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AN ELECTROSTATIC INTERPRETATION OF THE ZEROS OF THE
FREUD-TYPE ORTHOGONAL POLYNOMIALS∗

A. GARRIDO, J. ARVESÚ, AND F. MARCELLÁN †

Abstract. Polynomials orthogonal with respect to a perturbation of the Freud weight function by the addition of
a mass point at zero are considered. These polynomials, called Freud-type orthogonal polynomials, satisfy a second
order linear differential equation with varying polynomial coefficients. It plays an important role in the electrostatic
interpretation for the distribution of zeros of the corresponding orthogonal polynomials.
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1. Introduction. The aim of this paper is to give an electrostatic interpretation for the
distribution of zeros of orthogonal polynomials based on the original ideas of Stieltjes, see
[9] as well as [11] and [12], in the case of the zeros of Freud-type orthogonal polynomials.
Nevertheless, the technics and methods for such a purpose are quite different from those used
by Stieltjes simply because the Freud-type polynomials are semiclassical and the electrostatic
interpretation makes sense only in the presence of a varying external field. In this contribution
we consider a varying external field which is created by charges of constant magnitude but
position varying with the number n of other movable charges. Ismail [6] proved for absolutely
continuous measures that zeros of general orthogonal polynomials, under some integrability
conditions for their weight functions, are the solution of an electrostatic equilibrium problem
of n movable unit charges in the presence of an external potential. In particular, as an exam-
ple, he studied electrostatics of the zeros of the orthogonal polynomial sequence with respect
to Freud weight function w(x) = e−x4

supported on the whole real line R. The case of
measures with mass points outside or on the boundary of the support of the measure has been
analyzed in [3], [4], and [7]. It is a natural question to ask about the location of zeros -from
the point of view of the electrostatic interpretation- for polynomials orthogonal with respect
to a perturbation of the linear functional L associated with the Freud weight. We introduce
such a kind of perturbation based on the addition of a Dirac linear functional supported at
zero. This case has not been considered in [7].

First of all, we obtain the relation between both orthogonal polynomial sequences as well
as the expression of the recursion coefficients of the corresponding orthogonal polynomials.
The main role is played by the second order linear differential equation which these polyno-
mials satisfy since this yields the electrostatic interpretation. In section 3 it will be obtained
through two operators associated with the orthogonal polynomials. In the next section we
derive the corresponding differential equation.

2. Preliminaries. Let U be the linear functional

〈
U , q(x)

〉
=

∫ ∞

−∞

q(x)e−x4

dx + λq(0), q(x) ∈ P,

where λ ∈ R
+, P := R[x] is the linear space of polynomials with real coefficients and Pn is

the linear subspace of polynomials of degree at most n.
A polynomial sequence {p̃n(x)}n≥0, where deg(p̃n(x)) = n for n ≥ 0, is said to be

orthogonal with respect to the linear functional U if and only if
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〈
U , p̃n(x)p̃m(x)

〉
= k̃nδn,m,

where k̃n > 0, for n, m ≥ 0 and, as usual,

δn,m =

{
0 for n 6= m,
1 for n = m.

Such a family of polynomials is said to be a Freud-type sequence.
Let L be the Freud linear functional defined by

〈
L, q(x)

〉
=

∫ ∞

−∞

q(x)e−x4

dx, q(x) ∈ P.

Consider {pn(x)}n≥0 the monic orthogonal polynomial sequence with respect to L. Then

〈
L, pn(x)pm(x)

〉
= knδn,m,

where kn > 0 for n ≥ 0. The Freud linear functional is symmetric (see [2]). Thus
{pn(x)}n≥0 satisfies the three-term recurrence relation (TTRR)

xpn(x) = pn+1(x) + anpn−1(x), n ≥ 0,
where by convention p−1(x) = 0 and an ∈ R+ is

an =

〈
L, p2

n(x)
〉

〈
L, p2

n−1(x)
〉 , n ≥ 1.

