIAL FUNCTIONS*
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Abstract. Discrete Sobolev and Poincaré inequalities are derived for piecewise polynomial functions on two

dimensional domains. These inequalities can be applied to classical nonconforming finite element methods and
discontinuous Galerkin methods.
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Let Q C R? be a bounded polygonal domain, 73, be a family of quasi-uniform simplicial
or quadrilateral triangulations of €2 indexed by the mesh size h. To streamline the presenta-
tion, we first introduce the following notation concerning 7,:

e the generic subdomain in 7}, is denoted by D, which is either a triangle or a convex
quadrilateral,

e &}, is the set of the interior edges of Tp,

e V), is the set of the vertices of 75,

e V. is the set of the two endpoints of the edge e,

e Vr is the set of the three vertices of the triangle 7',

e & is the set of the three edges of the triangle T,

e &, 1 is the set of the edges in &, sharing the common endpoint p € V4,

e T, is the set of the triangles or quadrilaterals in 75, that share the point p € Q in
their closures,
o 7T, n is the set of the two triangles or quadrilaterals in 7}, sharing the common edge
e €&y,
e |D| is the area of the subdomain D,
e |e| is the length of the edge e,
® T, IS the orthogonal projection operator that maps L (e) onto the space of constant
functions on e,
e the jump of a function v across an edge e € &y, is denoted by [v],.
Note that even though a jump can be measured in two ways that differ by a minus sign,
this ambiguity does not affect the statements in this paper because the jumps always appear

in squared terms.
Let & be a nonnegative integer. In the case of a simplicial triangulation 73, we define

1) Vi ={v € Ly(): v, =v|D€Pk(D) VD €T},

where Py (D) is the space of polynomials of total degree < k restricted to the triangle D. In
the case of a quadrilateral triangulation 74, there is a bilinear homeomorphism Fp : S — D
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from the unit square S = (0,1) x (0,1) onto any given (convex) quadrilateral D € 7. We
denote by Q (D) the space of functions v on D such that v o Fp is a polynomial on S whose
degree in each variable is < k. In other words, v € Qg(D) is a polynomial of individual
degree < k in the curvilinear coordinates on D induced by F[,l. We then define

) Vi ={v € Ly(Q) : v, =U|D€Qk(D) VD e T}

In order to state the discrete Poincaré inequality for piecewise polynomial functions we
define the mean value {v}, (p) of a function v € V}, at a point p € Q2 by

@3 {{v}}h<p)=m%b| S 0, 0),

DeTpn

where |7, is the number of triangles or quadrilaterals in 7, .
The goal of this paper is to establish the following inequalities, where we use the standard
notation for Sobolev spaces [7, 4] and the positive constant C' is independent of A:

@ el <00+ |1nh|){ Y ol + Y Iellllﬂo,e[v]elliz(e)}

DeTy e€lp

and

© ol < CO+ {3 ol + 3 S (0.0)°}
DeTy e€&p pEV.

forall v € Vp;

(6) o017 ,¢0) < C(1 +]In hl){ > ol + Y IeI‘llle,e[v]eII%2<e)}
DeTy, ecép

and

@ ol < CO+ {3 whinp + D Y (bl@)’}
DeTy, e€ER PEVe

for all v € V}, such that {v}, (p) = 0 for a given point p € Q. The inequalities (4)—(7)
generalize the well-known discrete Sobolev and Poincaré inequalities [2, 14, 16] for finite
element functions in H'(Q).

To avoid the proliferation of constants, we will use the notation A < B to represent the
inequality A < (constant) x B, where the constant is independent of h. The statement A ~ B
is equivalentto A < Band B < A.

We begin by establishing the discrete Sobolev inequality (4) for piecewise constant func-
tions with respect to a simplicial triangulation 7y, i.e., for the case where & = 0 in (1) and 7},
consists of triangles. Let W}, be the space of piecewise constant functions with respect to 7
and let W, ¢ H'() be the P; finite element space associated with 7T,. We define a linear
map Ej, : Wy, — W), by

®) (Enw)(p) = fw},(p) VYw€Wp, p€ V.
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LEMMA 1. Let p € Vp, be a vertex of the triangle T' € T;,. The following estimate holds:

