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SZEGO QUADRATURE AND FREQUENCY ANALYSIS*

LEYLA DARUIST, OLAV NJASTAD!, AND WALTER VAN ASSCHES$

Abstract. A series of papers have treated the frequency analysis problem by studying the zeros of orthogonal
polynomials on the unit circle with respect to measures determined by observations of the signal. In the recent paper
[3], a different approach was used, where properties of Szeg6 quadrature formulas associated with the zeros of para-
orthogonal polynomials with respect to the same measures were used to determine the frequencies and amplitudes
in the signal. In this paper we carry this approach further, and obtain more conclusive results.
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1. Introduction. We are concerned with signals of the form:

I
2(m) = Y (a;e™™ +a_;e =)
j=1

where [ is a positive integer, the constants w; are the frequencies which satisfy w_; = —wy,
(w; € (0,7)), the complex numbers «; are the amplitudes, where a_; = @;, and m is
discrete time.

The classical frequency analysis problem consists in determining the frequencies from
the N —truncated signal z x (m) defined by:

Yoy (age ™ +ajel=m) . 0<m < N-1
0, otherwise.

ox(m) = {

Once the frequencies are known, the amplitudes can be computed by solving a system of
linear equations.

There is a method developed by Jones, Njastad and Saff ([6]) for solving this problem
based on orthogonal polynomials on the unit circle. The zeros of such polynomials will
approach the frequency points 3; = e™i, j = +1,..., +I.

For simplicity, let us number the frequency points from 1 to ng, i.e., 5;, j =1,...,no.
(Then ng = 21).

The autocorrelation coefficients are the starting point of this method:

N-—1
) =" an(m)zn (m + k).
m=0

It can verified ([6]) that these quantities are the moments with respect to the distribution
function

dion (0) = | Xn ()] db, 6 € [—, 7],
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where X (z) := Zﬁi;é xn(m)z~™, i.e., one can write

K

(N) — 1 eiikedd)N(e).

o, Gy

Let {qb(N)( )}» be the sequence of monic orthogonal polynomials with respect to
2xO) Then, for n > n,y we have the following result ([9], [8]):

THEOREM 1.1. Let {Ny} be an arbitrary subsequence of the sequence of natural
numbers. Then, there exists a subsequence { Ny,,y } such that

no

hm gf)(Nk(U) ( ) Qn no( )H(Z_ﬂj)a

V—00 iy
uniformly on compact subsets of C, where the polynomial @,,—,,, of degree n — ny depends
upon the subsequence { Ny(,) }-

It follows, by Hurwitz’s Theorem, that n, zeros of anN"(”) will approach the frequency
points {3;}72, and the (n—no) remaining zeros will approach the zeros {z; } 7" of Q;,—»,,
which are sometlmes called the “uninteresting zeros”. By Theorem 1.1, it can be extracted
that, for n > ng, there exists a number K,, € (0, 1), independent of the subsequence, such
that |z;| < K,, forall j = 1,...,n — ng. Therefore, we can conclude that such zeros stay
away from the unit circle, which is very useful in the process of determining the unknown
frequencies.

However, nothing more is known about the value of the number K, and this is one reason
why we chose a different approach to treat the frequency analysis problem, based now on the
so-called para-orthogonal polynomials instead of orthogonal polynomials (see also the recent
paper [1]).

2. Preliminary results. A para-orthogonal polynomial with respect to the measure
‘WN(Q) is a polynomial of the form:

BV (z,7) = ¢V (2) + 76N (2), T € T,

where qS%N)* (2) = z”qS%N)(l/z) is the reciprocal polynomial. It is known, ([5]) that its zeros
are simple and lie on T. The following convergence result, similar to Theorem 1.1, holds (see
[7D):

THEOREM 2.1. Let {N.}, be an arbitrary subsequence of the sequence of natural
numbers. Then, there exists a subsequence { Ny, } such that, for all n > n,

no

lim Blek(U))(Z7T) = Whno(z,7) H(z — B3j) = By(z,7), (Limit polynomial),
j=1

uniformly on compact subsets of C, where the polynomial W,,_,,, of degree n — ny depends

upon the subsequence { Ny, }, and can be expressed, in terms of the polynomial @, .,

givenin Theorem 1.1, as
W’n.fno (Z7T) = anﬂo (Z) + TQZ—nO (’Z)t (|T| = 1)

