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Abstract. The Lanczos process is a well known technique for computing a few, say k, eigenvalues

and associated eigenvectors of a large symmetric n×n matrix. However, loss of orthogonality of the
computed Krylov subspace basis can reduce the accuracy of the computed approximate eigenvalues.
In the implicitly restarted Lanczos method studied in the present paper, this problem is addressed
by fixing the number of steps in the Lanczos process at a prescribed value, k+p, where p typically is
not much larger, and may be smaller, than k. Orthogonality of the k+ p basis vectors of the Krylov
subspace is secured by reorthogonalizing these vectors when necessary. The implicitly restarted
Lanczos method exploits that the residual vector obtained by the Lanczos process is a function
of the initial Lanczos vector. The method updates the initial Lanczos vector through an iterative
scheme. The purpose of the iterative scheme is to determine an initial vector such that the associated
residual vector is tiny. If the residual vector vanishes, then an invariant subspace has been found. This
paper studies several iterative schemes, among them schemes based on Leja points. The resulting
algorithms are capable of computing a few of the largest or smallest eigenvalues and associated
eigenvectors. This is accomplished using only (k+ p)n+O((k+ p)2) storage locations in addition to
the storage required for the matrix, where the second term is independent of n.
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1. Introduction. The Lanczos process is an effective method for computing a
few eigenvalues and associated eigenvectors of a large symmetric matrix A ∈ Rn×n.
This method only requires one to compute the action of the matrix on a vector through
a matrix-vector product. Often this may be accomplished without explicit storage of
the matrix. This property, along with a number of theoretical and computational
features, contributes to the appeal of the Lanczos process. The basic Lanczos method
can suffer from large storage requirements and from numerical difficulties caused by
loss of orthogonality of the basis vectors generated. Efforts to remedy these short-
comings have been the focus of considerable research over the last two decades, see,
e.g., [2, 3, 13, 19, 20, 21, 22, 29]. The Implicitly Restarted Lanczos (IRL) method
studied in the present paper addresses some of these difficulties. This method is
obtained by specializing the Implicitly Restarted Arnoldi (IRA) scheme, designed for
the solution of nonsymmetric eigenvalue problems and presented in [30], to symmetric
eigenvalue problems. The IRL method may be viewed as a truncation of the standard
implicitly shifted QR-algorithm for dense symmetric eigenvalue problems. Numerical
difficulties and storage problems normally associated with the Lanczos process are
avoided because it is possible to maintain and update a numerically orthogonal set
of basis vectors of pre-determined size. The algorithm is capable of computing a few,
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say k, of the largest or smallest eigenvalues and associated eigenvectors using only
(k + p)n + O((k + p)2) storage locations, where the integer p typically is not much
larger, and may in fact be smaller, than k, and where the second term is independent
of n. This count of storage locations does not include the storage necessary for the
matrix A.

The IRA and IRL methods are polynomial acceleration schemes and the rate at
which eigenvalues and invariant subspaces are determined depends on the choice of
accelerating polynomials. Following [30], we refer to these polynomials as polynomial
filters. Their purpose is to force the initial vector into the appropriate invariant
subspace. The polynomial filters are constructed and applied implicitly to the initial
vector by carrying out a truncated version of the implicitly shifted QR-algorithm.
The polynomial filters may be specified either by their zeros or by their expansion
coefficients in a basis of Lanczos polynomials. In agreement with the terminology used
for the QR-algorithm, we refer to these zeros also as “shifts”. A natural choice of zeros
are eigenvalues in the undesired part of the spectrum of a sequence of (k+p)× (k+p)
symmetric tridiagonal matrices generated by the Lanczos process in the IRL method.
We refer to these zeros as “exact shifts”. It is shown in [30] that polynomial filters
based on exact shifts yield convergence when a few of the smallest or a few of the
largest eigenvalues of a symmetric matrix are desired. The method of proof in [30],
however, does not display the rate of convergence, and computed examples in Section
5 of the present paper show that convergence can be very slow when exact shifts are
applied.

The possible difficulties with exact shifts motivated us to study other shift selec-
tion strategies. In the present paper, we investigate the application of Leja points to
the selection of shifts, i.e., the shifts are chosen to be Leja points for certain intervals
on the real axis. We refer to these shifts as Leja shifts. We compare them with ex-
act shifts, and demonstrate that Leja shifts can yield faster convergence of the IRL
method than exact shifts.

We remark that polynomial acceleration for eigenvalue computation was first used
by Flanders and Shortley [11], who applied Chebyshev polynomials. Subsequently
polynomial acceleration has been employed frequently to enhance the performance of
computational methods for finding a few selected eigenvalues and associated eigen-
vectors of large sparse matrices. Such schemes for the symmetric and nonsymmetric
eigenvalue problems are discussed in, e.g., [15, 28, 29, 31]. The present paper con-
siders the computation of a few extreme eigenvalues and associated eigenvectors of a
large sparse symmetric matrix. Our scheme is of interest, e.g., for the computation of
the smallest eigenvalues of a symmetric positive definite matrix when the matrix can-
not be factored due to computer storage limitations. Applications of such eigenvalue
problems are considered in [18, 23, 32].

This paper is organized as follows. In Section 2 we review the Lanczos factor-
ization, the functional dependence of the residual vector on the initial vector, and
necessary and sufficient conditions for an initial vector to produce a zero residual.
We also describe the IRL method and show how implicit application of a polynomial
filter to the initial vector is accomplished through iterations by a truncated version
of the implicitly shifted QR-algorithm. Section 3 defines Leja shifts and discusses the
rate of convergence of the IRL method based on Leja shifts. An IRL algorithm based
on exact shifts and two IRL algorithms based on Leja shifts are described in Section
4, and Section 5 presents a few computed examples. Our experience with the IRL
algorithms is summarized in Section 6.
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2. The implicitly restarted Lanczos method. When the implicitly restarted
Arnoldi method, described in [30], is applied to a symmetric matrix, certain simplifi-
cations of the computational scheme are possible. This section describes the simplified
scheme so obtained. We use the notation of [30] in order to make a comparison of the
present paper with [30] easy.

The Lanczos factorization may be viewed as a truncated reduction of an n × n
symmetric matrix A to tridiagonal form. After k steps of the factorization one has

AV = VH + feTk ,(2.1)

where V ∈ Rn×k, V TV = Ik, H ∈ Rk×k is symmetric and tridiagonal and f ∈ Rn

with 0 = V T f . Throughout this paper ek denotes the kth axis vector of appropriate
dimension and Ik denotes the k×k identity matrix. Equation (2.1) can also be written
as

AV = (V, v)
(

H
βeTk

)
, β = ‖f‖, v =

1
β
f,(2.2)

and this representation shows that (2.1) is just a truncation of the complete reduction
of the matrix A to tridiagonal form. Approximate eigenvalues and eigenvectors are
readily available through this factorization. Let {θ, y} be an eigenvalue-eigenvector
pair of the matrix H. Then the vector x = V y satisfies

‖Ax− xθ‖ = ‖(AV − VH)y‖ = |βeTk y|.(2.3)

The vector x is referred to as a Ritz vector and θ as a Ritz value of A. The residual
error (2.3) associated with the Ritz pair {θ, x} can be determined by evaluating |βeTk y|,
without explicitly determining the Ritz vector x.