Moreover, an satisfies the nonlinear recurrence relation, (see [8])

n = 4an(an+1 + an + an−1), n ≥ 1,

with initial conditions a0 = 0, a1 =
Γ(3/4)

Γ(1/4)
, and

an =

(
1

2
√

3

)√
n

(
1 + O

(
1

n2

))
.

Both linear functionals are closely connected. Indeed

〈
U , q(x)

〉
=

〈
L, q(x)

〉
+ λq(0), q(x) ∈ P.

Let {p̂n(x)}n≥0 be the monic polynomial sequence orthogonal with respect to U . Now
we derive the three-term recurrence relation that the polynomial sequence {p̂n(x)}∞n=0 satis-
fies. Since U is symmetric, the recurrence formula satisfied by {p̂n(x)}n≥0 is

xp̂n(x) = p̂n+1(x) + ânp̂n−1(x), n ≥ 0.

We denote

Kn(x, y) =
n∑

j=0

pj(x)pj(y)〈
L, p2

j (x)
〉 ,
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then by the confluent formula (see [2])

K2n(0, 0) =
p′2n+1(0)p2n(0)〈

L, p2
2n(x)

〉 ,

and using the asymptotic expressions for p2n(0) and p′2n+1(0) (see [8])

K2n(0, 0) =
2 4
√

8

3
n3/4

(
A + o(1)

)2
,

where A = 8
√

12/
√

π is a constant independent of n, determined by Nevai in [8]. Thus

K2n(0, 0) = O(n3/4).

PROPOSITION 2.1. For n ≥ 0,

(i) p̂2n+1(x) = p2n+1(x),

(ii) p̂2n(x) = p2n(x) − λ
p2n(0)K2n−2(x, 0)

1 + λK2n−2(0, 0)
.

Proof. If we consider the Fourier expansion

p̂n(x) = pn(x) +
n−1∑

k=0

an,kpk(x), n ≥ 0,

then

an,k =

〈
L, p̂n(x)pk(x)

〉
〈
L, p2

k(x)
〉 = −λp̂n(0)pk(0)〈

L, p2
k(x)

〉 , 1 ≤ k ≤ n − 1.

Thus
p̂n(x) = pn(x) − λp̂n(0)Kn−1(x, 0), n ≥ 1.

The evaluation at zero of the last expression yields

p̂n(0) =
pn(0)

1 + λKn−1(0, 0)
.

Therefore this completes the proof.
The coefficients ân satisfy the following recursive expressions (see [1])
PROPOSITION 2.2. The relation between the recursion coefficients is

â2n+1â2n = a2n+1a2n, n ≥ 0,

â2n + â2n−1 = a2n + a2n−1, n ≥ 1.

From the expression (see [1])

â2n

a2n
=

1 + λK2n(0, 0)

1 + λK2n−2(0, 0)
,
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we get easily

â2n

a2n
= 1 + O

(
n−1

)
,

or equivalently

(2.1)
â2n

a2n
∼ 1 +

3

4n
.

The notation xn ∼ yn means that xn behaves as yn when n → ∞, more precisely,
limn→∞ xn/yn = 1. This notation provides information about the multiplying factor in-
volved in the leading term of the asymptotic behavior.

For the odd coefficients we deduce a similar asymptotic property from the previous the-
orem

(2.2)
â2n−1

a2n−1

∼ 1 − 3

4n
.

3. Differential recurrence relation. We are interested in finding a second order linear
differential equation satisfied by the orthogonal polynomials p̂n. To obtain it we will use the
fact that the linear functional U is semiclassical, that is, it satisfies the following distributional
Pearson equation

D(x2U) = (2x − 4x5)U ,

where D denotes the distributional derivative.

3.1. Lowering operator. First, we will obtain a differential difference equation for the
monic orthogonal polynomial sequence p̂n(x).

THEOREM 3.1. p̂n(x) satisfies the following differential recurrence relation

(3.1) x2p̂′n(x) = A(x, n)p̂n−1(x) − B(x, n)p̂n(x), n ≥ 1,

where
A(x, n) = ân

[
4x4 + 4(ân+1 + ân)x2 + Cn+1 + Cn

]
,

B(x, n) = 4ânx3 + Cnx,

with

Cn = −n + 4ân(ân+1 + ân + ân−1), n ≥ 1.

