
Electronic Transactions on Numerical Analysis.
Volume 2, pp. 22-43, March 1994.
Copyright  1994, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 
etna@mcs.kent.edu

MULTIGRID CONFORMAL MAPPING VIA THE SZEGŐ KERNEL∗
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Abstract. We introduce a multilevel scheme to solve a second kind integral equation which
is important in computing conformal maps. This scheme outperforms conjugate gradient methods
previously employed for smooth regions. An analysis of the two-grid scheme is provided.
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1. Introduction. Conformal mapping has received a lot of attention in the early
years of numerical analysis (see [4]). There has been considerably increased interest
in the field during the past 15 years, and many new and competitive algorithms have
entered the field (see e.g. [11, 5]). A major reason for this is the increased use of
numerical grid generators. However, a problem in numerical grid generation is the
possible inaccuracy in the created grids, and since the grid is generated through the
computed Riemann map, it is a problem of computing the Riemann map accurately.
Hence, we have a problem in numerical conformal mapping. One method that has
the ability to achieve high accuracy is described in [10, 12]. This mapping is found by
solving a second kind Fredholm integral equation whose solution is the Szegő kernel.
In the present paper, we extend this research by applying a multigrid method to the
discretized integral equation.

The aim of this adaption is to achieve rapid convergence for solving the discretized
systems. This may appear rather unnecessary since the generalized conjugate gradient
(CG) method of [3, 14] converges at respectable rates for these systems (see [12]). But
for large n, i.e. fine discretizations, it is faster to reconstruct the (complex-valued)
matrix of the discretized system for each iteration rather than storing it out of core
memory. Therefore, each CG iteration requires about 10n2 flops. Hence, a modest
reduction in the number of fine grid iterations can produce a large reduction in the
number of operations.

In fact, it appears intuitively that multigrid is the ideal iteration for solving second
kind Fredholm integral equations involving compact operators, as is the case for our
equations. Since the eigenvalues of a compact operator converge to zero, it is rather
easy to choose a smoother that rapidly eliminates the error components corresponding
to these eigenvalues. Also, if the trivial injection operator is used, then these are the
components that are poorly approximated by the coarse grid correction. Hence, the
poorly approximated frequencies of the coarse grid operation, i.e., frequencies lying
near the null space of the residual transfer operator, can be damped off by the fine grid
smoother. Moreover, exploiting the smoothness of the kernel, by using the obviously
chosen Picard smoother, one sees that the error components corresponding to the
large eigenvalues are exactly the frequencies that are poorly eliminated on the fine
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grid but which can be effectively eliminated on the coarser grids. All the elements of
a multigrid method are thus present.

We divide the paper into four sections. In section 2, we give a brief derivation of
the integral equation and show how the Szegő kernel is related to the Riemann map.
Results here are extracted from [9, 10, 12]. The discretization of the equation and
the numerical procedure are given in the next section, and some of the convergence
details are given in section 4. The latter includes a derivation of the multigrid iteration
matrix, and derives a bound on the norm of this matrix. Finally, section 5 gives some
numerical examples.

2. The integral equation. Let Ω be an open, bounded, simply connected do-
main in the complex plane, and let its boundary ∂Ω be twice continuously differen-
tiable so that it admits a C2 parametrization z(t), 0 ≤ t ≤ β. Also, denote the unit
tangent to ∂Ω at z by γ̇(z) = ż(t)/ |ż(t)| , and denote the arclength on ∂Ω by dσ.

The problem is to construct the Riemann mapping function R(z) such that R(z)
maps Ω onto the closed unit disk and satisfies R(a) = 0, R′(a) > 0 for any fixed
a ∈ Ω (see e.g. [13] for the extension of the Riemann map to the boundary).

Definition 2.1. The Cauchy kernel H is defined by

H(w, z) =
1

2πi
γ̇(z)
z − w, w ∈ Ω, w 6= z, z ∈ ∂Ω;

the Kerzman-Stein kernel is defined by

A(w, z) =
{
H(z, w)−H(w, z) w, z ∈ ∂Ω, w 6= z
0 w = z ∈ ∂Ω.

If we let H denote the integral operator with kernel H, then H : L2(∂Ω, dσ) →
K2(∂Ω, dσ), the Hardy space, which is the closed subspace of L2(∂Ω, dσ) consisting
of elements that are the boundary value of some holomorphic function in Ω in the L2

sense. This follows because H is the kernel in the Cauchy integral formula. Note that
H is an oblique projector into K2, and that H has the reproducing property.

Moreover, if we denote by A the integral operator with kernel A, then A : L2 →
L2, and

A = H∗ −H.