The factorization (2.2) may be advanced one step through the following recursion
formulas:

(2.4.1) β = ‖f‖; v = 1
β f ;

(2.4.2) V + = (V, v);

(2.4.3) w = Av; α = wT v;

(2.4.4) H+ =
(

H ekβ
βeTk α

)
;

(2.4.5) f+ = w − V +

(
ekβ
α

)
= (I − V +(V +)T )w.

It is easily seen that

AV + = V +H+ + f+eTk+1, (V +)TV + = Ik+1, (V +)T f+ = 0.

Numerical difficulties can arise at Step (2.4.5). The vector f+ should be nu-
merically orthogonal to all of the columns of V +, but this property is generally not
obtained without further computation. Neglecting to enforce orthogonality virtually
assures the appearance of spurious eigenvalues. Selective reorthogonalization against
Ritz vectors corresponding to converged Ritz values has been proposed to address
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this problem; see [20, 22]. The most direct way to avoid the appearance of spurious
eigenvalues is to enforce numerical orthogonality of the columns of V . There are three
options: one can compute and store V in Householder form (see [14, 33]), reorthog-
onalize V using a QR-factorization, or use iterative refinement to orthogonalize f
against V as it is computed; see [4, 19, 20, 26]. The last option is preferred because
the computations required can be expressed in terms of Level 2 BLAS, see, e.g., [5],
and because the columns of V can be updated with the orthogonal transformations
required to perform the implicitly shifted QR-steps as outlined below. The computa-
tional cost of iterative refinement remains acceptable when the matrix V has a modest
number of columns.

Restarting provides a means for restricting the number of columns of V . The
goal of restarting is to replace the initial vector v1 = V e1 by a vector that is as near
as possible to being a linear combination of the eigenvectors associated with the k
eigenvalues of interest. This condition is motivated by the fact that f vanishes if and
only if v1 is such a linear combination. We state this formally as a theorem.

Theorem 2.1. Let A be a symmetric matrix of order n and let AVk − VkHk =
fke

T
k be a k-step Lanczos factorization of A, where Hk is an unreduced symmetric

tridiagonal matrix (i.e., fj 6= 0, 1 ≤ j < k). Then fk = 0 if and only if v1 = Uky,
where AUk = UkΛk with UTk Uk = Ik and Λk a diagonal matrix of order k.

Various ways to make the initial vector v1 be close to a linear combination of
eigenvectors associated with desired eigenvalues have been proposed; see [2, 16]. All
of them involve an update of the initial vector followed by an explicit restart of the
Lanczos factorization. The technique proposed in [30], in the context of an implicitly
restarted Arnoldi method, iteratively applies a polynomial filter to the initial vector.
We now describe the modification of this scheme obtained when the matrix A is
symmetric.

Throughout the following discussion, the number k of desired eigenvalues should
be thought of as a fixed pre-specified integer of modest size. Let p be another positive
integer, and consider the result of k + p steps of the Lanczos process applied to the
matrix A. This yields a (k + p) × (k + p) symmetric tridiagonal matrix Hk+p and a
matrix Vk+p ∈ Rn×(k+p) with orthonormal columns, such that

AVk+p = Vk+pHk+p + rk+pe
T
k+p

= (Vk+p, vk+p+1)
(

Hk+p

βk+pe
T
k+p

)
.

(2.5)

An analogue of the explicitly shifted QR-algorithm may be applied to this trun-
cated factorization of A. It consists of the following four steps. Let µ be a shift
and determine the QR-factorization, Hk+p − µI = QR, where Q,R ∈ R(k+p)×(k+p),
QTQ = Ik+p and R is upper triangular. Putting V = Vk+p and H = Hk+p, we obtain

(2.6.1) (A− µI)V − V (H − µI) = fk+pe
T
k+p,

(2.6.2) (A− µI)V − V QR = fk+pe
T
k+p,

(2.6.3) (A− µI)(V Q)− (V Q)(RQ) = fk+pe
T
k+pQ,

(2.6.4) A(V Q)− (V Q)(RQ+ µI) = fk+pe
T
k+pQ.

Let V+ = V Q and H+ = RQ+ µI. Then H+ is symmetric and tridiagonal. When
applying the left-hand side and right-hand side of equation (2.6.2) to the vector e1,
we obtain

(A− µI)v1 = v+
1 ρ11,(2.7)
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where ρ11 = eT1 Re1 and v+
1 = V+e1. Equation (2.7) exposes the relationship between

the initial vectors v1 and v+
1 . An application of p shifts µ1, µ2, . . . , µp results in

AV +
k+p = (V +

k+p , vk+p+1)

(
H+
k+p

βk+pe
T
k+pQ̂

)
,(2.8)

where V +
k+p = Vk+pQ̂, H+

k+p = Q̂THk+pQ̂, and Q̂ = Q1Q2 · · ·Qp. Here Qj denotes
the orthogonal matrix associated with the shift µj . Partition the matrices

V +
k+p = (V +

k , V̂p) , H+
k+p =

(
H+
k β̂keke

T
1

β̂ke1e
T
k Ĥp

)
,(2.9)

and note that

βk+pe
T
k+pQ̂ = (0, 0, . . . , β̃k+p︸ ︷︷ ︸

k

, b T︸︷︷︸
p

) .(2.10)

Substitution of (2.9)-(2.10) into (2.8) yields

A(V +
k , V̂p) = (V +

k , V̂p, vk+p+1)

 H+
k β̂keke

T
1

β̂ke1e
T
k Ĥp

β̃k+pe
T
k bT

 .(2.11)

Equating the first k columns on the right-hand side and left-hand side of (2.11) gives

AV +
k = V +

k H
+
k + f+

k e
T
k ,

which we write in the form

AV +
k = (V +

k , v
+
k+1)

(
H+
k

β+
k e

T
k

)
,(2.12)

where v+
k+1 = 1

β+
k

f+
k , f+

k = (V̂pe1β̂k + vk+p+1β̃k+p) and β+
k = ‖f+

k ‖. Note that

(V +
k )T V̂pe1 = 0 and (V +

k )T vk+p+1 = 0 so (V +
k )T v+

k+1 = 0. Thus, (2.12) is a Lanczos
factorization of the matrix A. The initial vector of this factorization can be written
as v+

1 = γpψp(A)v1, where ψp is a monic polynomial of degree p having the shifts
µ1, µ2, . . . , µp as zeros, and γp is a scaling factor such that the vector v+

1 is of unit
length.