Proof. Consider the Fourier expansion

x2p̂′n(x) = np̂n+1(x) +

n∑

j=0

λn,j p̂j(x),

where

λn,j =

〈
U , x2p̂′n(x)p̂j(x)

〉
〈
U , p̂2

j (x)
〉 .

We compute the numerator of the above expression:
〈
U , x2p̂′n(x)p̂j(x)

〉
= −

〈
U , 2xp̂n(x)p̂j(x)

〉
+ 4

〈
U , x5p̂n(x)p̂j(x)

〉

−
〈
U , x2p̂n(x)p̂′j(x)

〉
.

For j < n − 5, we get
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〈
U , x2p̂′n(x)p̂j(x)

〉
= 0.

Thus if j ≤ n − 6 then
λn,j = 0.

Now we compute the coefficients λn,j for j ≥ n − 5. Taking into account U is a symmetric
linear functional

λn,j = 0, for j = n, n − 2, n− 4.
Furthermore

λn,n−5 = 4ânân−1ân−2ân−3ân−4,

λn,n−3 = 4(ânân−1ân−2)
[
ân+1 + ân + ân−1 + ân−2 + ân−3

]
,

λn,n−1 = ân

[
− (n + 1) + 4

[
ân+1(ân+2 + ân+1 + ân + ân−1)

+ ân(ân+1 + ân + ân−1) + ân−1(ân + ân−1 + ân−2)
]]

.

We compute the polynomials involved in the differential recurrence relation by using the
TTRR in terms of p̂n−1(x) and p̂n(x). So the equation can be reduced to

x2p̂′n(x) = ân

[
4x4 + 4(ân+1 + ân)x2 − (2n + 1)

+ 4
[
ân+1(ân+2 + ân+1 + ân) + ân (ân+1 + ân + ân−1)

]]
p̂n−1(x)

−
[
4ânx3 −

[
n − 4ân(ân+1 + ân + ân−1)

]
x
]
p̂n(x).

If A(x, n) denotes the coefficient of p̂n−1(x) and B(x, n) denotes the coefficient of p̂n(x),
i.e.

x2p̂′n(x) = A(x, n)p̂n−1(x) − B(x, n)p̂n(x),

and
Cn = −n + 4ân(ân+1 + ân + ân−1), n ≥ 1,

then the differential recurrence relation becomes

x2p̂′n(x) = ân

[
4x4 + 4(ân+1 + ân)x2 + Cn+1 + Cn

]
p̂n−1(x)

−
[
4ânx3 + Cnx

]
p̂n(x), n ≥ 1.

Thus our statement follows.
Let us denote L1(x, n) the lowering operator

(3.2) L1(x, n) =
[
x2 d

dx
+ B(x, n)

]
.

The statement of the previous theorem leads

L1(x, n)p̂n(x) = A(x, n)p̂n−1(x).

Hence, the following properties for the coefficients A(x, n), B(x, n), and Cn can be imme-
diately proved:

LEMMA 3.2. For n ≥ 1, A(x, n) and B(x, n) satisfy

(i)
1

x

[
B(x, n) + B(x, n + 1)

]
=

A(x, n)

ân
− 4x4,

(ii) x
[
B(x, n + 1) − B(x, n)

]
= A(x, n + 1) − ân

ân−1

A(x, n − 1) + x2.



ETNA
Kent State University 
etna@mcs.kent.edu

42 Interpretation of the zeros of the Freud-type orthogonal polynomials

THEOREM 3.3. For n ≥ 1,

(i) C2n + C2n−1 = 0,
(ii) â2n

(
C2n+1 + C2n

)
= â2n−1

(
C2n−1 + C2n−2

)
.

From the previous theorem we get

(
C2n+1 − C2n−1

)
=

â2n−1

â2n

(
C2n−1 − C2n−3

)

=
â2n−1

â2n

â2n−3

â2n−2

(
C2n−3 − C2n−5

)

...