A measures the “amount” by which H fails to be an orthogonal projector. A is also
a compact operator since A is a continuous function on ∂Ω× ∂Ω as shown in [10, 9],
and A has purely imaginary eigenvalues since A is skew-Hermitian.

Another kernel that has the reproducing property and whose corresponding in-
tegral operator is a projection from L2 into K2 is the Szegő kernel S(z, w). The
corresponding integral operator S is in fact an orthogonal projection. Furthermore,
since the Szegő kernel for the unit disk is known explicitely, it follows by conformal
transplantation from Ω to the unit disk that

R′(z) =
2π

S(a, a)
S2(z, a), z ∈ Ω.

An argument in [10] leads then to the simple formula for the Riemann mapping
function

R(z) = −iγ̇(z)
R′(z)
|R′(z)| , z ∈ ∂Ω.
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Hence, to compute the Riemann mapping function, we only need to compute
the Szegő kernel. One approach uses the fact that if {θj} is an arbitrary complete
orthonormal system in K2 (in the measure dσ), then

S(z, w) =
∞∑
j=1

θj(z)θj(w), w ∈ ∂Ω, z ∈ Ω.

The series is simply truncated. But because the orthonormal functions must be com-
puted, this method is often computationally unstable. A better method uses the fact
that S is the solution of an integral equation.

Theorem 2.2. S(z, a) is the unique solution of the integral equation

S(z, a) +
∫
w∈∂Ω

A(z, w)S(w, a) dσw = H(a, z), z ∈ ∂Ω.(2.1)

(See [10] and [12] for a proof.)
Written in operator notation, (2.1) is

(I +A)S = H∗,(2.2)

which can be seen by noting that HS = H and SH = S since both operators project
onto the same subspace.

The reader is also referred to [8] for an illuminating alternate derivation of the
integral equation (2.1).

Often the region of interest possesses some symmetry. In such cases, (2.1) can be
transformed into another integral equation as described in [12].

Definition 2.3. Let Ω be a simply connected domain in C, whose boundary is a
closed Jordan curve. A complex-valued function λ that satisfies

z ∈ ∂Ω, λ(z) = λ(w) =⇒ w ∈ ∂Ω

is called a symmetry identification function of Ω.
Domains that are invariant under rotations about the origin with angle 2π/j are

of special interest. The identification function here is λ(z) = zj, and using a geometric
argument we have

λ(z) = λ(w) =⇒ S(z, 0) = S(w, 0).(2.3)

Now, with the notation

(∂Ω)j := ∂Ω
⋂
{z : 0 ≤ arg z ≤ 2π/j} ,

equation (2.1) can be transformed into

S(z, 0) +
∫
w∈(∂Ω)j

AS(z, w)S(w, 0) dσw = H(0, z), z ∈ (∂Ω)j ,(2.4)

where

AS(z, w) :=
∑

λ(v)=λ(w), v∈∂Ω

A(z, v)

=

 HS(w, z)−HS(z, w), w, z ∈ (∂Ω)j , w 6= z,

(1−j)
2πi Re

(
γ̇(z)
z

)
, w = z ∈ (∂Ω)j ,
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HS(z, w) :=
∑

λ(v)=λ(w), v∈∂Ω

H(z, v)

=
1

2πi
λ′(w)γ̇(w)
λ(w) − λ(z)

, w ∈ Ω, z ∈ (∂Ω)j , λ(z) 6= λ(w).

Theorem 2.4. For a domain Ω that is invariant under rotations about the origin
with angle 2π/j the Szegő kernel function S(z, 0), z ∈ ∂Ω, is the solution of the integral
equation (2.4). The values of S(z, 0) for z 6∈ (∂Ω)j can be reconstructed from equation
(2.3). Moreover, the operator corresponding to the kernel AS(z, w) is compact in
C
(

(∂Ω)j
)
.

Proof. The proof is similar to the one given in [9] for j = 1. We will assume that
the derivative of γ̈(s) is bounded, although not necessarily continuous.