The matrices in (2.12) are of the same sizes as in (2.2). We now can apply the
recursion formulas (2.4.1)-(2.4.5) of the Lanczos process p times to the matrices (2.12)
in order to obtain a factorization with matrices of the same sizes as in (2.5) and with
initial vector v1 in (2.5) replaced by v+

1 . We remark that the application of p shifts
and p steps of the Lanczos process only requires p matrix-vector multiplications with
the matrix A. The scheme proceeds in this manner to alternatively apply p shifts and
p steps of the Lanczos process until convergence has been achieved.

Our scheme is to be compared with the explicit restarting methods described
in [2, 16], where the entire Lanczos sequence is restarted. From the standpoint of
numerical stability our updating scheme has several advantages:

(1) Orthogonality can be maintained since the value of k is modest.
(2) There is no occurrence of spurious eigenvalues.
(3) The storage requirement is fixed; it does not grow with the number of iterations.
(4) Deflation techniques similar to those applied in the QR-algorithm for dealing

with numerically small subdiagonal elements of the matrices Hk+j , 1 ≤ j ≤ p,
may be applied.
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3. Shift selection. The selection of the shifts determines the convergence prop-
erties of the algorithm. This section discusses properties of exact shifts and of Leja
shifts. The latter shifts are Leja points for an interval on the real axis containing
unwanted eigenvalues. Exact shifts, discussed in [30], are obtained by computing the
eigenvalues of Hk+p, and selecting p of them in the unwanted portion of the spectrum
as shifts. The following lemma shows some properties of exact shifts. The lemma uses
notation introduced in Section 2. We denote the spectrum of a matrix B by λ(B).

Lemma 3.1. ([30, Lemma 3.10]) Let λ(Hk+p) = {θ1, . . . , θk} ∪ {µ1, . . . , µp} be a
disjoint partition of the spectrum of Hk+p, and let

H+
k+p = Q̂THk+pQ̂,

where Q̂ = Q1Q2 · · ·Qp, and Qj is implicitly determined by the shift µj. Let βj denote
the (j + 1)st subdiagonal element of H+

k+p. If βj 6= 0 for 1 ≤ j < k, then βk = 0 and
the matrices Qj can be chosen so that

H+
k+p =

(
H+
k 0

0 Dp

)
,

where λ(H+
k ) = {θ1, . . . , θk} and Dp is a diagonal matrix with diagonal entries

µ1, µ2, . . . , µp. Moreover,

v+
1 = Vk+pQ̂e1 =

k∑
j=1

ηjxj ,

where ηj ∈ R and the xj are Ritz vectors of A associated with the Ritz values θj, i.e.,
xj = Vk+pyj with Hk+pyj = yjθj for 1 ≤ j ≤ k.

This lemma shows the effect of the polynomial filter when exact shifts are used.
Eliminating the unwanted set of eigenvalues of Hk+p by using exact shifts is mathe-
matically equivalent to restarting the Lanczos factorization with the initial vector

v+
1 =

k∑
j=1

ηjxj ,

where the right-hand side is a linear combination of Ritz vectors of A associated with
the desired eigenvalues. Thus, the initial vector v1 has been implicitly replaced by a
sum of k approximate eigenvectors.

In many cases this shift selection strategy works well. However, slow convergence
can be observed for certain matrices, e.g., when computing the smallest eigenvalues
of a positive definite matrix that has well separated large eigenvalues. In this case
the large eigenvalues reappear as shifts in almost every iteration, and components
of eigenvectors in v1 associated with other undesired eigenvalues do not get damped
rapidly. This is illustrated in Example 5.2 of Section 5.

Leja shifts can overcome this difficulty. In order to define these shifts and discuss
their properties we need to introduce some notation. In this paper we only require
Leja shifts that lie in a real interval, however, it is suggestive to define Leja shifts that
lie in more general compact sets in the complex plane; our development indicates
that several extensions of the scheme of the present paper may be possible. These
generalizations are commented on in the end of this section.
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Let C denote the complex plane, and identify C with the real plane R2. Through-
out this section s, t ∈ R and z ∈ C. If z = s+it, i =

√
−1, then z and (s, t) denote the

same point. Let K ⊂ C be a compact set, whose complement Ω = (C ∪ {∞})\K is
connected and possesses a Green function G(s, t) with a logarithmic singularity at in-
finity. This Green function is uniquely determined by the requirements i) ∆G(s, t) = 0
in Ω\{∞}, ii) G(s, t) = 0 on ∂Ω, where ∂Ω denotes the boundary of Ω, and iii)

1
2π

∫
∂Ω

∂

∂n
G(s, t)dσ = 1,

where ∂/∂n denotes the normal derivative directed into Ω and dσ stands for the
element of arc length; see, e.g., [34, Chapter 4.1] for details. The nonnegative constant
c defined by

c = lim
|z|→∞

|z| exp(−G(s, t)), z = s+ it,

is called the capacity of K. The capacity depends on the size of K. If K has capacity
c and α is a positive constant, then αK = {αz : z ∈K} has capacity αc.

Example 3.1. Let K = {z : |z| ≤ r} for some constant r > 0. Then the Green
function is given by

G(s, t) = ln |z/r|, z = s+ it,

and therefore K has capacity r. 2
For the scheme of the present paper, sets K that are intervals are of interest.

Such sets are discussed in the following example.
Example 3.2. Let K = [−a, a], a > 0. We obtain the Green function

G(s, t) = ln |(z/a) + ((z/a)2 − 1)1/2|, z = s+ it,(3.1)

where the branch of the square root is chosen so that |(z/a) + ((z/a)2− 1)1/2| > 1 for
z ∈ Ω. The capacity of K is therefore a/2. For future reference, we also note that if
instead K = [a, b], then the associated Green function is given by

G(s, t) = ln
∣∣∣∣ 2
b− a

(
z − b+ a

2
+ (z2 − z(b+ a) + ba)1/2

)∣∣∣∣ , z = s+ it,(3.2)

and K has capacity 1
4 (b− a). 2

Let w(z) be a continuous weight function on K, such that

α ≤ w(z) ≤ β, z ∈K,(3.3)

for some constants 0 < α ≤ β < ∞, and introduce a recursively defined sequence
{zj}∞j=0 of points in K as follows. Let z0 be a point such that

w(z0)|z0| = max
z∈K

w(z)|z|, z0 ∈ K,(3.4)

and let zj satisfy

w(zj)
j−1∏
l=0

|zj − zl| = max
z∈K

w(z)
j−1∏
l=0

|z − zl|, zj ∈K, j = 1, 2, . . . .(3.5)
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The points zj determined by (3.4)-(3.5) might not be unique. We call any sequence
of points {zj}∞j=0 that satisfies (3.4)-(3.5) a sequence of weighted Leja points for K,
or sometimes briefly Leja points for K. Because we will use these points as shifts in
the IRL method, we also will refer to them as Leja shifts.

