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SZEGŐ QUADRATURE AND FREQUENCY ANALYSIS∗

LEYLA DARUIS†, OLAV NJÅSTAD‡, AND WALTER VAN ASSCHE§

Abstract. A series of papers have treated the frequency analysis problem by studying the zeros of orthogonal
polynomials on the unit circle with respect to measures determined by observations of the signal. In the recent paper
[3], a different approach was used, where properties of Szegő quadrature formulas associated with the zeros of para-
orthogonal polynomials with respect to the same measures were used to determine the frequencies and amplitudes
in the signal. In this paper we carry this approach further, and obtain more conclusive results.
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1. Introduction. We are concerned with signals of the form:

x(m) =

I
∑

j=1

(

αje
iωjm + α−je

iω−jm
)

,

where I is a positive integer, the constants ωj are the frequencies which satisfy ω−j = −ωj ,
(ωj ∈ (0, π)), the complex numbers αj are the amplitudes, where α−j = αj , and m is
discrete time.

The classical frequency analysis problem consists in determining the frequencies from
the N−truncated signal xN (m) defined by:

xN (m) =

{
∑I

j=1

(

αje
iωjm + α−jeiω−jm

)

, 0 ≤ m ≤ N − 1

0, otherwise.

Once the frequencies are known, the amplitudes can be computed by solving a system of
linear equations.

There is a method developed by Jones, Njåstad and Saff ([6]) for solving this problem
based on orthogonal polynomials on the unit circle. The zeros of such polynomials will
approach the frequency points βj = eiωj , j = ±1, . . . ,±I.

For simplicity, let us number the frequency points from 1 to n0, i.e., βj , j = 1, . . . , n0.
(Then n0 = 2I).

The autocorrelation coefficients are the starting point of this method:

µ
(N)
k =

N−1
∑

m=0

xN (m)xN (m+ k).

It can verified ([6]) that these quantities are the moments with respect to the distribution
function

dψN (θ) =
∣

∣XN

(

eiθ
)
∣

∣

2
dθ, θ ∈ [−π, π],
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where XN (z) :=
∑N−1
m=0 xN (m)z−m, i.e., one can write

µ
(N)
k =

1

2π

∫ π

−π
e−ikθdψN (θ).

Let {φ(N)
n (z)}n be the sequence of monic orthogonal polynomials with respect to

dψN (θ)
N . Then, for n ≥ n0 we have the following result ([9], [8]):

THEOREM 1.1. Let {Nk}k be an arbitrary subsequence of the sequence of natural
numbers. Then, there exists a subsequence {Nk(ν)} such that

lim
ν→∞

φ
(Nk(ν))
n (z) = Qn−n0(z)

n0
∏

j=1

(z − βj),

uniformly on compact subsets of C, where the polynomial Qn−n0 of degree n − n0 depends
upon the subsequence {Nk(ν)}.

It follows, by Hurwitz’s Theorem, that n0 zeros of φ
(Nk(ν))
n will approach the frequency

points {βj}n0

j=1 and the (n−n0) remaining zeros will approach the zeros {zj}n−n0

j=1 ofQn−n0 ,
which are sometimes called the “uninteresting zeros”. By Theorem 1.1, it can be extracted
that, for n ≥ n0, there exists a number Kn ∈ (0, 1), independent of the subsequence, such
that |zj | < Kn, for all j = 1, . . . , n − n0. Therefore, we can conclude that such zeros stay
away from the unit circle, which is very useful in the process of determining the unknown
frequencies.

However, nothing more is known about the value of the numberKn and this is one reason
why we chose a different approach to treat the frequency analysis problem, based now on the
so-called para-orthogonal polynomials instead of orthogonal polynomials (see also the recent
paper [1]).