Clearly, AS(z, w) is continuous for z 6= w since AS is restricted to (∂Ω)j × (∂Ω)j ;
that is, λ(z) = λ(w) if and only if z = w. For z ≈ w, say z = γ(s), w = γ(t), s ≈ t.
We have

z(s) = γ(s) = γ(t) + γ̇(t)(s− t) + γ̈(t)(s − t)2 + (s− t)3r

w(t) = γ(t),

where r denotes a generic remainder function factor. Hence,

λ(z) =
[
γ(t) + γ̇(t)(s− t) + γ̈(t)(s− t)2 + (s− t)3r

]j
= γj(t) + jγj−1(t)γ̇(t)(s− t) +

j

2
[
γ̈(t)γj−1(t) + (j − 1)γj−2(t)γ̇2(t)

]
(s− t)2 + (s− t)3r,

λ(z)− λ(w) = jγj−1(t)γ̇(t)(s − t) +
j

2
[
γ̈(t)γj−1(t) + (j − 1)γj−2(t)γ̇2(t)

]
(s− t)2 + (s− t)3r

= jγj−1(t)γ̇(t)(s − t)
[
1 +

1
2
γ̈(t)
γ̇(t)

(s− t) +
j − 1

2
γ̇(t)
γ(t)

(s− t)

+(s− t)2r
]
,

and

1
λ(z)−λ(w) = 1

jγj−1(t)γ̇(t)(s−t)

[
1− 1

2
γ̈(t)
γ̇(t) (s− t)

− j−1
2

γ̇(t)
γ(t) (s− t) + (s− t)2r

]
.

(2.5)
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Also,

λ′(z)γ̇(z) =
{
jγj−1(t) + j(j − 1)γj−2(t)γ̇(t)(s− t) +

[
j(j−1)

2 γj−2(t)γ̈(t)

+ j(j−1)(j−2)
2 γj−3(t)γ̇2(t)

]
(s− t)2 + (s− t)3r

}
×
{
γ̇(t) + γ̈(t)(s− t) + (s− t)2r

}
= jγ̇(t)γj−1(t) + jγ̈(t)γj−1(t)(s− t) + j(j − 1)γj−2(t)γ̇2(t)(s− t)

+ (s− t)2r.

(2.6)

Multiplying (2.5) and (2.6), we have

2πiHS(w, z) = λ′(z)γ̇(z)
λ(z)−λ(w)

= 1
s−t + 1

2
γ̈(t)
γ̇(t) + j−1

2
γ̇(t)
γ(t) + (s− t)r.

(2.7)

A similar procedure gives

λ′(w)γ̇(w)
λ(w)−λ(z) = − λ′(w)γ̇(w)

λ(z)−λ(w)

= −
[

1
s−t −

1
2
γ̈(t)
γ̇(t) −

j−1
2

γ̇(t)
γ(t) + (s− t)r

]
.

(2.8)

So, since s, t ∈ < and γ̈(t) ⊥ γ̇(t),

AS(w, z) = HS(z, w)−HS(w, z), z ≈ w

=
1

2πi

{
−Re

(
γ̈(t)
γ̇(t)

)
+ (1− j)Re

(
γ̇(t)
γ(t)

)
+ (s− t)r

}
=

1
2πi

(1− j)Re
(
γ̇(t)
γ(t)

)
+ (s− t)r;

that is, AS(w, z) is continuous on (∂Ω)j × (∂Ω)j .
One can take advantage of additional symmetries (e.g., under reflections about

the real or imaginary axes, see [12]). Although the numerical examples will exploit
any symmetry, we will consider equation (2.1) for the remainder of this paper unless
otherwise specified.

3. Description of the method. To preserve the skew-Hermitian property of
the kernel when an arbitrary parametrization of ∂Ω is used, equation (2.1) is written
in the form

η(t) +
∫ β

0

k(t, s)η(s) ds = φ(t), 0 ≤ t ≤ β,(3.1)

where

η(t) := |ż(t)|
1
2S (z(t), a) ,

φ(t) := |ż(t)|
1
2H (a, z(t)), and

k(t, s) := |ż(t)|
1
2A (z(t), z(s)) |ż(s)|

1
2

(see [10, 12]). Applying Nyström’s method with an n-point trapezoid rule to (3.1),
which is numerically equivalent to a Fourier-Galerkin method (see [2]), we have the
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discrete system

η
(
thi
)

+ h
n∑
j=1

Khh
(
thi , t

h
j

)
η
(
thj
)

= φ
(
thi
)
, 1 ≤ i ≤ n,(3.2)

h =
β

n
, thi = (i− 1)h.

Or, letting

Bhh =
[
hKhh

(
thi , t

h
j

)]n
i,j=1

,

xh =
[
η
(
thi
)]n
i=1

,

y
h

=
[
φ
(
thi
)]n
i=1

,

we obtain the system

(I +Bhh)x = y.(3.3)

In [12] the generalized conjugate gradient method was used to solve this system.
It was shown there that the spectrum of the matrix I + Bhh is contained in the
set {λ : |Im λ| ≤ βmaxt,s |k(t, s)| , Re λ = 1} . But by taking advantage of both the
smoothness of k(t, s), which is dictated by the smoothness of ∂Ω (see [10]), and the
high accuracy of the trapezoid rule for periodic functions, the second kind multigrid
methods of Hackbusch [6, 7] may be more effective.