Thus, it follows that some of the zeros {z; New) n_, of B will converge to the fre-
quency points {/3;}72, and the rest converge to the zeros {3, }_ 41 Of Wi _n,. The ques-
tion now is how to dlstlngmsh the frequency points from the zeros of W,,—n,. Note that a
frequency point may also be a zero of W,,_,,, .
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For this purpose, the corresponding weights {A.E.N)}?Zl in the Szeg6 quadrature formula

([5]) with respect to %(9), were used in [3]. These quadrature weights will also provide

useful estimates of the modulus of the squared amplitudes {|«; |2};?;1 in the signal as can be
seen in the following result (see [3] for details).

THEOREM 2.2. Let the situation be as in Theorem 2.1, and assume that the limit poly-
nomial B,, has at most double zeros. Then, the following statements are true:

(i) Let 5, be a frequency point which is a simple zero of the limit polynomial B,, (i. e,
Wi—no (85, 7) # 0), and let lim, zj.v"(”) = f3;. Then, for the corresponding weights one
has

lim )\jyk(") = |aj|2.

V— 00

(ii) Let 8; be a frequency point which is a double zero of the limit polynomial B,, (i. e,
Wano (B5.7) = 0, Wi_,..(53;,7) # 0), then, by Theorem 2.1, let {=, " },,, and {z}, "' },,

n—mng J2

be two distinct sequences such that lim,,_, o z;\j:(") = fj, m = 1,2. Then, for the corre-
sponding sequences of weights one has
(2.2) Tim (A 4+ A0 ) = [y

(iii) Let 8; be a zero of the limit polynomial B,, which is not a frequency point, and let
lim, — 00 zjv“”) = (3;. Then, for the weights one has

lim A, =0,
V—00
Thus, for zeros tending to zeros of W,,_,,, which are not frequency points, the corre-
sponding weights will tend to zero. Observe that this result does not depend on the multiplic-
ities of the zeros. However, in the next Section, we will prove that W,,_,,, has simple zeros
and consequently, a frequency point will be a zero of the limit polynomial B,, of multiplicity
2 at most.

3. Main result. THEOREM 3.1. Let the situation be asin Theorem 2.1. Then, the poly-

o (New) . -
nomial Wn,,’io isthe (n —no)th para-orthogonal polynomial with respect to some positive
measure p, on T.

Proof. Let {qSSIN)} be the sequence of monic orthogonal polynomials with respect to
4yn(®) By Theorem 1.1

no

VH_{EQ (ZSSsz(V))(Z) = Qnny (2) H(z — ﬁj)
Jj=1

On the other hand, by Theorem 2.1, we know that the polynomials W,,_,,, and @, _,, are
related by

Wang (2,7) = Qnno (2) + 7Q5_p, (2), (I7] = 1)

Hence, it is sufficient to show that the polynomial @,,—,,, is orthogonal with respect to some
positive measure on T.
For simplicity, let

no

(3.1) pno(2) = [J (= = 85)

Jj=1
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and p,,(2) = Qn_no(2)pny(2), forn > ng.
Let 65" — ¢;Nk<">>(0). Then, taking into account that the frequency points {3;}72,
appear in complex conjugate pairs, one has

lim (Sv(sz(V)) = Qn—no H ﬁ] Qn— ng ) = 5n—no'

V—00

Since the zeros {z;}7_,, . Of Qn_n, satisfy |z;| < 1, it follows that [0, —n, | < 1.
From the recursmn formula for orthogonal polynomlals (see [11]), we have

Ni(w Ni(w (Ny(o Ny ™
1) (2) = 2R () 4 gUTRED gV ()

By letting v — oo, we find

(3.2) Pn+1(2) = 2Pn(2) + On—no+197(2)-
(A similar argument is used in [10]). Note that p;(z) = p;, (2)Q5_ ., (2) =
P (2)Q,—ny (2)-
By cancellation of p,,, in (3.2) one has
Qn+1—no (2) = ZQn—no (2) + 5n—n0+1Q:1_n0 (Z)
With p = n — ng > 0, the last may be written as
@p+1(2) = 2Qp(2) + 6p+1Q;(2), p=0,1,....
Here |6,| < 1.
Therefore, by a Favard-type theorem (see [5], [4]), there exists a positive measure p on
T such that {Q, }, are the corresponding (monic) orthogonal polynomials. 0

