ORTHOGONAL LAURENT POLYNOMIALS AND QUADRATURES ON THE UNIT CIRCLE AND THE REAL HALF-LINE*

RUYMÁN CRUZ-BARROSO AND PABLO GONZÁLEZ-VERA \dagger

Abstract

The purpose of this paper is the computation of quadrature formulas based on Laurent polynomials in two particular situations: the Real Half-Line and the Unit Circle. Comparative results and a connection with the split Levinson algorithm are established. Illustrative numerical examples are approximate integrals of the form $$
\int_{-1}^{1} \frac{f(x)}{(x+\lambda)^{r}} \omega(x) d x \quad, \quad r=1,2,3, \ldots
$$ with $f(x)$ a continuous function on $[-1,1], \omega(x) \geq 0$ a weight function on this interval and $\lambda \in \mathbb{R}$ such that $|\lambda|>1$ is required. Here the classical Gaussian quadrature is an extremely slow procedure.

Key words. orthogonal Laurent polynomials, L-Gaussian quadrature, Szegö quadrature, three-term recurrence relations, split Levinson algorithm, numerical quadrature.

AMS subject classifications. 41A55, 33C45, 65D30.

[^0]
[^0]: *Received July 30, 2002. Accepted for publication May 10, 2003. Communicated by J. Arvesú.
 ${ }^{\dagger}$ Department of Mathematical Analysis, La Laguna University. 38271 La Laguna. Tenerife. Spain.