The algorithm for a basic second kind multigrid is

Algorithm MGh
1

(
xh, yh

)
(i) relax once on (Ihh + Bhh)xh = y

h
with the initial approximation xh using

the Picard smoother;

(ii) if h = hmax, then solve the coarse grid exactly or iteratively; otherwise,
a. restrict the defect: d2h = Ih

2h
(
xh +Bhhxh − yh

)
b. u2h = 0
c. u2h ←−MG2h

1 (u2h, d2h) twice;

(iii) interpolate the coarse grid correction:

xh ←− xh − I2hhu2h.

By noting that no matrix multiplication is required whenever the initial approximation
is zero, and that the trivial injection permits the defect to be calculated in only 0.5
matrix multiplications on the standing grid, one can obtain a good estimate of the
work done per iteration: Let there be l levels with the coarsest level numbered zero.
The number of visits to each level is

2l−k on level k, 1 ≤ k ≤ l.

On level k, the number of fine grid WU’s — i.e., the cost of one fine grid matrix-vector
multiplication — is [

2−(l−k)
]2
.
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Now each visit requires a defect calculation. Hence,

1
2
[
1 + 2−1 + 2−2 + · · ·+ 2−l+1

]
WU′s = (1− 2−l) WU′s

are required for all the defects. Also, for each 2 visits to level k, 1 ≤ k ≤ l − 1,
only one matrix-vector multiplication is performed. Hence, omitting the costs of the
coarsest grid calculations, there are 2l−k−1 “active” visits to level k, and the total
number of operations required for the smoothing is

[
1 + 2−2 + 2−3 + · · ·+ 2−l

]
WU′s =

{
2
[
1− 2−l−1

]
− 1

2

}
WU′s.

The total cost is then

(1− 2−l) + 2(1− 2−l−1)− 1
2
≈ 2

1
2

WU′s.

Thus, each multigrid iteration is equivalent to 2.5 Picard or conjugate gradient iter-
ations.

Further reduction is possible if in (ii)c., instead of calling MG2h
1 (u2h, d2h) twice

with the effect that two Picard relaxations are performed on the standing grid, we can
relax only at the second call. This modification does not only exploit the smoothness
of the defect, but it also has better convergence properties when

∥∥Bhh∥∥ � 1. We
examine this in the next section. The work load drops down to ≈ 2.25 WU’s because
each 2 visits will now require only one defect calculation.

Another modification to the algorithm is to apply nested iteration using the
Nyström interpolant

xh,i =

{
x2h,i if the i′th node is common
y
h,i
−
∑n

2
j=1 2hBh,2hij x2h,j otherwise.

This is of course an expensive interpolation formula, but this interpolation permits us
to omit the first smoothing on the interpolated level. With this omission, the work
load is approximately 7

3 WU’s.

4. Convergence of the scheme. To see how the coarse grid correction acts
on the eigenvalues of the integral operator K corresponding to the kernel k(t, s), first
note that the two grid matrix for the modified w-cycle is

MTGM
h :=

[
Ihh − I2hh

(
I2h,2h +B2h,2h

)−1
Ih

2h
(
Ihh +Bhh

)] (
−Bhh

)
= ATGMh

(
−Bhh

)
,

where ATGMh is the bracketed factor. Second, recall that the compactness of K guar-
antees that its eigenvalues λj → 0, although the sequence may oscillate to this limit
from above and below the real axis (purely imaginary eigenvalues). One asymptotic
estimate of this rate of convergence can be obtained by observing that |λj | = |σj | ,
the j′th singular value of K, and if k(t, s) is assumed to be continuously differentiable
on (0, β), then

|σj | = O
(
j−

3
2

)
.
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The obvious problem is that the smaller eigenvalues will be poorly approximated when
K is discretized. Not only may Bhh have a non-trivial null space, but also the smaller
eigenvalues may have the opposite signs of the exact eigenvalues. Mathematically
these two problems can be illustrated by using the facts that

{
Bhh

}
h

is collectively
compact, Bhh → K, and hence

{
Bhh −K

}
is collectively compact (see [1]). For every

open set Γ ⊃ σ(K) then, there exists an N such that Γ ⊃ σ
(
Bhh

)
, n ≥ N. In

particular, if we let

Γε(K) =
⋃

λ∈σ(K)

Γε(λ), Γε(λ) = {z : |z − λ| ≤ ε} ,

then there exists some Nε such that

Γ
(
Bhh

)
⊂ Γε(K) n ≥ Nε.