Thus, all the zeros of the limit polynomial B,, that are not frequency points, are simple
and the corresponding weights tend to zero. The frequency points are either simple or double
zeros of the limit polynomial B,,. If a frequency point 3; is a simple zero, the weights will
tend to the squared modulus |«;|? of the corresponding amplitude and in the double zero
case, it is now the sum of the corresponding weights that tends to |« ;|2.

Therefore, in all the cases, the behaviour of the weights allows us to know which zeros
tend to the frequency points and which zeros do not. Furthermore, the weights will also
determine the modulus of the amplitudes.

4. Related questions. From Theorem 3.1 we can ask ourselves the following two ques-
tions:

4.1. Orthogonality of the polynomials Q,,—,. Note that in the proof of Theorem 3.1,
we showed only the existence of a measure . for which the polynomial W,,_,,, is para-
orthogonal. Thus, since this polynomial depends upon the subsequence chosen, how can we
determine such a measure in each case?

For simplicity, we now write the signal as

ng
(4.1) z(m) = Z e,
j=1

sothat ayix = a—p and w4, = w_i for 1 < k < I. Then X x(z) can be written as

iNw;

N-—1 no e
_ E xN(m E a] E ezwjm -m __ Z_(N 1) E
ezwj
m=0 m=
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. . . _(N— a; BY
!f We put 3; = €'/, we can write Xn(2) =220 525 — 2 W=D 5 Z]_—Bf] If we
introduce the polynomials L,,,_; and M,,,_; n of degree at most ny — 1 defined by the

formulas

i @ Lpy—1(2) i a; By _ Myy—1,n(2)

=1 = /())j B Pno (Z) J=1 Z = Bj a Pno (Z)

then

2L —1(2) — z’(Nfl)MnO,LN(z)

(42) Avlz) = Pno(2)

Observe that we now have

1no (€)X ()2 = [Lng-1(e) = €N M,y ()
= [Lng-1(€)* + | Mpo—1,n (")
4.3) _ezNGLn071Mn0717N _ —iNO M1y,

The polynomials L,,,_; are independent of the number of samples N, but the polynomials

M,,,—1,~ depend on this N. But clearly |M,,,—1,~| remains bounded on compact sets of

the complex plane, hence every subsequence { NNy} has a subsequence {Ny(,)} such that

Miy—1,n,,, (") converges uniformly to M, (e*?) for all 0 € [0, 27], where M,,, 1 is

now a polynomial independent of IV, but it may depend on the subsequence { Ny, }.
LEMMA 4.1. Suppose { Ny, } is a subsequence of integers, such that

(4.4) Tim [ Mog—1,8,,,(€") = Mny—1(e")] = 0, uniformly on [0, 27].

Then the measures |pn,(e”)*| Xy, (e”)[>df converge weakly to the measure
(1 Lny—1(€”)? + [ My —1(e')[?) db.
Proof. If we use (4.4) then we already see that we have

Tim (|Lng—1()* + [ Mag—1,5,,, (€)?) = [Lung—1(e")* + [Mo—1 () .

2
Furthermore, by the Riemann-Lebesgue lemma we know that lim f(8)eT N9 a9 =0,

for every f € L'. This means, also using (4.4), that for every continuous f on the unit circle,
we have

27
lim f(@)eiNWLno,l(ei")Mno,l,Nw (ei) dh = 0,
V— 00 O
and similarly
27 ) - )
lim F@)e N L 1 (e1) My—1,5,,, (€") dO = 0.
V—00 O
This gives the required weak convergence. 0

We are now in position to prove the following
THEOREM 4.2. Let { N} be a subsequence such that

(45) Jim ¢ (2) = Qnny (2)png (2).
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Then, the polynomial @Q,,_.,, is orthogonal with respect to the measure (| L,,,_1(e*)|? +

| Mp—1(")[?) do.
Proof. For every monic polynomial g,,_,,, of degree n — ng we have

