Electronic Transactions on Numerical Analysis. Volume 19, pp. 84-93, 2005. Copyright © 2005, Kent State University. ISSN 1068-9613.

LOCALIZED POLYNOMIAL BASES ON THE SPHERE*

NOEMÍ LAÍN FERNÁNDEZ †

Abstract. The subject of many areas of investigation, such as meteorology or crystallography, is the reconstruction of a continuous signal on the 2-sphere from scattered data. A classical approximation method is *polynomial interpolation*. Let V_n denote the space of polynomials of degree at most n on the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$. As it is well known, the so-called *spherical harmonics* form an orthonormal basis of the space V_n . Since these functions exhibit a poor localization behavior, it is natural to ask for better localized bases. Given $\{\xi_i\}_{i=1,...,(n+1)^2} \subset \mathbb{S}^2$, we consider the spherical polynomials

$$\varphi_i^n(\xi) := \sum_{l=0}^n \frac{2l+1}{4\pi} P_l(\xi_i \cdot \xi),$$

where P_l denotes the Legendre polynomial of degree l normalized according to the condition $P_l(1) = 1$. In this paper, we present systems of $(n + 1)^2$ points on \mathbb{S}^2 that yield localized polynomial bases of the above form.

Key words. fundamental systems, localization, matrix condition, reproducing kernel.

AMS subject classifications. 41A05, 65D05, 15A12.

^{*}Received November 30, 2002. Accepted for publication May 10, 2003. Communicated by R. Alvarez-Nodarse. Supported by the DFG Graduiertenkolleg 357 *Effiziente Algorithmen und Mehrskalenmethoden*.

[†]GSF – National Research Center for Environment and Health Institute of Biomathematics and Biometry, Neuherberg, Germany. E-mail:noemi.lain@gsf.de.

⁸⁴