When w(z) = 1, the weighted Leja points agree with the “classical” Leja points
studied by Leja [17], and probably first introduced by Edrei [6]. Leja [17] showed that
the classical Leja points for K are uniformly distributed with respect to the density
function

1
2π

∂

∂n
G(s, t), z = s+ it ∈ ∂Ω.(3.6)

A simple modification of Leja’s proof shows that the weighted Leja points also have
this property.

Example 3.3. Let K = {z : |z| ≤ r} for some constant r > 0. Then

∂

∂n
G(s, t) =

1
r
, s2 + t2 = r2.

Thus, the weighted Leja points for K are uniformly distributed on ∂Ω. 2
Example 3.4. Let K = [a, b]. Then the weighted Leja points are uniformly

distributed on K with respect to the density function

1
2π

∂

∂n
G(s, 0) =

1
π

(b− s)−1/2(s− a)−1/2, a < s < b.(3.7)

2

Lemma 3.2. ([17, 25]) Let {zj}∞j=0 be a sequence of weighted Leja points for K
and assume that the weight function w(z) satisfies (3.3). Then

j−1∏
l=0

|zj − zl| ≥ α

β
cj ,(3.8)

lim
j→∞

j−1∏
l=0

|zj − zl|1/j = c,(3.9)

lim
j→∞

j−1∏
l=0

|z − zl|1/j = c exp(G(s, t)), z = s+ it ∈ Ω,(3.10)

where c denotes the capacity of K. The convergence in (3.10) is uniform for z be-
longing to any compact subset of Ω.

We remark that Lemma 3.2 holds for any sequence {zj}∞j=0 of nodes uniformly
distributed on ∂Ω with respect to the density function (3.6). Besides sets of Leja
points, also sets Fekete and of Fejér points for K are uniformly distributed on Ω; see
[12, 34] for definitions and properties of the latter point sets. The fact that sets of
Fejér, Fekete and Leja points satisfy Lemma 3.2 has made it attractive to use them
in the construction of semiiterative methods for the solution of large linear systems
of equations; see [7, 8, 9, 10, 24, 25] and references therein.

Example 3.5. Let K = [a, b] and define the Chebyshev polynomials

Tp(z) = cos(p arccos
(

2z − aj − bj
bj − aj

)
), p = 1, 2, 3 . . . ,
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for K. Then the zeros {ζ(p)
j }

p
j=1 of Tp(z) are Fejér points for K and are uniformly

distributed on K with respect to (3.7) as p increases. 2
Leja points for K have certain algorithmic advantages compared with zeros of

Chebyshev polynomials. We will discuss this further in Section 4. Moreover, Leja
points can be applied for sets K more general than an interval. This makes it possible
to generalize the schemes of the present paper as outlined below.

Introduce the spectral decomposition

A = UΛUT ,(3.11)

where

Λ = diag (λ1, λ2, . . . λn), λ1 ≤ λ2 ≤ . . . ≤ λn,

U = (u1, u2, . . . , un), UTU = I.
(3.12)

For definiteness, assume that we wish to determine the k smallest eigenvalues of
A. We then seek to determine a polynomial filter ψm of degree m that is small on
the undesired part of the spectrum and large on the wanted part. In view of that
we do not know the undesired eigenvalues, we determine intervals K = [a, b] that
contain many of the unwanted eigenvalues adaptively during the iterations with the
IRL method, and we require the polynomial filter to be small on these intervals. In
order to discuss the rate of convergence of our IRL method we consider the quotients
|ψm(λj)|/maxz∈K |ψm(z)|. The next theorem sheds light on the decrease of this
quotient as the degree m increases.

Theorem 3.3. Let the spectral decomposition of A be given by (3.11)-(3.12) and
define the polynomials

ψm(z) =
m−1∏
j=0

(z − zj),(3.13)

where the zj are Leja points for the real interval K = [a, b], a 6= b. Let l be a positive
integer such that λl < a. Then

lim
m→∞

(
|ψm(λj)|

maxz∈K |ψm(z)|

)1/m

= exp(G(λj , 0)), 1 ≤ j ≤ l,(3.14)

where the Green function G is given by (3.2). The limit is the smallest possible in the
sense that there is no sequence of monic polynomials {ψj}∞j=0, where ψj is of degree
j, such that a limit smaller than the right-hand side of (3.14) is achieved.

Proof. The equality follows from Lemma 3.2. The left-hand side is minimized by
Chebyshev polynomials for the interval K. Explicit formulas for Chebyshev polyno-
mials yield the same limit. 2

If we assume that the interval K is symmetric with respect to the origin, i.e.,
K = [−a, a] for some constant a > 0, then the expression (3.1) can be substituted
into the right hand side of (3.14). We obtain, for λl < −a, that

lim
m→∞

(
|ψm(λj)|

maxz∈K |ψm(z)|

)1/m

= |λj/a|+ (|λj/a|2 − 1)1/2, 1 ≤ j ≤ l.(3.15)

It is easy to see that, for fixed λj , the right hand side of (3.15) decreases as a increases.
Theorem 3.3 can be applied to determine the distance between the eigenvectors as-
sociated with the desired eigenvalues of A and the subspaces generated by the IRL
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method. This is the object of the next theorem. Related results have been shown by
Rutishauser for the subspace iteration method [27, Theorem 2].

Theorem 3.4. Let l be a positive integer, let λ̂1 < λ̂2 < . . . < λ̂l+1 be the l + 1
smallest distinct eigenvalues of the matrix A and let λn be the largest eigenvalue.
Let ûj denote an eigenvector associated with λ̂j. Assume that the vector v1 contains
components of all the eigenvectors û1, û2, . . . , ûl. Let the polynomial filter ψm be
defined by (3.13) and assume that the zeros zj of ψm are Leja points for the real
interval K = [a, b], such that a 6= b and b ≥ λn. Let v+

m = ψm(A)v1 and define the
subspaces

El(A, v+
m) = span{v+

m, Av
+
m, . . . , A

l−1v+
m}, m = 0, 1, 2, . . . .(3.16)

Then the distance between El(A, v+
m) and ûj satisfies, for 1 ≤ j ≤ l,

lim
m→∞

(dist{El(A, v+
m), ûj})1/m ≤

 exp(G(λ̂l+1, 0)−G(λ̂j , 0)), if λ̂j ≤ λ̂l+1 < a,

exp(−G(λ̂j , 0)), if λ̂j ≤ a ≤ λ̂l+1.