=
â2n−1

â2n

â2n−3

â2n−2

· · · â3

â4

(
C3 − C1

)
, n ≥ 1.

It is easy to check that C3 − C1 < 0. Thus we deduce that

C2n+1 − C2n−1 < 0, n ≥ 1.

THEOREM 3.4. For n ≥ 1

(i) C2n = 1 +
3

8n
+ O

( 1

n5/2

)
,

(ii) C2n−1 = −1 − 3

8n
+ O

( 1

n5/2

)
.

Proof. Taking into account the definition of the coefficients Cn and the properties (2.1)
and (2.2).

The coefficient A(x, n) plays a very important role in the study of the electrostatic in-
terpretation. So we study the behavior of its roots since they will provide us the location of
some fixed charges in the last section.

COROLLARY 3.5. For n ≥ 1, A(x, n) has two real roots and two simple conjugate
complex roots.

r1,2(n) = ±
√√√√ c(n)

2
(
a(n) +

√
a(n)2 + c(n)

) ,

r3,4(n) = ±i

√
a(n) +

√
a(n)2 + c(n)

2
,

where c(n) = − (Cn+1 + Cn) and a(n) = ân+1 + ân. Moreover, the real roots tend to the
origin and the complex roots tend to infinity when n → ∞. In particular, in the odd case
A(x, 2n + 1) has a double root at zero, s1 = 0, s2 = 0, and two simple conjugate complex
roots

s3(n) =
√

a(n)i,

s4(n) = −
√

a(n)i.

Proof. It follows after the computation of the roots of A(x, n) and applying the asymp-
totic behavior of the coefficients ân, (2.1), (2.2), and Theorem 3.4 for Cn.
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3.2. Raising operator . Using the TTRR and substituting it at the lowering operator
then the raising operator for the orthogonal polynomials p̂n is deduced.

THEOREM 3.6. p̂n(x) satisfies
[
x2 d

dx
− A(x, n)

ân
x + B(x, n)

]
p̂n(x) =

−A(x, n)

ân
p̂n+1(x).

Proof. From the TTRR we get

p̂n−1(x) =
x

ân
p̂n(x) − 1

ân
p̂n+1(x).

Substituting in the expression of the lowering operator

x2p̂′n(x) = A(x, n)

[
x

ân
p̂n(x) − 1

ân
p̂n+1(x)

]
− B(x, n)p̂n(x).

Thus our statement follows.
We will denote L2(x, n) the raising operator, i.e.

L2(x, n) =

[
x2 d

dx
− A(x, n)

ân
x + B(x, n)

]
.

4. Second-order linear differential equation. Combining raising and lowering oper-
ators we obtain a second order linear differential equation which is the key in order to give
the electrostatic interpretation for the zero distribution of p̂n. It is worth pointing out the role
of the lowering operator since the coefficient A(x, n) is involved in the second order linear
differential equation.

THEOREM 4.1. p̂n(x) satisfies the following second order differential equation

M(x, n)p̂′′n(x) + N(x, n)p̂′n(x) + R(x, n)p̂n(x) = 0, n ≥ 0,

where

M(x, n) = x4A(x, n),

N(x, n) = −x4A′(x, n) + A(x, n)
[
2x3 − 4x7

]
,

and R(x, n) can be explicitly given in terms of A(x, n) and B(x, n) (see (4.3)).
Proof. Applying the lowering operator (3.2) to p̂n(x)

(4.1)

[
x2 d

dx
+ B(x, n)

]
p̂n(x) = A(x, n)p̂n−1(x),

and the raising operator, see Theorem 3.6, for n − 1 to p̂n−1(x) one gets

[
x2 d

dx
− A(x, n − 1)

ân−1

x + B(x, n − 1)

]
p̂n−1(x) =

−A(x, n − 1)

ân−1

p̂n(x).

From (i) in Lemma 3.2 we get
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(4.2)

[
x2 d

dx
− 4x5 − B(x, n)

]
p̂n−1(x) =

−A(x, n − 1)

ân−1

p̂n(x).