2 2
(4.6) / |6 ()P X () do S/ [dn—no (€")*|pno () *| X () b,
0 0
where p,,, is given as in (3.1). This is a consequence of the extremal property of monic
orthogonal polynomials.
We will use the identity: [ |f(6)|du(0) = 2 [ f7(60) du(8) — [ f(6) du(6), where f

is a real and p-measurable function, p a positive measure on the real line (in our case,
we will use measures on [0,27]), and f*(¢) = max{0, f(¢)}. If we choose f(f) =

1o (€9)Qn—ny (€10)[2 = |6 ()2 and dpu(6) = | X n, (¢i?)|2 6, then this gives
27 27 4
| 1680 = o P1QumnalP| 102 =2 [ (100 1@ = 66 ) 1, 2
27
[ (1900 PIQumsal? = 16 ) X 2t

2 +
<2 [ (100 1@ue = 162F) 1w, 2,

where the inequality follows from (4.6), with g,,—n, = Qn—n,-
For every 6 € [0, 2] we have

Jr
0= (10no 1 Qnnal = 168)12) " < 9y 21Quno
and furthermore, it follows from (4.2) that
(47) |pn0|2|XNk|2 = |Ln0*1 - eiiNkeMHO*LNkP < 2(|Ln0*1|2 + |Mn0*1,Nk|2)'

Recall that | M,,,—1,n/| is bounded on the unit circle, independent of V.
On the other hand, by (4.5) and (4.7), one can conclude that

+
Jim (|<;S£LN’C>|2 - |pn0|2|Qn_n0|2|) | X, |? = 0, except at the frequency points.

We are therefore allowed to use Lebesgue’s dominated convergence theorem to the se-
+
quence (|pno|2|c,2n,m,|2 - |¢£LN’“)|2) | X v, |? to conclude that

2w +
i [ (1on1@un = [679F) " X 2 ds =,

and therefore also

2m
@8) din [ 680 = o P1Quos | X, [ 8 =0,

Now we return to (4.6) and use the result from (4.8) to conclude that

2m 2m
khm/ |pno|2|C2n—710|2|*XNk|2d9S hm/ |pn0|2|qn—n0|2|XNk|2d9'
—o0 Jg k—oo Jq
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In particular, the sequence { N } has a subsequence { Ny, } for which (4.4) holds. Now use
Lemma 4.1, then we find

2m

21
/0 Qoo 2o a2 + [ M1 ) dB < / o 2 (Lo [* + (Mg 1 |?) db,

and this holds for every monic polynomial g,,—,, of degree n — ng. But there is only one
monic polynomial @Q,,—,,, that satisfies this inequality for all ¢,,_,, and that is the monic
orthogonal polynomial for the measure with density |L,,,_1|? + |M,,_1|?. This is what we
wanted to prove. d

REMARK 4.3. Every subsequence for which (4.4) holds, will then produce a measure
with respect to which @Q,,—_,, isorthogonal. But, by the Favard-type theoremin Section 3, the
measure in each case must be the same.

Let us consider now some examples:

Example 1: Consider the signal zx (m) = e™™™/* 4 ¢="m7/4 = 2cos(mm/4), 0 <
m < N — 1. In this case

1 1 22 — V2

. ___ — :
» — eim/4 2 — e—im/4 22 \/§Z+ 1

so that L (z) = 2z — v/2. We also have

eimN/4 N e N/4 2z co8(mN/4) — 2cos(m(N —1)/4)
Z_eiﬂ/4 Z_efiﬂ/él - 22—\/§Z+1 5

so that M7 n(z) = 2z cos(mN/4) — 2 cos(m(N —1)/4).