2. Preliminary results. A para-orthogonal polynomial with respect to the measure
dψN (θ)
N is a polynomial of the form:

B(N)
n (z, τ) = φ(N)

n (z) + τφ(N)∗

n (z), τ ∈ T,

where φ(N)∗

n (z) = znφ
(N)
n (1/z) is the reciprocal polynomial. It is known, ([5]) that its zeros

are simple and lie on T. The following convergence result, similar to Theorem 1.1, holds (see
[7]):

THEOREM 2.1. Let {Nk}k be an arbitrary subsequence of the sequence of natural
numbers. Then, there exists a subsequence {Nk(ν)} such that, for all n > n0,

lim
ν→∞

B
(Nk(ν))
n (z, τ) = Wn−n0(z, τ)

n0
∏

j=1

(z − βj) = Bn(z, τ), (Limit polynomial),

uniformly on compact subsets of C, where the polynomial Wn−n0 of degree n− n0 depends
upon the subsequence {Nk(ν)}, and can be expressed, in terms of the polynomial Qn−n0

given in Theorem 1.1, as

Wn−n0(z, τ) = Qn−n0(z) + τQ∗
n−n0

(z), (|τ | = 1).

Thus, it follows that some of the zeros {zNk(ν)

j }nj=1 of B
(Nk(ν))
n will converge to the fre-

quency points {βj}n0

j=1 and the rest converge to the zeros {βj}nj=n0+1 of Wn−n0 . The ques-
tion now is how to distinguish the frequency points from the zeros of Wn−n0 . Note that a
frequency point may also be a zero of Wn−n0 .
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For this purpose, the corresponding weights {λ(N)
j }nj=1 in the Szegő quadrature formula

([5]) with respect to dψN (θ)
N , were used in [3]. These quadrature weights will also provide

useful estimates of the modulus of the squared amplitudes {|αj |2}n0

j=1 in the signal as can be
seen in the following result (see [3] for details).

THEOREM 2.2. Let the situation be as in Theorem 2.1, and assume that the limit poly-
nomial Bn has at most double zeros. Then, the following statements are true:

(i) Let βj be a frequency point which is a simple zero of the limit polynomial Bn (i. e.,

Wn−n0(βj , τ) 6= 0), and let limν→∞ z
Nk(ν)

j = βj . Then, for the corresponding weights one
has

lim
ν→∞

λ
Nk(ν)

j = |αj |2 .

(ii) Let βj be a frequency point which is a double zero of the limit polynomial Bn (i. e.,

Wn−n0(βj , τ) = 0, W ′
n−n0

(βj , τ) 6= 0), then, by Theorem 2.1, let {zNk(ν)

j1
}ν , and {zNk(ν)

j2
}ν

be two distinct sequences such that limν→∞ z
Nk(ν)

jm
= βj , m = 1, 2. Then, for the corre-

sponding sequences of weights one has

lim
ν→∞

(

λ
Nk(ν)

j1
+ λ

Nk(ν)

j2

)

= |αj |2 .(2.1)

(iii) Let βj be a zero of the limit polynomial Bn which is not a frequency point, and let

limν→∞ z
Nk(ν)

j = βj . Then, for the weights one has

lim
ν→∞

λ
Nk(ν)

j = 0.

Thus, for zeros tending to zeros of Wn−n0 which are not frequency points, the corre-
sponding weights will tend to zero. Observe that this result does not depend on the multiplic-
ities of the zeros. However, in the next Section, we will prove that Wn−n0 has simple zeros
and consequently, a frequency point will be a zero of the limit polynomialBn of multiplicity
2 at most.

3. Main result. THEOREM 3.1. Let the situation be as in Theorem 2.1. Then, the poly-

nomialW
(Nk(ν))
n−n0

is the (n−n0)th para-orthogonal polynomial with respect to some positive
measure µ on T.

Proof. Let {φ(N)
n } be the sequence of monic orthogonal polynomials with respect to

dψN (θ)
N . By Theorem 1.1

lim
ν→∞

φ
(Nk(ν))
n (z) = Qn−n0(z)

n0
∏

j=1

(z − βj).

On the other hand, by Theorem 2.1, we know that the polynomials Wn−n0 and Qn−n0 are
related by

Wn−n0(z, τ) = Qn−n0(z) + τQ∗
n−n0

(z), (|τ | = 1).

Hence, it is sufficient to show that the polynomialQn−n0 is orthogonal with respect to some
positive measure on T.

For simplicity, let

ρn0(z) =

n0
∏

j=1

(z − βj)(3.1)
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and ρn(z) = Qn−n0(z)ρn0(z), for n > n0.