Thus from (4.1)

1

A(x, n)

[
x2p̂′n(x) + B(x, n)p̂n(x)

]
= p̂n−1(x).

Applying (4.2) in both hand sides of the previous expression, we get

x2

[
− A′(x, n)

A2(x, n)

(
x2p̂′n(x) + B(x, n)p̂n(x)

)

+
1

A(x, n)

(
x2p̂′′n(x) + (2x + B(x, n))p̂′n(x) + B(x, n)p̂n(x)

)]

−4x5 + B(x, n)

A(x, n)

(
x2p̂′n(x) + B(x, n)p̂n(x)

)
= −A(x, n − 1)

ân−1

p̂n(x).

Our statement follows from

(4.3) R(x, n)=A(x, n)

[
B′(x, n)x2 − 4x5 +

A(x, n − 1)A(x, n)

ân−1

]
−A′(x, n)B(x, n)x2.

5. Electrostatic interpretation. In this section we propose an electrostatic model in
the presence of a varying external potential from the second order linear differential equation
deduced in the previous section. We will study the asymptotic behavior of the position of
the movable constant charges involved in the external field. As we have shown in section 2
odd Freud-type orthogonal polynomials coincide with the Freud polynomials of odd degree.
Thus the electrostatic interpretation for these polynomials comes from the electrostatics for
Freud polynomials. We denote {xn,k}1≤k≤n the zeros of p̂n(x). Evaluating the second-order
differential equation at xn,k

M(xn,k, n)p̂′′n(xn,k) + N(xn,k, n)p̂′n(xn,k) = 0, 1 ≤ k ≤ n.

Then

p̂′′n(xn,k)

p̂′n(xn,k)
= −N(xn,k, n)

M(xn,k, n)

=
A′(xn,k , n)

A(xn,k, n)
− 2

xn,k
+ 4x3

n,k, 1 ≤ k ≤ n.(5.1)

We must point out that A(x2n,k , 2n) 6= 0. Otherwise, from (3.1) we get p̂′2n(x2n,k) = 0,
which is a contradiction because the zeros of the polynomials are simple. In the odd case,
apparently it can be thought that we divide by zero because zero is a root of p̂2n+1(x) but the
equation (5.1) can be modified so that such a pathology does not appear.

Applying the following property (see [7] and [12])

p̂′′n(xn,k)

p̂′n(xn,k)
= −2

n∑

j=1,j 6=k

1

xn,j − xn,k
,
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the system (5.1) becomes

(5.2)
n∑

j=1,j 6=k

1

xn,j − xn,k
+

A′(xn,k, n)

2A(xn,k, n)
− 1

xn,k
+ 2x3

n,k = 0, 1 ≤ k ≤ n.

The total external potential V (x) is the sum of two kinds of potentials, one independent
of the number n of charges v(x) = x4/2, and the other one depending on n (varying ex-

ternal potential)
1

2
ln

∣∣A(x, n)

x2

∣∣. They correspond to the long and short range interactions,

respectively (see [7] for more details). Thus

V (x) =
x4

2
+

1

2
ln

∣∣A(x, n)

x

∣∣

=
x4

2
+

1

2
ln

∣∣x − r1(n)
∣∣ +

1

2
ln

∣∣x − r2(n)
∣∣(5.3)

+
1

2
ln

∣∣x − r3(n)
∣∣ +

1

2
ln

∣∣x − r4(n)
∣∣ − ln

∣∣x
∣∣, x ∈ R\{0}.

We consider the potential energy at x of a point charge q located at t is −q ln |x − t|.
Let introduce the following electrostatic model:

Consider the system of n movable positive unit charges at n distinct points
{xn,i}n

i=1 of the real line in the presence of the total external potential
V (x).