Taking λ = 0, the disc Γ0 will contain an infinite number of spectral values, and the
smaller eigenvalues of Bhh will be contained in this disc for sufficiently small h.

But note that these problems are inevitable. The equation must be discretized,
and so the only thing we can expect is that the poor approximations do not affect the
convergence of the iterative scheme (i.e., convergence independent of discretization).
On the other hand, since the trapezoid rule applied to a periodic kernel and a periodic
forcing term is equivalent to the Fourier Galerkin method, the large eigenvalues are
accurately approximated. This may be exploited.

We are ready to examine the damping effect of the two-grid scheme. Since the
smoothing rapidly eliminates the high frequencies (Bhhvhi = λiv

h
i ), the coarse grid

correction must reduce the smooth frequencies, or the eigenvectors corresponding to
the large eigenvalues. Now using the injection operator, the transfer residual operator
Ih

2h
(
Ihh +Bhh

)
simply involves the odd rows of

(
Ihh +Bhh

)
. This reduced matrix

has a null space of dimension of at least (n−1)
2 ,1 and it is also an approximation of

(I +K). Hence, the null space of the residual transfer operator will be approximately
in the span of the high frequencies. The smooth frequencies, moreover, which are well
approximated by the trapezoid method even on the coarse grid can then be eliminated
on the coarse grid. Using a piecewise polynomial interpolant, the interpolation opera-
tor I2hh has full rank. And because the residual equation is a discrete approximation
of

(I +K) e = (I + K)x− y = r,

the continuity (smoothness) of the forcing term guarantees the continuity (smooth-
ness) of e. This guarantees a good damping of the smooth frequencies by the coarse
grid correction.

To obtain a bound on MTGM
h , we introduce the spaces U and V. The integral

operator K maps U into V, which is “more smooth”. Since the forcing term

H(a, z) =
1

2πi
γ̇(z)
z − a

is continuous of order Cj−1 (∂Ω) if a 6∈ ∂Ω and ∂Ω is of order Cj , and since A is of
order Cj−2 (∂Ω× ∂Ω) under the same conditions on ∂Ω, U is of order Cj−2 (∂Ω) .2

1 We will assume that n is odd.
2 If the kernel k(t, s) ∈ Cj−1 (∂Ω× ∂Ω) and y(t) ∈ Cj−1 (∂Ω) , then x(t) ∈ Cj−1 (∂Ω) .
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Note that using the norm

‖u‖Cm(∂Ω) = max
0≤α≤m

‖Dαu‖∞ m = j − 1, j − 2,

where Dα is the derivative operator of order α, K is a compact operator in Cj−2(∂Ω).
This follows because weak convergence in Cj−2(∂Ω) implies weak convergence in
C0(∂Ω), and because the kernel is order Cj−2(∂Ω× ∂Ω); that is, because of the com-
pactness of DαA in C0(∂Ω).

Also, introduce the discrete analogues of the spaces U and V, denoted by U, V .
The discrete norms will be

‖u‖U = max
0≤α≤m

‖Dαu‖∞ ,

where Dα is the discrete derivative operator of order α. In the remainder of the paper,
we will take U = V = L2(∂Ω) and omit the subscripting of the norm.

Now a bound for the two grid matrix is∥∥MTGM
h

∥∥ =
∥∥∥[Ihh − I2hh (I2h,2h +B2h,2h

)−1
Ih

2h
(
Ihh +Bhh

)]
Bhh

∥∥∥
=

∥∥∥{Ihh − I2hhIh2h + I2h
h
(
I2h,2h +B2h,2h

)−1

[(
I2h,2h +B2h,2h

)
Ih

2h − Ih2h
(
Ihh +Bhh

)]}
Bhh

∥∥∥
≤

[∥∥∥Ihh − I2hhIh2h
∥∥∥+

∥∥∥I2hh∥∥∥∥∥∥(I2h,2h +B2h,2h
)−1
∥∥∥∥∥∥B2h,2hIh

2h − Ih2hBhh
∥∥∥] ∥∥Bhh∥∥

An application of the Gerschgorin theorem shows that∥∥Bhh∥∥∞ ≤ β max
t,s
|k(t, s)| =: C∞k,(4.1)

which may be used to approximate

CB :=
∥∥Bhh∥∥ ;(4.2)

because B2h,2h is skew-Hermitian,∥∥∥(I2h,2h +B2h,2h
)−1
∥∥∥ ≤ 1.(4.3)

As for the term ∥∥∥I − I2hhIh2h
∥∥∥ ,

if Ih2h is the injection operator and I2h
h is a piecewise polynomial interpolation

operator of degree r, r ≤ j − 2, then∥∥∥I − I2hhIh2h
∥∥∥ = O

(
hr+1

)
= CIh

r+1;
(4.4)
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and for the term ∥∥∥I2hh∥∥∥ =: Cp,

Cp is usually about one. The remaining factor reflects the smoothness of the kernel.
To obtain a computable bound on this term, let u ∈ Cj−2 (∂Ω) and let ul be its grid
function approximant. Note that with the trivial injection,

Ih
2hBlul =



∑n
i=1 B

l
1iuli∑n

i=1 B
l
2iuli

. . .