Let δ
(Nk(ν))
n = φ

(Nk(ν))
n (0). Then, taking into account that the frequency points {βj}n0

j=1

appear in complex conjugate pairs, one has

lim
ν→∞

δ
(Nk(ν))
n = Qn−n0(0)

n0
∏

j=1

βj = Qn−n0(0) := δn−n0 .

Since the zeros {zj}nj=n0+1 of Qn−n0 satisfy |zj | < 1, it follows that |δn−n0 | < 1.
From the recursion formula for orthogonal polynomials (see [11]), we have

φ
(Nk(ν))
n+1 (z) = zφ

(Nk(ν))
n (z) + δ

(Nk(ν))
n+1 φ

(Nk(ν))
∗

n (z).

By letting ν → ∞, we find

ρn+1(z) = zρn(z) + δn−n0+1ρ
∗
n(z).(3.2)

(A similar argument is used in [10]). Note that ρ∗n(z) = ρ∗n0
(z)Q∗

n−n0
(z) =

ρn0(z)Q
∗
n−n0

(z).
By cancellation of ρn0 in (3.2) one has

Qn+1−n0(z) = zQn−n0(z) + δn−n0+1Q
∗
n−n0

(z).

With p = n− n0 ≥ 0, the last may be written as

Qp+1(z) = zQp(z) + δp+1Q
∗
p(z), p = 0, 1, . . . .

Here |δp| < 1.
Therefore, by a Favard-type theorem (see [5], [4]), there exists a positive measure µ on

T such that {Qp}p are the corresponding (monic) orthogonal polynomials.
Thus, all the zeros of the limit polynomial Bn that are not frequency points, are simple

and the corresponding weights tend to zero. The frequency points are either simple or double
zeros of the limit polynomial Bn. If a frequency point βj is a simple zero, the weights will
tend to the squared modulus |αj |2 of the corresponding amplitude and in the double zero
case, it is now the sum of the corresponding weights that tends to |αj |2.

Therefore, in all the cases, the behaviour of the weights allows us to know which zeros
tend to the frequency points and which zeros do not. Furthermore, the weights will also
determine the modulus of the amplitudes.

4. Related questions. From Theorem 3.1 we can ask ourselves the following two ques-
tions:

4.1. Orthogonality of the polynomials Qn−n0 . Note that in the proof of Theorem 3.1,
we showed only the existence of a measure µ for which the polynomial Wn−n0 is para-
orthogonal. Thus, since this polynomial depends upon the subsequence chosen, how can we
determine such a measure in each case?

For simplicity, we now write the signal as

x(m) =

n0
∑

j=1

αje
iωjm,(4.1)

so that αI+k = α−k and ωI+k = ω−k for 1 ≤ k ≤ I . Then XN (z) can be written as

XN(z) =

N−1
∑

m=0

xN (m)z−m =

n0
∑

j=1

αj

N−1
∑

m=0

eiωjmz−m = z−(N−1)
n0
∑

j=1

αj
zN − eiNωj

z − eiωj
.
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If we put βj = eiωj , we can write XN (z) = z
∑n0

j=1
αj

z−βj
− z−(N−1)

∑n0

j=1

αjβ
N
j

z−βj
. If we

introduce the polynomials Ln0−1 and Mn0−1,N of degree at most n0 − 1 defined by the
formulas

n0
∑

j=1

αj
z − βj

=
Ln0−1(z)

ρn0(z)
,

n0
∑

j=1

αjβ
N
j

z − βj
=
Mn0−1,N (z)

ρn0(z)
,

then

XN (z) =
zLn0−1(z) − z−(N−1)Mn0−1,N (z)

ρn0(z)
.(4.2)

Observe that we now have

|ρn0(e
iθ)|2|XN (eiθ)|2 = |Ln0−1(e

iθ) − e−iNθMn0−1,N (eiθ)|2

= |Ln0−1(e
iθ)|2 + |Mn0−1,N (eiθ)|2

−eiNθLn0−1Mn0−1,N − e−iNθLn0−1Mn0−1,N .(4.3)

The polynomials Ln0−1 are independent of the number of samples N , but the polynomials
Mn0−1,N depend on this N . But clearly |Mn0−1,N | remains bounded on compact sets of
the complex plane, hence every subsequence {Nk} has a subsequence {Nk(ν)} such that
Mn0−1,Nk(ν)