Notice that from (5.3) we can deduce that the roots of A(x, n) give us the position (de-
pending on n) of four fixed charges. Then the external field is generated by a fixed charge
+1 at the origin –due to a perturbation of the weight function– plus four fixed charges of
magnitude −1/2; two of them located at the real positions r1(n), r2(n), and the remaining
ones at the complex positions r3(n) and r4(n) (see Corollary 3.5). When n tends to infinity
r1(n) and r2(n) tend to the origin, consequently, they will be cancelled with the charge +1
at the origin, recovering the classical electrostatic interpretation in the limit. In the odd case,
we know A(x, 2n − 1) is reduced because of Theorem 3.3. From Corollary 3.5 we get the
external field is generated by two fixed charges at complex points, s3(n), s4(n). It is worthy
of pointing out the charge −1 from the varying external potential at the origin and the charge
+1 because of the mass point at the origin are cancelled each other. For that reason the zero
of p̂n(x) will be located at the origin. Again this case coincides with the classical electrostatic
interpretation.

We denote x = (xn,1, xn,2, ..., xn,n). The total energy of the system is

(5.4) E(x) =

n∑

k=1

V (xn,k) −
∑

1≤j<k≤n

ln |xn,j − xn,k |.

Notice that (5.2) is the derivative of the above energy function. This means the zeros
of the Freud-type orthogonal polynomials are critical points of the energy function. These
critical points could represent local or global equilibria. From the physical point of view,
these kind of possibilities could correspond to the stable or unstable equilibrium situations.
We understand the equilibrium as the zero gradient of the total energy of the system. By stable
equilibrium we mean the existence of a global minimum of the total energy. Nevertheless, the
study of the stability for the equilibrium configuration (global minimum), if any, requires a
deeper discussion, which we will omit here. Despite this fact, we partially solve this question
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focusing in the study of the local minima of the energy function (5.4). For this purpose, we
consider the Hessian matrix

H = (hi,j), hi,j =
∂2E

∂xi∂xj
,

and deduce when E(x) has local minima at the zeros of the polynomials p̂n(x). Indeed,
taking into account

hk,l=





1

2

∂

∂xn,k

(
A′(xn,k , n)

A(xn,k, n)

)
+

1

x2
n,k

+6x2
n,k+

n∑

j=1,j 6=k

1

(xn,j − xn,k)2
, if k = l,

− 1

(xn,l − xn,k)2
, if k 6= l,

the Hessian matrix is real and symmetric. If the Hessian matrix is strictly diagonally dominant
and its diagonal terms are positive, then, by corollary (7.2.3) [5], H is be positive definite. In
this case, we will have conditions that guarantee that the equilibrium position of the proposed
system will be reached at the zeros of p̂n(x). Thus, we need to guarantee the following
function to be positive

1

2

∂

∂xn,k

(
A′(xn,k, n)

A(xn,k, n)

)
+

1

x2
n,k

+ 6x2
n,k, 1 ≤ k ≤ n.

So we study the function

f(x, n) =
1

2

∂

∂x

(
A′(x, n)

A(x, n)

)
+

1

x2
+ 6x2

=
96x12 + 192a(n)x10 +

[
96a(n)2 − 48c(n) − 16

]
x8

[4x4 + 4a(n)x2 − c(n)]
2
x2

+
[16a(n) − 48a(n)c(n)]x6 +

[
−32c(n) + 6c(n)2

]
x4

[4x4 + 4a(n)x2 − c(n)]
2
x2

− 12a(n)c(n)x2 − c(n)2

[4x4 + 4a(n)x2 − c(n)]
2
x2

.

For n sufficiently large and using the expressions (2.1), (2.2) and Theorem 3.4 we con-
clude

f(x, n) ∼ 6x6 + 12a(n)x4 + [6a(n)2 − 1]x2 + a(n)

[x2 + a(n)]2
.

Thus, for every n we can find a λ such that the above Hessian matrix is positive definite.
Therefore the electrostatic equilibrium position in the presence of the external field is obtained
at the zeros {xn,i}n

i=1 of the Freud-type orthogonal polynomial p̂n(x), provided that the
particle interaction obeys a logarithmic potential. Otherwise we cannot assert that the total
energy achieves its local minimum (hence, yielding a stable electrostatic equilibrium) at the
zeros of the orthogonal polynomials. In this sense a further study is needed. For such a
purpose an estimate of n is demanded.
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