. . .

. . .∑n
i=1 B

l
niuli

 ∈ C
n+1

2 ,

Bl−1Ih
2hul =



∑n+1
2

i=1 B
l−1
1i ul,(2i−1)∑n+1

2
i=1 B

l−1
2i ul,(2i−1)

. . .

. . .

. . .∑n+1
2

i=1 B
l−1
n+1

2 ,i
ul,(2i−1)


=



∑n+1
2

i=1 2Bl1,2i−1ul,(2i−1)∑n+1
2

i=1 2Bl3,2i−1ul,(2i−1)

. . .

. . .

. . .∑n+1
2

i=1 2Bln,2i−1ul,(2i−1)


∈ C

n+1
2 .

Taking a random row (actually we can take the row corresponding to the infinity
norm for l = 0), say row p, then

CrB :=
∥∥∥Bl−1Ih

2h − Ih2hBl
∥∥∥

≈
∥∥∥Bl−1Ih

2h − Ih2hBl
∥∥∥
∞

≈

∣∣∣∣∣∣2
n+1

2∑
i=1

Blp,2i−1ul,2i−1 −
n∑
i=1

Bp,iul,i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n+1

2∑
i=1

Blp,2i−1ul,2i−1 −
n−1

2∑
i=1

Blp,2iul,2i

∣∣∣∣∣∣ .
Since u ∈ Cj−2 (∂Ω) , if a sufficient number of nodes are used, ul,2i−1 ≈ ul,2i. Hence,

∥∥∥Bl−1Ih
2h − Ih2hBl

∥∥∥
∞
≈

∣∣∣∣∣∣
n−1

2∑
i=1

(
Blp,2i−1 −Blp,2i

)∣∣∣∣∣∣ ,
which is small if k(t, s) is very smooth in t, and which may be used to approximate
CrB.

An a priori estimate is also available. Using the periodicity of k(t, s) and u(s),
we have
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∥∥∥Bl−1Ih
2hul − Ih2hBlul

∥∥∥
∞
≈

∣∣∣∣∣
(∫ b

a

k ((p− 1)h, s)u(s) ds+ errortrap1

)

−
(∫ b

a

k ((p− 1)h, s)u(s) ds+ errortrap2

)∣∣∣∣∣
=

∣∣g2i−1
s (β) − g2i−1

s (0)
∣∣ ∣∣Ctrap1 − 22iCtrap2

∣∣h2i

+O
(
h2i+1

)
≈ C′rBh

2i,

where i is the maximum integer such that

g2i−3
s (β)− g2i−3

s (0) = 0,

gs =
d

ds
(k ((p− 1)h, s)u(s)) .

All of the bounds give∥∥MTGM
l

∥∥ ≤ (CIhr+1 + CpC
′
rBh

2i
)
CB .(4.5)

Remark: Suppose that on a two grid scheme, the defect equation is solved itera-
tively. Then a non-stationary two grid matrix can be produced:

MTGM
h,i =

[
Ih − siI2hhIh2h + siI2h

h
(
I2h +B2h

)−1
Ih

2h
(
Ih +Bh

)]
(−Bh),

where si is a steplength parameter for the i′th iteration. A convenient way of choosing
this parameter is to view the defect equation as a minimization of

ψ
(
v2h
)

=
1
2
<
(
I2h −B2hB2h

)
v2h, v2h > − <

(
I2h − B2h

)
d2h, v2h >

over C n+1
2 . After p iterations on the coarse grid, we can take the resulting approxi-

mation v2h∗ to be a search direction, and minimize ψ along this direction. In this
case,

si =
<
(
I2h −B2h

)
d2h, v2h∗ >

< (I2h −B2hB2h) v2h∗, v2h∗ >

=
< d2h,

(
I2h +B2h

)
v2h∗ >

< (I2h +B2h) v2h∗, (I2h +B2h) v2h∗ >
.