Proof. First assume that the l smallest eigenvalues ofA are distinct. Then λ̂j = λj
and ûj = uj for 1 ≤ j ≤ l. Let s = (s1, s2, . . . , sn)T = UT v1, where A = UΛUT is
the spectral decomposition (3.11). By assumption, sj 6= 0 for all j. Define the matrix
S = diag(s1, s2, . . . , sl). Introduce the non-singular transposed Vandermonde matrix

Wl =



1 λ1 · · · λl−1
1

1 λ2 · · · λl−1
2

...
...

...

1 λl · · · λl−1
l


.

Then

El(A, v1) = U span{s,Λs, . . . ,Λl−1s} = U S span
{
Wl

M

}
(3.17)

= U S span
{

Il
MW−1

l

}
,(3.18)

where M is an (n − l) × l matrix, and span{C} denotes the span of the columns of
the matrix C. Thus, with M̂ = MW−1

l ,

El(A, v+
m) = ψm(A)El(A, v1) = U S ψm(Λ) span

{
Il
M̂

}
.(3.19)

Let ‖ · ‖2 denote the Euclidean vector norm. Then
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dist{El(A, v+
m), uj} = min

y∈Rl

∥∥∥∥USψm(Λ)
(

Il
M̂

)
y − uj

∥∥∥∥
2

= min
y∈Rl

∥∥∥∥Sψm(Λ)
(

Il
M̂

)
y − ej

∥∥∥∥
2

(3.20)

≤
∥∥∥∥Sψm(Λ)

(
ej
M̂ej

)
(sjψm(λj))−1 − ej

∥∥∥∥
2

≤ d max
l+1≤k≤n

{|ψm(λk)|} |ψm(λj)|−1,

where d is a constant independent of m. Note that the bound also holds for other
norms with the constant d depending on the choice of norm. The theorem now follows
from (3.14) or (3.9).

We turn to the proof when the l + 1 smallest eigenvalues of A are not distinct,
and consider the case when l = 2 and λ1 = λ2 < λ3 < λ4 ≤ . . . ≤ λn, i.e., λ̂1 = λ1,
λ̂2 = λ3 and λ̂3 = λ4. The proof for other values of l and other multiplicities of the
eigenvalues is analogous. Similarly to (3.17), we obtain

E2(A, v1) = US span
{
W3,2

M ′

}
,

where

W3,2 =

 1 λ1

1 λ2

1 λ3

 ,

and M ′ is an (n− 3)× 2 matrix. Define

I3,2 =

 1 0
1 0
0 1

 .

Analogously to (3.18), we obtain for a suitable matrix M ′′, that

E2(A, v1) = US span
{
I3,2
M ′′

}
= (u1s1 + u2s2, u3s3, . . . , unsn) span

{
I2
M ′′

}
.

(3.21)

Introduce Λ′ = diag(λ2, λ3, . . . , λn). Then (3.21) yields

E2(A, v+
m) = ψm(A)E2(A, v1) = USψm(Λ) span

{
I3,2
M ′′

}
= (u1s1 + u2s2, u3s3, . . . , unsn)ψm(Λ′) span

{
I2
M ′′

}
.

(3.22)

Substitute û1 = u1s1 + u2s2 and û2 = u3 into the right-hand side of (3.22). The the
right-hand side obtained is of the same form as (3.19), and a bound similar to (3.20)
can be shown. 2
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The proof of Theorem 3.4 shows that for a suitable initial vector v1, the IRL
method determines one vector in each subspace Ker(A− λ̂jI) for j = 1, 2, . . . , l. The
proof also shows that the IRL method determines at most one vector in each of these
subspaces.

Now assume that we want to determine the k smallest distinct eigenvalues of A.
The next result shows how to select the interval K = [a, b] in Theorem 3.4 in order
to make the distance between the space El(A, v+

m) and the associated eigenvectors
û1, û2, . . . , ûk small.

Theorem 3.5. Let the assumptions of Theorem 3.4 be valid, and let k be a
positive integer not larger than l. Then the minimum, with respect to the endpoints
of the interval K = [a, b], of the right hand side of

lim
m→∞

(dist{El(A, v+
m), ûk})1/m ≤

 exp(G(λ̂l+1, 0)−G(λ̂k, 0)), if λ̂k ≤ λ̂l+1 < a,

exp(−G(λ̂k, 0)), if λ̂k ≤ a ≤ λ̂l+1.

is achieved for a = λ̂l+1 and b = λn, where we minimize over all a ≥ λ̂k and b ≥ λn.
Proof. In this proof we denote the Green function for the interval K = [a, b] by

G(s, t; a, b). We may assume that the interval K is symmetric with respect to the
origin; otherwise we shift the interval by − 1

2 (a+ b) and the matrix A by − 1
2 (a+ b)I.

Thus, K = [−α, α] with −α = a. Consider the function

h(α) = G(λ̂l+1, 0;−α, α)−G(λ̂k, 0;−α, α), λ̂k ≤ λ̂l+1 ≤ −α.

We want to show that h(α) is minimal when α = −λ̂l+1. Let r = |λ̂l+1/α| and
s = |λ̂k/α|. Then s ≥ r ≥ 1 and by (3.1) we have

h(α) = ln(r +
√
r2 − 1)− ln(s+

√
s2 − 1).

It follows that

h′(α) = − 1
α

(
r√

r2 − 1
− s√

s2 − 1

)
≤ 0.

Therefore, the minimal value of h(α) is achieved at α = −λ̂l+1 and

h(−λ̂l+1) = −G(λ̂k, 0; λ̂l+1,−λ̂l+1).

Define the function

g(β) = −G(λ̂k, 0; λ̂l+1, β), λn ≤ β.

It follows from (3.2) that g(β) decreases as β decreases. A proof of the analogous
result for Green functions for more general sets Ω is presented by Eiermann et al.
[7, Proposition 3]. Related results can also be found in [8, 9]. Thus, g(β) is minimal
for β = λn. This proves the theorem for λ̂k ≤ λ̂l+1 ≤ a. We turn to the case when
λ̂k ≤ a ≤ λ̂l+1 and consider the function

f(a) = −G(λ̂k, 0; a, b), λ̂k ≤ a ≤ λ̂l+1.

By (3.2) or [7, Proposition 3] it follows that f increases as a decreases. This completes
the proof of the theorem. 2
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We now use the fact that the Lanczos method is a Rayleigh-Ritz procedure in
order to obtain error bounds for the computed eigenvalues.

Theorem 3.6. Let {vj}sj=1 be an orthonormal basis of Es(A, v+
m) for 1 ≤ s ≤ l

and define Vs = [v1, v2, . . . , vs]. Let m0 be an integer sufficiently large. Then, for
m ≥ m0, the eigenvalues θ1 ≤ θ2 ≤ . . . ≤ θl of H = V Tl AVl satisfy

λj ≤ θj ≤ λj + dδ exp(−2mG(λj , 0) + δ), 1 ≤ j ≤ l,(3.23)

for any constant δ > 0 and a constant dδ that depends on δ, but is independent of
m ≥ m0 and j.