(eiθ) converges uniformly to Mn0−1(e
iθ) for all θ ∈ [0, 2π], where Mn0−1 is

now a polynomial independent of N , but it may depend on the subsequence {Nk(ν)}.
LEMMA 4.1. Suppose {Nk(ν)} is a subsequence of integers, such that

lim
ν→∞

|Mn0−1,Nk(ν)
(eiθ) −Mn0−1(e

iθ)| = 0, uniformly on [0, 2π].(4.4)

Then the measures |ρn0(e
iθ)|2|XNk(ν)

(eiθ)|2 dθ converge weakly to the measure
(|Ln0−1(e

iθ)|2 + |Mn0−1(e
iθ)|2) dθ.

Proof. If we use (4.4) then we already see that we have

lim
ν→∞

(

|Ln0−1(e
iθ)|2 + |Mn0−1,Nk(ν)

(eiθ)|2
)

= |Ln0−1(e
iθ)|2 + |Mn0−1(e

iθ)|2.

Furthermore, by the Riemann-Lebesgue lemma we know that lim
N→∞

∫ 2π

0

f(θ)e±iNθ dθ = 0,

for every f ∈ L1. This means, also using (4.4), that for every continuous f on the unit circle,
we have

lim
ν→∞

∫ 2π

0

f(θ)eiNk(ν)θLn0−1(e
iθ)Mn0−1,Nk(ν)

(eiθ) dθ = 0,

and similarly

lim
ν→∞

∫ 2π

0

f(θ)e−iNk(ν)θLn0−1(eiθ)Mn0−1,Nk(ν)
(eiθ) dθ = 0.

This gives the required weak convergence.
We are now in position to prove the following
THEOREM 4.2. Let {Nk} be a subsequence such that

lim
k→∞

φ(Nk)
n (z) = Qn−n0(z)ρn0(z).(4.5)
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Then, the polynomial Qn−n0 is orthogonal with respect to the measure (|Ln0−1(e
iθ)|2 +

|Mn0−1(e
iθ)|2) dθ.

Proof. For every monic polynomial qn−n0 of degree n− n0 we have

∫ 2π

0

|φ(N)
n (eiθ)|2|XN (eiθ)|2 dθ ≤

∫ 2π

0

|qn−n0(e
iθ)|2|ρn0(e

iθ)|2|XN (eiθ)|2 dθ,(4.6)

where ρn0 is given as in (3.1). This is a consequence of the extremal property of monic
orthogonal polynomials.

We will use the identity:
∫

|f(θ)| dµ(θ) = 2
∫

f+(θ) dµ(θ) −
∫

f(θ) dµ(θ), where f
is a real and µ-measurable function, µ a positive measure on the real line (in our case,
we will use measures on [0, 2π]), and f+(t) = max{0, f(t)}. If we choose f(θ) =

|ρn0(e
iθ)Qn−n0(e

iθ)|2 − |φ(Nk)
n (eiθ)|2 and dµ(θ) = |XNk

(eiθ)|2 dθ, then this gives

∫ 2π

0

∣

∣

∣
|φ(Nk)
n |2 − |ρn0 |2|Qn−n0 |2

∣

∣

∣
|XNk

|2 dθ = 2

∫ 2π

0

(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)+

|XNk
|2 dθ

−
∫ 2π

0

(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)

|XNk
|2 dθ

≤ 2

∫ 2π

0

(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)+

|XNk
|2 dθ,

where the inequality follows from (4.6), with qn−n0 ≡ Qn−n0 .
For every θ ∈ [0, 2π] we have

0 ≤
(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)+

≤ |ρn0 |2|Qn−n0 |2,

and furthermore, it follows from (4.2) that

|ρn0 |2|XNk
|2 = |Ln0−1 − e−iNkθMn0−1,Nk

|2 ≤ 2(|Ln0−1|2 + |Mn0−1,Nk
|2).(4.7)

Recall that |Mn0−1,N | is bounded on the unit circle, independent of N .
On the other hand, by (4.5) and (4.7), one can conclude that

lim
k→∞

(

|φ(Nk)
n |2 − |ρn0 |2|Qn−n0 |2|

)+

|XNk
|2 = 0, except at the frequency points.