The cost of computing this parameter is then about 0.25 WU’s.
This strategy also can be applied throughout the multigrid w-cycle. In this case,

since for each visit to level k a prolongation must be computed, there are 2l−k, 1 ≤
k ≤ l, steplength parameters to be formed on this level. Each of these parameters
requires

[
2−(l+k+1)

]2
WU’s to form. Hence, omitting the cost of the level k = 1,

which is free if an exact solver is used on the coarsest grid, the total cost is

2−2
[
1 + 2−1 + · · ·+ 2−l+2

]
WU′s ≈ 1

2
WU′s.
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Turning to the full modified w-cycle, the iteration matrix is

M l =
[
I l − Il−1

l
(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 +Bl−1

)−1

Il
l−1
(
I l +Bl

)]
(−Bl) l ≥ 1,

where Al−1 is defined recursively by

Al−1 =
[
I l−1 − Il−2

l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1

Il−1
l−2
(
I l−1 +Bl−1

)]
with A0 = 0.

Proof. First, multigrid has the form

xjl = M lxj−1
l +N lf

l
.(4.6)

Assuming that the iteration matrix is given by the above formula, by following the
algorithm, one can see that

N l = I l + Il−1
l
(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 +Bl−1

)−1
Il
l−1(−Bl)

if smoothing is performed, and

N l = Il−1
l
(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 + Bl−1

)−1
Il
l−1

if no smoothing is performed. Now the solution of the discretized system is a fixed
point of the Picard smoother:

xl = −Blxl + f
l
.

Replacing M l and N l with the above expressions, it can be shown easily that xl is
also a fixed point of the multigrid scheme.

It is clear that the formula holds for l = 1. Let it also hold for l − 1. Then for l,
the iteration matrix is of the form

ClBl,

where Cl is the coarse grid correction operator. For simplicity, take f
l

to be zero. In
this case, we have

dl−1 = Il
l−1
(
I l +Bl

)
x̂l,

and

ujl−1 = M l−1uj−1
l−1 +N l−1dl−1.(4.7)

Now when smoothing is performed,

N l−1 = I l−1 − Il−2
l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1
Il−1

l−2Bl−1

= I l−1 − Il−2
l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1 ×
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Il−1
l−2
(
I l−1 +Bl−1

)
Bl−1

(
I l−1 +Bl−1

)−1

=
[
I l−1 +Bl−1 − Il−2

l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1

Il−1
l−2
(
I l−1 +Bl−1

)
Bl−1

] (
I l−1 +Bl−1

)−1

=
(
I l−1 −M l−1

) (
I l−1 +Bl−1

)−1
;

and when no smoothing is performed,

N l−1 = Il−2
l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1
Il−1

l−2

= Il−2
l−1
(
I l−2 +Al−2Bl−2Al−2

) (
I l−2 +Bl−2

)−1
Il−1

l−2(
I l−1 +Bl−1

) (
I l−1 +Bl−1

)−1

=
(
I l−1 +Bl−1

)−1 −
[
I l−1 − Il−2

l−1
(
I l−2 +Al−2Bl−2Al−2

)
(
I l−2 +Bl−2

)−1
Il−1

l−2
(
I l−1 +Bl−1

)] (
I l−1 + Bl−1

)−1

=
(
I l−1 −Al−1

) (
I l−1 +Bl−1

)−1
.

Because we omit smoothing first, and then smooth at the second call, using the initial
approximation u0

l−1 = 0, (4.7) gives

u2
l−1 = −Al−1Bl−1

(
I l−1 −Al−1

) (
I l−1 +Bl−1

)−1
dl−1 +

(
I l−1 +Al−1Bl−1

)(
I l−1 +Bl−1

)−1
dl−1

=
(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 +Bl−1

)−1
Il
l−1
(
I l +Bl

)
x̂l.

Interpolating this defect solution, we have

ClBlx̃l = −Blx̃l − Il−1
lu2
l−1,

= −
[
I l − Ill−1

(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 +Bl−1

)−1

Il
l−1
(
I l +Bl

)]
Blx̃l,

where x̃l satisfies

x̂l = −Blx̃l + f
l
.

Hence,

Cl = −
[
I l − Ill−1

(
I l−1 +Al−1Bl−1Al−1

) (
I l−1 +Bl−1

)−1
Il
l−1
(
I l +Bl

)]
.