Proof. Let Gj denote a subspace of dimension j. Then

θj = min
Gj⊂El(A,v

+
m)

max
g∈Gj

gTAg

gT g

and

λj = min
Gj⊂Rn

max
g∈Gj

gTAg

gT g
≤ min

Gj⊂El(A,v
+
m)

max
g∈Gj

gTAg

gT g
= θj

≤ max
g∈Ej(A,v

+
m)

gTAg

gT g
= max
ĝ∈UTEj(A,v

+
m)

ĝTΛĝ
ĝT ĝ

.(3.24)

From the proof of Theorem 3.4 we obtain that

ĝ = Sψm(Λ)
(

Il
M̂

)
(sjψm(λj))−1

yields the upper bound in (3.23), and all elements of UTEj(A, v+
m) satisfy a bound of

this form. 2
To obtain an IRL algorithm based on Leja shifts, we have to specify how to choose

the endpoints a and b of the interval K. The next section describes two strategies for
determining the endpoints in an adaptive manner during the computations.

To conclude this section, we briefly indicate some possible extensions of the results
of the present section. First let K be the union of two real intervals, i.e., K =
[a, c] ∪ [d, b], and let the endpoints satisfy

a ≤ λ1 ≤ . . . ≤ λj ≤ c < λj+1 ≤ . . . ≤ λj+k < d ≤ λj+k+1 ≤ . . . ≤ λn ≤ b.

Then Lemma 3.2 remains valid and results analogous to Theorems 3.3-3.6 can be
shown. It therefore would appear possible to generalize the computational schemes
based on Leja shifts of the present paper to the computation of k nonextreme eigen-
values λj+1 ≤ λj+2 ≤ . . . ≤ λj+k of a symmetric matrix A.

Now let instead A be a large nonsymmetric matrix, and let K be a compact set in
C that contains the undesired eigenvalues of A, but not the desired ones. Analogues
of Theorems 3.3-3.6 can be shown and indicate that the computational scheme of the
present paper can be modified to be applicable to the determination of a few selected
eigenvalues of a nonsymmetric matrix. These generalizations of the schemes of the
present paper are being investigated.
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4. Algorithms based on the IRL method. We describe three IRL algorithms
for computing the k smallest distinct eigenvalues {λ̂j}kj=1 and associated eigenvectors
{ûj}kj=1 of a large symmetric matrix A. The algorithms differ in the selection of shifts.
Their performances are compared in Section 5. Throughout this section v1 denotes
the first vector of the initial Krylov subspace used. The dimension of the Krylov
subspaces generated is varied between k and k+ p. We let {θj, yj}k+p

j=1 be eigenvalue-
eigenvector pairs of the symmetric tridiagonal matrix Hk+p ∈ R(k+p)×(k+p) defined
by (2.5), and assume that the eigenvalues are ordered according to

θ1 < θ2 < . . . < θk+p.(4.1)

We remark that we may assume that the off-diagonal elements βj of Hk+p are non-
vanishing, because otherwise we have found an invariant subspace, and therefore the
eigenvalues θj are distinct. Let xj be a Ritz vector of the matrix A, associated with
the Ritz value θj . Then, analogously with (2.3), we obtain that

‖Axj − xjθj‖ = |βk+pe
T
k+pyj |, 1 ≤ j ≤ k + p,

where βk+p is defined by (2.5). In our IRL algorithms the computations are terminated
as soon as

max
1≤j≤k+p

|βk+pe
T
k+pyj | ≤ ε|θj |,(4.2)

where ε is a given positive constant. Our first algorithm uses exact shifts.

Algorithm 4.1. IRL-ES:
Input: A, k, p, v1, ε;
Output: {λ̂j}kj=1, {ûj}kj=1;

1. Determine the Lanczos factorization (2.5);
2. Compute the eigenvalues (4.1) of the matrix Hk+p ∈ R(k+p)×(k+p);
3. If inequality (4.2) is satisfied then stop;
4. Apply shifts µ = θj, j = k + 1, k + 2, . . . , k + p, according to (2.6)-(2.12);
5. Advance Lanczos factorization p steps in order to obtain (2.5). Go to 2; 2

The following two algorithms use Leja shifts for sets K and implement different
strategies for choosing K adaptively during the computations. These algorithms differ
from Algorithm IRL-ES only in Step 3. The first of these schemes, Algorithm IRL-
LSNI, defined below, uses Leja Shifts for a sequence of Nested Intervals Kj = [aj , bj ]
that are determined during the iterations as follows. The first time we determine
eigenvalues (4.1) of a (k + p) × (k + p) symmetric tridiagonal matrix Hk+p in the
algorithm, we define the initial interval K0 = [a0, b0] with endpoints

a0 = θk+1, b0 = θk+p.(4.3)

In the course of the iterations new (k+p)×(k+p) symmetric tridiagonal matricesHk+p

are generated and their eigenvalues are computed. For each new set of eigenvalues
(4.1) computed, we update Kj , i.e., we replace Kj by Kj+1 = [aj+1, bj+1], where

aj+1 = min{aj , θk+1}, bj+1 = max{bj, θk+p}, j = 0, 1, 2, . . . .(4.4)

Our motivation for this choice of intervals Kj is furnished by the Cauchy interlacing
theorem (see, e.g., [20]), which states that the eigenvalues (4.1) of any one of the
matrices Hk+p generated satisfy

λk ≤ θk, θk+p ≤ λn.
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Therefore, the sequence of intervals Kj = [aj , bj ], j ≥ 0, defined by (4.3)-(4.4) satisfies

Kj ⊂ Kj+1 ⊂ [λk+1, λn].(4.5)

Filter polynomials determined by Leja points for these intervals damp components of
eigenvectors in v1 associated with eigenvalues in the undesired part of the spectrum.

When we determine Leja points for Kj, we distribute them taking previously
allocated points into account by keeping the latter in the product that we maximize;
see Algorithm 4.2 below. This feature is discussed further after Algorithm 4.2. We
use the weight function

w(z) = |z − θk+1|(4.6)

when generating Leja points. This choice of weight function satisfies (3.3). Numerical
experiments showed this weight function to yield faster convergence during the first
iterations of our IRL algorithms based on Leja points than the trivial weight function
w(z) = 1. A discussion on a related weight function used when generating Leja
points for application in a Richardson iteration method for the solution of large linear
systems of equations can be found in [25].