We are therefore allowed to use Lebesgue’s dominated convergence theorem to the se-

quence
(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)+

|XNk
|2 to conclude that

lim
k→∞

∫ 2π

0

(

|ρn0 |2|Qn−n0 |2 − |φ(Nk)
n |2

)+

|XNk
|2 dθ = 0,

and therefore also

lim
k→∞

∫ 2π

0

∣

∣

∣
|φ(Nk)
n |2 − |ρn0 |2|Qn−n0 |2

∣

∣

∣
|XNk

|2 dθ = 0.(4.8)

Now we return to (4.6) and use the result from (4.8) to conclude that

lim
k→∞

∫ 2π

0

|ρn0 |2|Qn−n0 |2|XNk
|2 dθ ≤ lim

k→∞

∫ 2π

0

|ρn0 |2|qn−n0 |2|XNk
|2 dθ.
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In particular, the sequence {Nk} has a subsequence {Nk(ν)} for which (4.4) holds. Now use
Lemma 4.1, then we find

∫ 2π

0

|Qn−n0 |2(|Ln0−1|2 + |Mn0−1|2) dθ ≤
∫ 2π

0

|qn−n0 |2(|Ln0−1|2 + |Mn0−1|2) dθ,

and this holds for every monic polynomial qn−n0 of degree n − n0. But there is only one
monic polynomial Qn−n0 that satisfies this inequality for all qn−n0 and that is the monic
orthogonal polynomial for the measure with density |Ln0−1|2 + |Mn0−1|2. This is what we
wanted to prove.

REMARK 4.3. Every subsequence for which (4.4) holds, will then produce a measure
with respect to whichQn−n0 is orthogonal. But, by the Favard-type theorem in Section 3, the
measure in each case must be the same.

Let us consider now some examples:
Example 1: Consider the signal xN (m) = eimπ/4 + e−imπ/4 = 2 cos(πm/4), 0 ≤

m ≤ N − 1. In this case

1

z − eiπ/4
+

1

z − e−iπ/4
=

2z −
√

2

z2 −
√

2z + 1
,

so that L1(z) = 2z −
√

2. We also have

eiπN/4

z − eiπ/4
+

e−iπN/4

z − e−iπ/4
=

2z cos(πN/4) − 2 cos(π(N − 1)/4)

z2 −
√

2z + 1
,

so that M1,N(z) = 2z cos(πN/4) − 2 cos(π(N − 1)/4).
For Nk = 4k we see that M1,4k(z) = (−1)k(2z −

√
2). This sequence of functions

is not convergent but one can extract two subsequences, say {M1,8ν(z) = 2z −
√

2} and

{M1,8ν+4(z) = −(2z−
√

2)}, that converge toM (1)
1 (z) = 2z−

√
2 andM (2)

1 (z) = −(2z−√
2), respectively. But those limiting functions must produce the same measure, (observe that

∣

∣

∣
M

(1)
1 (z)

∣

∣

∣

2

=
∣

∣

∣
M

(2)
1 (z)

∣

∣

∣

2

).

In this case we have |M1,4k(z)|2 = |L1(z)|2. Hence the polynomials Q(1)
n−n0

, which
appear as limits of the subsequence Nk = 4k, are orthogonal polynomials for the measure
with density |L1(e

iθ)|2 = 6−4
√

2 cos θ. This can be checked forQ(1)
2 (z) = z2 + 3

√
2

7 z+ 2
7 .

If we take Nk = 4k + 2, then M1,4k+2(z) = (−1)k+1
√

2. Now, we would have
the subsequences {M1,8ν+2(z) = −

√
2} and {M1,8ν+6(z) =

√
2}, which converge to

M
(1)
1 (z) = −

√
2 and M (2)

1 (z) =
√

2, respectively.
In this case, we can write |L1(e

iθ)|2 + |M1,4k+2(e
iθ)|2 = 8 − 4

√
2 cos θ, and the poly-

nomials Q(2)
n−n0

which appear as limits for this subsequence are orthogonal for this density.

This can be checked for Q(2)
2 (z) = z2 + 2

√
2

7 z + 1
7 .