For Nj, = 4k we see that M 4x(2) = (—1)¥(2z — +/2). This sequence of functions
is not convergent but one can extract two subsequences, say {M g, (z) = 2z — v/2} and
{Mi s114(2) = —(22— V/2)}, that converge to M1 (z) = 22 — v2and M{? (2) = — (22—
v/2), respectively. But those limiting functions must produce the same measure, (observe that

P = )

In this case we have |M; 4x(2)|? = |L1(2)|?. Hence the polynomials lel,)no, which
appear as limits of the subsequence N, = 4k, are orthogonal polynomials for the measure
with density |L1(e%)|2 = 6 — 4v/2 cos 6. This can be checked for Q$" (2) = 22+ 32,12

If we take N, = 4k + 2, then M 4542(2) = (—1)*1y/2. Now, we would have
the subsequences {M; g, 42(2) = —v/2} and {M;s,16(2) = +/2}, which converge to
MD(z) = —v2and MP (z) = /2, respectively.

In this case, we can write | Ly (e?)|2 + | M ap42(e?)|> = 8 — 4y/2 cos 6, and the poly-
nomials fo_)no which appear as limits for this subsequence are orthogonal for this density.
This can be checked for Q7 (z) = 22 + 2¥22 4 L.

When N;, = 4k + 1 the limits are the same as those for the subsequence Ny, = 4k. When
N, = 4k + 3 the limits are the same as in the case for N, = 4k + 2.

Example 2: Consider now the signal = (m) = e™™/3 4 e="™m7/3 = 2cos(mm/3),
0 <m < N — 1. Inthis case

1 1 2z—1

z—e”/?’—’—z—e*i“/?’ 22— 241
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sothat Li(z) = 2z — 1 and |L1(e?)|? = 5 — 4 cos §. We also have

eimN/3 e ™N/3 2zcos8(mN/3) — 2 cos(m(N —1)/3)

z—e~in/3 22—z+1

Z_eiﬂ'/S ’

so that M1 n(z) = 2z cos(mN/3) — 2 cos(m(N — 1/3).

When Nj, = 3k + 1 then Mj 3,41(2) = (=1)*(z — 2), so that |[M; 3141(e?)|? =
5 — 4cosf = |Li(e?)|?>. The polynomials QS}TLO for this subsequence are orthogonal
polynomials for the measure with density 5 — 4cosf. This can indeed be verified for
QWM (z) = 2+ 2, or for Q5" (z) = 22 4+ 192 1 L. The subsequence N = 3k gives the
same polynomials.

When Ny = 3k + 2 then Mjspi0(2) = (=1)*1(z + 1). This means that
| M1 3542(e?)|? = 2 4+ 2cosf. The polynomials fo_)no for this subsequence are thus or-
thogonal polynomials for the measure with density |L1|? + |M;]? = 7 — 2cosf. This can

indeed be checked for Q{7 (z) = = + L and for Q5” (z) = 22 + Lz + L.

4.2. Weights at a double zero. Suppose that a frequency point 3;, for some j =

1,...,ng,isazeroof the limit polynomial B,, of multiplicity 2. As we stated before, there ex-
ist two sequences {z;\][’“”) },,and {zﬁ’“”},, of zeros of B,(LN’““)) such that lim,,_, z;::“”) =

B;, m = 1,2. And the corresponding sequences of weights {/\ﬁ’“(” },,and {Ag“”) 1, satisfy
(2.1).

The question is: What happens to /\ﬁ“”) and )\g“”) asv — 0o ?

Example 1: Consider the signal zy(m) = e™™/2 4+ ¢=™7/2 0 < m < N — 1.
Then, the amplitudes are a; = ay = 1, and the frequency points are §; = e'™/2 = i,
By = e ™2 = —i (pa(2) = 2% +1).

Here we find that limy o, B2 (2,7) = (2% + 7)(2% + 1).

Therefore, in this case W3 (2, 7) = 2347, and when 7 = —i the frequency point 3, = —i
is a double zero.