Algorithm 4.2. Compute p Leja points for Kj given points {zk}r−1
k=0:

Input: aj, bj, θk+1, r, {zk}r−1
k=0;

Output: {zk}p+r−1
k=r ;

1. k=r;
2. if k=0 then

z0 = bj
else

Determine zk ∈Kj, such that

w(zk)
k−1∏
l=0

|zk − zl| = max
z∈Kj

w(z)
k−1∏
i=0

|z − zi|,

where w(z) is defined by (4.6);
endif;

3. k = k + 1;
4. if k < p+ r then go to 2 else stop; 2

When p new Leja points {zk}p+r−1
k=r are computed by Algorithm 4.2, their distri-

bution is affected by previously determined points {zk}r−1
k=0. For instance, if the points

{zk}r−1
k=0 are Leja points for an interval K′ = [a′, b′] and Algorithm 4.2 is applied to

determine p new Leja points {zk}p+r−1
k=r for a larger interval K = [a, b], with a < a′

and b > b′, then the new points will be distributed so that the density function for all
the r+p points {zk}p+r−1

k=0 approximates the density function (3.7) well. In particular,
many of the p new points might be allocated in the set K\K′ = [a, a′]∪[b′, b]. It is easy
to see that if we would ignore previously allocated points {zk}r−1

k=0 when determining
new points {zk}p+r−1

k=r , then the distribution function for the r + p points {zk}p+r−1
k=0

might be very different from (3.7), unless p � r. This, in turn, could reduce the
rate of convergence of the IRL algorithms based on Leja points considerably. Keeping
previously determined Leja points when determining new ones provides a “memory”
of which eigenvector components of the initial vector v1 already have been damped.

The determination of each Leja points, except z0, by Algorithm 4.2 requires the
maximization of a product over an interval [aj , bj]. In order to reduce the compu-
tational effort necessary to determine Leja points, we discretize the interval [aj, bj ]
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using grid points {tk}`k=1, for some l sufficiently large. In the computed examples of
Section 5, we choose the grid points to be zeros of a Chebyshev polynomial of the
first kind of degree ` for the interval [aj , bj]. We are in a position to describe the first
of the algorithms based on Leja points.

Algorithm 4.3. IRL-LSNI:
Input: A, k, p, v1, ε;
Output: {λ̂j}kj=1, {ûj}kj=1;

1. Determine the Lanczos factorization (2.5); j=0;
2. Compute the eigenvalues (4.1) of the matrix Hk+p ∈ R(k+p)×(k+p);
3. If inequality (4.2) is satisfied then stop;
4a. If j = 0 then define the interval Kj = [aj , bj ] by (4.3) else by (4.4);
4b. Compute p Leja points {zk}(j+1)p−1

k=jp for Kj by Algorithm 4.2 with r=jp and the
weight function (4.6) defined by the (k + 1)st smallest eigenvalue of Hk+p;

4c. Apply shifts µ = zk, k = jp, jp+ 1, . . . , (j + 1)p− 1, according to (2.6)-(2.12);
5. Advance Lanczos factorization p steps in order to obtain (2.5); j = j + 1;

Go to 2; 2

We remark that the convergence analysis developed in Section 3 applies to this
algorithm if for some integer l ≥ 0, Kj = Kl for all j ≥ l. We can then set K = Kl

in Theorems 3.4-3.6.
Assume for the moment that A has distinct eigenvalues and that

λk+1 � λk+p+1.(4.7)

Algorithm IRL-LSNI then determines a sequence of intervals Kj that satisfy (4.5) and
we assume for simplicity that Kj = [λk+1, λn] for j ≥ 0. Theorem 3.4 with l = k + p
shows that it would suffice to allocate Leja points on the interval [λk+p+1, λn]. Because
of (4.7), Theorem 3.5 leads us to expect that allocating Leja points on [λk+p+1, λn]
would yield a higher rate of convergence than allocating Leja points on [λk+1, λn].
However, it is difficult to determine approximations of the interval [λk+p+1, λn] from
the matrices Hk+p computed by the Lanczos processes. Algorithm IRL-LSFLE, de-
fined below, presents an approach to obtain intervals Kj that are smaller than those
determined by Algorithm IRL-LSNI. In Algorithm IRL-LSFLE we update the end-
points of the intervals Kj = [aj , bj ] according to

aj+1 = θk+1, bj+1 = max{bj, θk+p}, j = 0, 1, 2, . . . .(4.8)

Formula (4.8) lets the left endpoint “free” in the sense that the aj are not required to
be monotonically decreasing. This inspired the acronym LSFLE for Leja Shifts with
Free Left Endpoint. The sets Kj obtained in this manner are typically smaller than
the sets determined by Algorithm IRL-LSNI, and computed examples, some of which
are presented in Section 5, show that Algorithm IRL-LSFLE generally requires fewer
iterations than Algorithm IRL-LSNI.
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Algorithm 4.4. IRL-LSFLE:
Input: A, k, p, v1, ε;
Output: {λ̂j}kj=1, {ûj}kj=1;

1. Determine the Lanczos factorization (2.5); j=0;
2. Compute the eigenvalues (4.1) of the matrix Hk+p ∈ R(k+p)×(k+p);
3. If inequality (4.2) is satisfied then stop;
4a. If j = 0 then define the interval Kj = [aj , bj ] by (4.3) else by (4.8);
4b. Compute p Leja points {zk}(j+1)p−1

k=jp for Kj by Algorithm 4.2 with r=jp and the
weight function (4.6) defined by the (k + 1)st smallest eigenvalue of Hk+p;

4c. Apply shifts µ = zk, k = jp, jp+ 1, . . . , (j + 1)p− 1, according to (2.6)-(2.12);
5. Advance Lanczos factorization p steps in order to obtain (2.5); j = j + 1;

Go to 2; 2

The IRL algorithms of this section are designed to determine the k smallest
eigenvalues of the matrix A. It is straightforward to modify these algorithms if instead
the k largest eigenvalues of A are desired.

Instead of using Leja shifts in Algorithms IRL-LSNI and IRL-LSFLE, one could
for each j use the zeros of the Chebyshev polynomial Tp(z) for the interval [aj , bj ] as
shifts. However, these “Chebyshev shifts” do not yield convergence nearly as rapidly
as Leja shifts. This depends on that the Chebyshev shifts for the interval [aj , bj ] do
not take into account the location of the shifts previously applied. Thus, Chebyshev
shifts lack the “memory” of Leja shifts.

Richardson iteration is a popular iterative method for the solution of large linear
systems of equations; see [1, 8, 9, 10, 24, 25]. The IRL method can be viewed as a
modification of Richardson iteration applicable to the determination of desired eigen-
values and eigenvectors. In the context of Richardson iteration, the shifts are often
referred to as relaxation parameters. Computational experience with the Richardson
iteration method is indicative of the performance of the IRL method. In particular,
shift selection strategies that yield slow convergence in the context of Richardson iter-
ation typically also yield poor convergence of the IRL method. Illustrative computed
examples that demonstrate the superiority of Leja shifts, compared with Chebyshev
shifts, in the context of adaptive Richardson iteration have been presented in [1]. We
will therefore not consider Chebyshev shifts further.