(w,(0) = (Brw)®)” S Y lel M)l Yw € Wi

eegp,h
Proof. From (3) and (8) we have
1
Wy (p) - (Ehw)(p) =T Z (wT (p) - U)T, ))
|7;):h| T’en,h
which together with the Cauchy-Schwarz inequality implies that
2 1 2
(wy (p) — (Erw)(p))” < > (w(p) —w,, ()
Tonl 77,
SO wl= Y lel T wlelZ, -
e€Ep n e€ép n
O
In view of the elementary facts that
lvllzo(ry = Imax lv(p)] Vv e P (T),
ol = ITI Y v(p)® Ve P(T),
PEVT
Wl S D v(p)? Vv e P (T),
pPEVT
IT| ~ |e|? Vee&r,

the estimates below follow immediately from Lemma 1:

® lw = Buwll} o) S maxlel Hlwlelf,e Vo€ W,

(10) lw — Bnwll2,0) $ Y lellwlel3,e — Ywe W,
ecéy

(11) 3w Byl S S lel T el Yw € Wi
TG’T}L e€ly

The following lemma establishes (4) for the special case of piecewise constant functions
with respect to a family of quasi-uniform simplicial triangulations.
LEMMA 2. The following inequality holds:

12 ol @ S @+ D {lwli,e + D e i, ] Ywe W
e€€

Proof. From the discrete Sobolev inequality [2, 14, 16] for P; finite element functions in
H(£), we have

(13) | EnwllZ_ ) S 1+ InA) | Epwllf q)-
Combining (9)-(11) and (13) we find that

||U)||2LOO(Q) Sllw— Ehw||2Lm(Q) + ||Ehw||2Lm(Q)



ETNA

Kent State University
etna@mcs.kent.edu

Discrete Sobolev and Poincaré Inequalities 45
S max le] " l[wlell7 ey + (1 + [In A Erwl|3 g

S Y lel Hilwlellz ey + A+ 1mh) D (lwllfn ey + o = Bywllzn )
ecéy TETh

S 0+ I { Il + D el Ikl }-
ecép

d

The next lemma shows that the result in Lemma 2 is also valid for quadrilateral triangu-
lations, i.e., (4) is valid for the case where k = 0 in (2).

LEMMA 3. The inequality (12) holds for piecewise constant functions w with respect to
a quasi-uniform family of quadrilateral triangulations.

Proof. Let 75, be the family of simplicial triangulations obtained from 7, by adding the
two diagonals of each quadrilateral in 7. Then 7}, is a quasi-uniform family of simplicial
triangulations. Let w be an arbitrary piecewise constant function with respect to 7. Since w
is also a piecewise constant function with respect to 7, Lemma 2 implies that

W) ol @ S O+ Al + 3 el im0 )
eefh

where &}, is the set of interior edges of &j,.
The inequality (12) follows from (14) and the observation that

[w]e =0 Vee gh \5h.

0
We can now establish the general case of (4).
THEOREM 4. The inequality (4) holds for a quasi-uniform family of simplicial or quadri-
lateral triangulations.
Proof. Let v € V}, be arbitrary and IIgv be the L, orthogonal projection of v into the
space of piecewise constant functions, i.e.,

1
(Hov)|D=—/vdm VD €T
DI Jp
The following estimate [7, 4] is well-known:
(15) ||'U—H0'U||L2(D) ,S (diamD)|v|H1(D) Vv e V.
Moreover it follows from (15) and a standard inverse estimate [7, 4] that

(16) ||’U — H()’UHLOO(Q) 5 glea%{, |U|H1(D) Yo e V.

For e € &, since [gv]. is a constant, the trace theorem (with scaling) and (15) imply
that

le| = I[Mov]e — 7o0,e[v]ell5e) = leI ™" lImo.e (Mov]e — [v]e) 17, )
(17 < le| ™ IMov]e = [vlellZ, e)

1 .
S Y (jpyior = eliam) + Mov = vlin) £ 3 Iolingo)-
DET.n DeTen
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Combining Lemma 2, Lemma 3, and (15)—(17) we have
0llZ ) S llv = TovllZ_ (o) + IMovll7_ (o)