For k = 2500, 25000, 250000 we have computed the corresponding zeros of ng“ (z,7)
which are displayed in the following table:

k = 2500 k = 25000 k = 250000

—0.0115455 — 0.99993331

—0.00365143 — 0.99999333:

—0.00115469 — 0.999999333:¢

0.0115455 — 0.9999333:

0.00365143 — 0.999993331

0.00115469 — 0.9999993331%

—0.86600616 + 0.50003332:

—0.86602347 + 0.50000333:

—0.86602521 + 0.50000033:

0.86600616 + 0.50003332:

1

0.86602347 + 0.500003334
1

0.86602521 + 0.50000033:
1

From these results we can say that the two first numbers in each column would be the
two sequences of points that approach 5 = —i.
For the corresponding weights in the Szegd quadrature formula we obtained the follow-

ing results:

k = 2500

k = 25000

k = 250000

0.50007221

0.50000722

0.50000072

0.50007221

0.50000722

0.50000072

0.00017774

0.00001777

0.00000177

0.00017774

0.00001777

0.00000177

0.9999

0.99999

0.999999
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The entries of this table indicate that limg o A5 = limg o A3F T = 0.5

Example 2: Let us consider now the signal z(m) = e~""™/4 4 ¢imm/4_|n this case,
the amplitudes are or; = o = 1, and the frequency points are 5, = e™/4, By = e~ i™/4,

(p2(2) = 22 — V22 + 1).
For N = 4k we have that

lim Bi*(z,7) = [ 2* —|—£ - 1+£ —z (22 —V2z+1).
Therefore, when 7 = —2 + —2 the frequency point 5, = e "/ is a double zero.

For k£ = 100, 1000, 10000 we calculated the corresponding zeros of B4*(z, 7). They are

displayed in the foIIowmg table

k =100

k = 1000

k = 10000

0.6593645 — 0.7518233¢

0.6922122 — 0.7216939¢

0.7024190 — 0.7117636¢

0.7526900 — 0.6583741

0.7217858 — 0.6921164¢

0.7117729 — 0.7024095¢

—0.9570064 + 0.29006671¢

—0.9567071 + 0.29105221

—0.9566772 + 0.29115068¢

0.704267 + 0.7099344

0.7068238 + 0.70738961

0.7070784 + 0.7071350¢

Observe that the two first numbers in each column would be the two sequences of points
that approach (, = e~7/4.
For the weights we obtained the following results:

k =100
0.5011506
0.5017167
0.0019164
0.9952162

k = 1000
0.5000509
0.5002369
0.0001918
0.9995201

k = 10000
0.4999848
0.5000439
0.0000191
0.9999520

The above table indicates again that limy_. ., A4*

1 = llmkﬁoo A

=05

As we already saw, the last two examples indicate that both sequences of weights tend to
the same number which coincides with half of the corresponding squared amplitudes, i. e.,

2
Nk( ) — lim )\J_Vk(u) _ |O‘j|

vooo  J2 2

(4.9 lim A,

V—00

= 0.5.

On the other hand, observe that in both cases we have chosen real amplitudes and the fre-
quencies as rational multiples of 7. It could happen that for this choice, the subsequences
{2k + 1} and {4k}, respectively, may work in order to obtain this particular result given by
(4.9). For this reason we will consider the following example:

Example 3: Let us consider now the signal z:(1m) = (1 +4)ei™™/V2 4 (1 —i)e~imm/V2,
(ng = 2), where the amplitudes a; = 1 + ¢ and a = 1 — 4 are complex numbers and
the arguments of the frequency points, 51 = ¢™/V2 and B, = e~ "/V2, are not rational
multiples of «.

We chose the subsequence N = 2k and n = 3. In this case it was difficult to obtain an
explicit expression of B2*(z, 7), but what we know is that

khm B2 (z,7) =

(a4 z+7(1+az))(2? — 2cos ﬁz +1),
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where a = limy_, . $3%(0). If we take k = 10°, we will have a ~ —0.169002.
Thus, if we choose 7 ~ 0.779219 — 0.626751 4, then the frequency point
81 ~ —0.60569 + 0.79569 ¢ is a double zero.
The corresponding zeros and weights in this case are given in the following table:

Zeros Weights
—0.6057280819 4 0.7956717229¢ 0.9999976166
—0.6056716509 4 0.7957146795¢ 1.0000023851
—0.6056998665 — 0.7956932019¢ 2.0000000001

Observe that now |1 |? = 2 and the above table indicates again the following:

lai?

: 2k _ 1: 2k __
151;0 /\jl - klggo /\jz -9 L.

Thus, the above numerical results suggest (at least under suitable restrictions) that:

. . Niw Neew |2
Conjecture: lim, ., A, ** ViG) Iaél '

" = lim,_, o /\.72
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