WhenNk = 4k+1 the limits are the same as those for the subsequenceNk = 4k. When
Nk = 4k + 3 the limits are the same as in the case for Nk = 4k + 2.

Example 2: Consider now the signal xN (m) = eimπ/3 + e−imπ/3 = 2 cos(πm/3),
0 ≤ m ≤ N − 1. In this case

1

z − eiπ/3
+

1

z − e−iπ/3
=

2z − 1

z2 − z + 1
,
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so that L1(z) = 2z − 1 and |L1(e
iθ)|2 = 5 − 4 cos θ. We also have

eiπN/3

z − eiπ/3
+

e−iπN/3

z − e−iπ/3
=

2z cos(πN/3) − 2 cos(π(N − 1)/3)

z2 − z + 1
,

so that M1,N(z) = 2z cos(πN/3) − 2 cos(π(N − 1/3).
When Nk = 3k + 1 then M1,3k+1(z) = (−1)k(z − 2), so that |M1,3k+1(e

iθ)|2 =

5 − 4 cos θ = |L1(e
iθ)|2. The polynomials Q(1)

n−n0
for this subsequence are orthogonal

polynomials for the measure with density 5 − 4 cos θ. This can indeed be verified for
Q

(1)
1 (z) = z + 2

5 , or for Q(1)
2 (z) = z2 + 10

21z + 4
21 . The subsequence N = 3k gives the

same polynomials.
When Nk = 3k + 2 then M1,3k+2(z) = (−1)k+1(z + 1). This means that

|M1,3k+2(e
iθ)|2 = 2 + 2 cos θ. The polynomials Q(2)

n−n0
for this subsequence are thus or-

thogonal polynomials for the measure with density |L1|2 + |M1|2 = 7 − 2 cos θ. This can

indeed be checked for Q(2)
1 (z) = z + 1

7 and for Q(2)
2 (z) = z2 + 7

48z + 1
48 .

4.2. Weights at a double zero. Suppose that a frequency point βj , for some j =
1, . . . , n0, is a zero of the limit polynomialBn of multiplicity 2. As we stated before, there ex-

ist two sequences {zNk(ν)

j1
}ν , and {zNk(ν)

j2
}ν of zeros ofB

(Nk(ν))
n such that limν→∞ z

Nk(ν)

jm
=

βj , m = 1, 2.And the corresponding sequences of weights {λNk(ν)

j1
}ν , and {λNk(ν)

j2
}ν satisfy

(2.1).

The question is: What happens to λ
Nk(ν)

j1
and λ

Nk(ν)

j2
as ν → ∞ ?

Example 1: Consider the signal xN (m) = eimπ/2 + e−imπ/2, 0 ≤ m ≤ N − 1.
Then, the amplitudes are α1 = α2 = 1, and the frequency points are β1 = eiπ/2 = i,
β2 = e−iπ/2 = −i, (ρ2(z) = z2 + 1).

Here we find that limk→∞ B2k+1
5 (z, τ) = (z3 + τ)(z2 + 1).

Therefore, in this caseW3(z, τ) = z3+τ, and when τ = −i the frequency point β2 = −i
is a double zero.

For k = 2500, 25000, 250000we have computed the corresponding zeros ofB2k+1
5 (z, τ)

which are displayed in the following table:

k = 2500 k = 25000 k = 250000
−0.0115455− 0.9999333i −0.00365143− 0.99999333i −0.00115469− 0.999999333i
0.0115455− 0.9999333i 0.00365143− 0.99999333i 0.00115469− 0.999999333i

−0.86600616 + 0.50003332i −0.86602347 + 0.50000333i −0.86602521 + 0.50000033i
0.86600616 + 0.50003332i 0.86602347 + 0.50000333i 0.86602521 + 0.50000033i

i i i

From these results we can say that the two first numbers in each column would be the
two sequences of points that approach β2 = −i.