< max ol oy + (14 [ A {ITovl, @y + 3 lel Aol I3, }
e€éy

< Yty + @+ A {llell o + 3 el imoelole e

DeThn e€éh

+ (L4 k) Y fel M(|[Tov]e — mo,ev]ell7, (e
ecén

S A+ 3 Mol + Y lel~ moelolellE. }-

DeTs e€&y

O
As in the case of finite element functions belonging to H*(f2), the discrete Poincaré
inequality (6) follows from the discrete Sobolev inequality (4).
THEOREM 5. The inequality (6) holds for a quasi-uniform family of simplicial or quadri-
lateral triangulations.
Proof. Letv € V}, be arbitrary and

_ 1 /
v=— | vdx
1] Jo

be the mean of v over 2. From the Poincaré-Friedrichs inequality for piecewise H! functions
[3] we have

(18) o=l S D Wiy + D el lImo,e[vlell, o)

DeTy ecép

which together with (4) yields

lo =512 S @+ AL 3 llo = all3 )

DeTh
(19) + 3 [l lmoselo = Tlell o) )
ecéy
S @+ AN Y [0y + Y lel ™ ImoelelellE o }-
DeTh e€lhn

On the other hand, since {v}, (p) = 0, we have, by (3),

p’h TET h
The estimate (6) now follows from (18)—(20) and the triangle inequality. O
REMARK 6. The inequality (6) clearly remains valid if we replace the condition
{v}. (p) = 0 by the more general condition that

> wyv,(p) =
DeTyn

where the nonnegative weights w,, satisfy >, =1
We now turn to the alternatlve forms (5) and (7) of the discrete Sobolev and Poincaré
inequalities.
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THEOREM 7. The inequalities (5) and (7) hold for a quasi-uniform family of simplicial
or quadrilateral triangulations.
Proof. In view of (4) and (6), it suffices to show that

(21) Z |€| 1”71'0 e[’U ||L2 (e) ~ Z |U|H1 (D) + Z Z 2 Yo € V.

ecén DeTh e€En PEVe

Letv € V}, be arbitrary and let [v]L € P (e) agree with [v]. at the endpoints of e. By the
trace theorem (with scaling), we have

1
(22) |€|71||7r0,e([v]e - [v]é) ”12(6) S z (W”'UD - U;”%Q(D) + v, — vII)G{l(D)),
DeTen

where v is either the polynomial in Py (D) that agrees with v at the vertices of the triangle D
or the curvilinear polynomial in )1 (D) that agrees with v at the vertices of the quadrilateral
D.

It follows from standard interpolation error estimates and inverse estimates [7, 4] that

1
(23) W”U — v, ||L2(D)+|U - v, |H1(D) (diam D)? |U|H2(D) S |U|H1(D)

Furthermore a direct calculation yields

(24) el HImo,e[o] 17 ey < el N, S D (@)

PEVe

The estimate (21) follows from (22)—(24) and the triangle inequality. 0

The discrete Sobolev inequality (4) and the discrete Poincaré inequality (6) for piece-
wise polynomial functions can be applied to many classical nonconforming finite element
functions [9, 11, 12, 13, 10, 6, 5] that satisfy the weak continuity condition

(25) o=/[v]eds=|e|(7r0,e[u]e) Ve € En.

For such functions the inequalities (4) and (6) simplify to

(26) [oll7 @) < CA+nh]) D llolltn o,
DeTn

and

@7) 07,0y < CA+|A) Y |olinp),
DEeT;,

respectively.

On the other hand, it follows from the alternative inequalities (5) and (7) that (26) and
(27) are also valid for nonconforming finite element functions [17, 19] that do not satisfy the
weak continuity condition (25) but are continuous at the vertices of 7.

The inequalities (4) and (6) can also be applied to discontinuous Galerkin methods. In-
deed, by dropping the orthogonal projection operator 7 in (4) and (6) we immediately
arrive at the inequalities

(28) [0ll7_. () < C(A + |Inhl) { D7 Il + Y lel i) ||?:2(e)}

DeTy, ecéy
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and

@) ol <CO+ D Y lolnw) + D lel el }-
DeTh e€ép

The sums in (28) and (29) involving the jumps of v now appear naturally in many discontin-
uous Galerkin methods [8, 1].

REMARK 8. The discrete Sobolev and Poincaré inequalities for finite element functions
in H'(Q) are useful for example in the analysis of the L stability of finite element methods
for parabolic problems [16] and the analysis of various nonoverlapping domain decomposi-
tion methods [2, 15, 18, 4]. The inequalities (26)—(29) enable similar analyses to be carried
out for classical nonconforming finite element methods and discontinuous Galerkin methods.
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