5. Computed examples. This section describes numerical experiments that
compare the performance of the IRL algorithms presented in Section 4 for determining
a few of the smallest eigenvalues and associated eigenvectors. The computations were
carried out on an IBM RISC 6000/550 workstation, using single precision arithmetic,
i.e., with approximately eight significant digits. In all examples the input parameter
ε in the IRL algorithms was chosen to be 1 · 10−8 and the initial vector v1 was
obtained by first determining a vector ṽ with uniformly distributed random entries in
the interval (−1, 1), and then letting v1 = ṽ/‖ṽ‖2.

Example 5.1. The entries of the symmetric 100× 100 matrix A considered in this
example are random numbers uniformly distributed in the interval (−1, 1). We want
to compute the four smallest eigenvalues and associated eigenvectors using a Krylov
subspace of dimension at most eight. The input parameters are given by k = 4 and
p = 4. Algorithm IRL-ES1 required 185 matrix-vector products, Algorithm IRL-LSNI

1 In all numerical examples we used the implementation in ARPACK of Algorithm IRL-ES. This
implementation contains various improvements compared with Algorithm 4.1 in Section 4 in order
to enhance convergence. ARPACK can be requested by sending e-mail to sorensen@rice.edu
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required 144 and Algorithm IRL-LSFLE required 124. 2
In all examples Algorithm IRL-LSFLE determined the desired eigenpairs using

fewer matrix-vector multiplications than Algorithm IRL-LSNI. We therefore do not
report the performance of Algorithm IRL-LSNI in the remaining examples.

Example 5.2. Let A be a 100 × 100 matrix of the form UTDU , where U is
a randomly generated orthogonal matrix and D is a diagonal matrix with evenly
spaced entries in the interval [u, 1]. Here u denotes the unit roundoff. We want
to compute the two smallest eigenvalues and associated eigenvectors using a Krylov
subspace of dimension at most four, i.e., we chose the input parameters k = 2 and
p = 4. Algorithm IRL-ES failed to find any of the desired eigenvalues and eigenvectors
within 80 iterations, which require about 480 matrix-vector multiplications. This may
be attributed to the fact that approximations of the two largest eigenvalues of A kept
reappearing as eigenvalues of the matrices Hk+p generated. Algorithm IRL-LSFLE,
on the other hand, computed the desired pair of eigenvalues and eigenvectors using
92 matrix-vector multiplications. 2

Example 5.3. The matrix of this example comes from a technique described in
[23] for solving a three-dimensional quantum mechanical scattering problem within
the context of the the Adiabatically adjusting Principal axis Hyperspherical (APH)
coordinate approach. In this approach the total wave function is expanded in a basis
of sector adiabatic surface functions

ΨJMpn = 4
∑
t,Λ

ρ−5/2ψJpnt,Λ (ρ)ΦJpt,Λ(θ, χ; ρζ)D̂
Jp
ΛM (αQ, βQ, γQ).

Here the surface functions Φt = ΦJpt,Λ are bound state eigenfunctions of the two-
dimensional surface Hamiltonian, i.e.,

H(θ, χ; ρζ)⊕t(θ, χ; ρζ) = Et(ρζ)⊕t(θ, χ; ρζ),(5.1)

where θ and χ are the two hyperspherical angles and ρ is the scattering coordinate.
We wish to determine a few of the smallest eigenvalues and eigenvectors of the Hamil-
tonian operator (5.1). The Hamiltonian operator is discretized by a Galerkin method
that uses products of normalized Legendre polynomials in cos 2θ and trigonometric
polynomials in χ as test and trial functions. The discretized Hamiltonian operator
HDVR obtained in this manner, where DVR stands for Discrete Variable Representa-
tion, can be written in tensor product form. Using the notation of [23], one obtains

HDVR = hDVRθ ⊗ Iχ + fDVRθ ⊗ hDVRχ + Ṽ DVR,

where hDVRθ and hDV Rχ are the kinetic energy operators for the θ and χ degrees of
freedom. The matrix HDVR so obtained has a regular and sparse structure. It can
be written as

HDVR = B +K,

where B is a block-diagonal matrix and the the matrix K has diagonal blocks. More
precisely, we have

K =


K11 K12 K13 . . . K1nθ

K21 K22 K23 . . . K2nθ

K31 K32 K33 . . . K3nθ
...

...
...

. . .
...

Knθ1 Knθ2 Knθ3 . . . Knθnθ

 ,
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ES ES LSFLE LSFLE
k k + p # iterations # mat-vec mult # iterations # mat-vec mult
6 12 127 491 65 396
6 10 431 975 94 382
6 8 > 1500 193 392
4 8 177 496 91 368
4 6 > 1500 150 304

Table 5.1

where each submatrix Kjl is a multiple of the identity matrix. For this eigenvalue
problem one is typically interested in about 3% of the smallest eigenvalues. We refer
to [23] for details.

In the present example we determined the 4-6 smallest eigenvalues and associated
eigenvectors of the matrix HDVR of order 200 by Algorithms IRL-ES and IRL-LSFLE.
Table 1 shows that as the dimension of the Krylov subspace decreases, the number of
matrix-vector products required by Algorithm IRL-ES to compute the desired eigen-
values and eigenvectors increased sharply, with the number of matrix-vector multipli-
cations nearly doubling as the dimension of the Krylov subspace was reduced from 12
to 10. In fact, when a Krylov subspace of dimension 8 was used, Algorithm IRL-ES
failed to determine the desired eigenvalues and eigenvectors within 1500 iterations.
The number of matrix-vector products required by Algorithm IRL-LSFLE to compute
the six smallest eigenvalues and eigenvectors, on the other hand, remained essentially
unaffected by the change in dimension of the Krylov subspace. Similar behavior could
be observed when we wanted to compute the four smallest eigenvalues and associated
eigenvector of the matrix HDV R. 2

6. Conclusion. This paper describes the IRL methods, analyzes Leja shifts and
compares two IRL algorithms based on Leja shifts with an IRL algorithm that uses
exact shifts. The numerical examples shown, as well as many other computed ex-
amples, indicate that if p is sufficiently large, then all three algorithms yield about
the same rate of convergence. A reduction in p for fixed k typically increases the
number of iterations necessary for convergence for all three algorithm, and in many
examples the number of iterations required by Algorithm IRL-ES grows faster than
the number of iterations requires by the algorithms based on Leja shifts. Among the
latter, Algorithm IRL-LSFLE performed best. Thus, when p is large any of the three
algorithms described can be chosen, but when p is small, e.g., because of limitations
in fast computer storage available, Algorithm IRL-LSFLE is preferred. When a value
of p should be considered large depends on the distribution of eigenvalues of A and
on the size of k.
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