For the corresponding weights in the Szegő quadrature formula we obtained the follow-
ing results:

k = 2500 k = 25000 k = 250000
0.50007221 0.50000722 0.50000072
0.50007221 0.50000722 0.50000072
0.00017774 0.00001777 0.00000177
0.00017774 0.00001777 0.00000177

0.9999 0.99999 0.999999
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The entries of this table indicate that limk→∞ λ2k+1
j1

= limk→∞ λ2k+1
j2

= 0.5

Example 2: Let us consider now the signal x(m) = e−iπm/4 + eiπm/4. In this case,
the amplitudes are α1 = α2 = 1, and the frequency points are β1 = eiπ/4, β2 = e−iπ/4,
(ρ2(z) = z2 −

√
2z + 1).

For N = 4k we have that

lim
k→∞

B4k
4 (z, τ) =

(

z2 +
3
√

2

7
z +

2

7
+ τ

(

1 +
3
√

2

7
z +

2

7
z2

))

(z2 −
√

2z + 1).

Therefore, when τ = − 4
5 + 3

5 i the frequency point β2 = e−iπ/4 is a double zero.
For k = 100, 1000, 10000,we calculated the corresponding zeros ofB4k

4 (z, τ). They are
displayed in the following table:

k = 100 k = 1000 k = 10000
0.6593645− 0.7518233i 0.6922122− 0.7216939i 0.7024190− 0.7117636i
0.7526900− 0.658374i 0.7217858− 0.6921164i 0.7117729− 0.7024095i

−0.9570064 + 0.29006671i −0.9567071 + 0.2910522i −0.9566772 + 0.29115068i
0.704267 + 0.709934i 0.7068238 + 0.7073896i 0.7070784 + 0.7071350i

Observe that the two first numbers in each column would be the two sequences of points
that approach β2 = e−iπ/4.

For the weights we obtained the following results:

k = 100 k = 1000 k = 10000
0.5011506 0.5000509 0.4999848
0.5017167 0.5002369 0.5000439
0.0019164 0.0001918 0.0000191
0.9952162 0.9995201 0.9999520

The above table indicates again that limk→∞ λ4k
j1

= limk→∞ λ4k
j2

= 0.5.

As we already saw, the last two examples indicate that both sequences of weights tend to
the same number which coincides with half of the corresponding squared amplitudes, i. e.,

lim
ν→∞

λ
Nk(ν)

j1
= lim

ν→∞
λ
Nk(ν)

j2
=

|αj |2
2

= 0.5.(4.9)

On the other hand, observe that in both cases we have chosen real amplitudes and the fre-
quencies as rational multiples of π. It could happen that for this choice, the subsequences
{2k + 1} and {4k}, respectively, may work in order to obtain this particular result given by
(4.9). For this reason we will consider the following example:

Example 3: Let us consider now the signal x(m) = (1+ i)eiπm/
√

2 +(1− i)e−iπm/
√

2.
(n0 = 2), where the amplitudes α1 = 1 + i and α2 = 1 − i are complex numbers and
the arguments of the frequency points, β1 = eiπ/

√
2, and β2 = e−iπ/

√
2, are not rational

multiples of π.
We chose the subsequence N = 2k and n = 3. In this case it was difficult to obtain an

explicit expression of B2k
3 (z, τ), but what we know is that

lim
k→∞

B2k
3 (z, τ) = (a+ z + τ(1 + az))(z2 − 2 cos

π√
2
z + 1),
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where a = limk→∞ φ2k
3 (0). If we take k = 109, we will have a ≈ −0.169002.

Thus, if we choose τ ≈ 0.779219− 0.626751 i, then the frequency point
β1 ≈ −0.60569 + 0.79569 i is a double zero.

The corresponding zeros and weights in this case are given in the following table:

Zeros Weights

−0.6057280819+ 0.7956717229i 0.9999976166

−0.6056716509+ 0.7957146795i 1.0000023851

−0.6056998665− 0.7956932019i 2.0000000001

Observe that now |α1|2 = 2 and the above table indicates again the following:

lim
k→∞

λ2k
j1 = lim

k→∞
λ2k
j2 =

|α1|2
2

= 1.

Thus, the above numerical results suggest (at least under suitable restrictions) that:

Conjecture: limν→∞ λ
Nk(ν)

j1
= limν→∞ λ

Nk(ν)

j2
=

|αj |2
2 .
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nomial Signals, J. Approx. Theory, 71 (1992), No. 3, pp. 239-251.
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