As for a bound on this iteration matrix, we have∥∥M l
∥∥ ≤

∥∥Al∥∥∥∥Bl∥∥
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=
∥∥∥[ATGMl − Ill−1Al−1Bl−1Al−1

(
I l−1 +Bl−1

)−1
Il
l−1
(
I l +Bl

)]∥∥∥∥∥Bl∥∥(4.8)

≤
[∥∥ATGMl

∥∥+ ‖Ill−1‖
∥∥Al−1

∥∥2 ∥∥Bl−1
∥∥ (Cr + CsC

′
rBh

2i
l

)] ∥∥Bl∥∥ .
Since ∥∥Al∥∥ ≤ ∥∥ATGMl

∥∥+ C∗
∥∥Al−1

∥∥2
,

where C∗ = O(CpCBCr), the recurrence for the upper bound on
∥∥Al∥∥ then satisfies{

v1 ≤ v,
vl ≤ v + C∗v2

l−1,

where v := maxl
{∥∥ATGMl

∥∥} , or{
u1 ≤ C∗v,
ul ≤ C∗v + u2

l−1,
(4.9)

if we let ul = C∗vl. In the case of equality, (4.9) becomes a nonlinear difference
equation. In this situation, consider the polynomial

x2 − x+ C∗v.

Restricting to only real roots, we must enforce the condition

v ≤ 1
4C∗

(4.10)

(we must choose h1 small enough for this condition to hold!) so that the roots are

r1 =
1
2

+
√

1− 4vC∗

2

(
1
2
≤ r1 < 1

)
,

and

r2 = 1− r1
(

0 < r2 ≤
1
2

)
.

Now because the term ul converges to r2 if v is sufficiently small,

vl −→
r2
C∗

,

and referring to (4.8), ∥∥M l
∥∥ −→ r2

C∗
∥∥Bl∥∥ =

r2

Ĉ
,

where Ĉ = O(CpCr). Or, using the restriction on v{
u1 ≤ 0.25,
ul ≤ 0.25 + u2

l−1
,

we have ul ≤ 0.5 for all l. Hence,∥∥M l
∥∥ ≤ 1

2Ĉ
for all l.
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For the strict inequality case, assuming that the sequence converges to say b, then

b < C∗v + b2,

implying that b > r1 or b < r2. Again, (4.10) will enforce∥∥M l
∥∥ < 1

2Ĉ
for all l.

The above analyses show that∥∥M l
∥∥ ≤

∥∥MTGM
l

∥∥+Dhrl
∥∥MTGM

l

∥∥
= CTGM (1 +Dhrl )h

r
l ,

whereDhrl = O(1). Hence, the w-cycle is indeed a perturbation of the two-grid scheme.

Remark 1. The restriction on v is a bit stronger than is needed. Since l is usually
of O(1), we can allow v to be larger than 1

4C∗ . But then vice-versa, if v is too large,

which occurs if the boundary is not very smooth (i.e.,
∥∥∥Bl−1Ih

2h − Ih2hBl
∥∥∥ is large),

we can expect the multigrid procedure to fare poorly. This in fact was observed in
the experiments.

Remark 2. The major cost of a w-cycle is of course the reconstruction of the
matrix. It is thus desirable that as few fine grid iterations as possible should be
performed. One method that even avoids constructing the finer matrices is to ap-
proximate these using sufficiently high degree polynomial interpolants of the coarser
matrices. This works well if the kernel or boundary is very smooth. But to show con-
vergence of such a scheme, bounds of the polynomial interpolation operator must be
incorporated into the above analyses. Moreover, the accuracy may not be as good as
when one reconstructs the matrix because of the “spectral” accuracy of the trapezoid
method for our equations.

Fig. 5.1. Inverted ellipse, p= 0.1

5. Numerical examples. The boundaries that we experimented with are the
same as those described in [12]. The experiments were conducted on Sun 4/670 with
two processors. As in the paper [12] the boundary correspondence function θ(t) is
computed using the formula

θ(t) = arg
[
−iη2(t)ż(t)

]
,
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Table 5.1

Inverted ellipse, CPU times (in seconds) and errors for multigrid W-cycle and CG algorithm.

p = 0.2 p = 0.1 p = 0.05
n mgw cg mgw cg mgw cg
128 0.8 0.8 0.9 0.8 1.1 0.9

1.06e-4 1.12e-4 8.78e-2 8.81e-2 7.51e-1 7.52e-1
256 2.2 2.5 2.6 2.4 3.8 2.4

1.87e-7 1.77e-7 4.72e-3 4.31e-3 2.43e-1 2.43e-1
512 7.1 10.3 7.1 9.1 11.0 9.1

7.37e-11 3.12e-11 2.64e-5 2.14e-5 5.8e-2 5.8e-2
1024 25.9 46.2 26.1 42.3 43.1 38.0

1.67e-14 4.44e-15 6.73e-8 6.62e-8 3.00e-3 3.01e-3
2048 — — 104.4 213.8 139.2 180.5

— — 5.16e-12 1.95e-11 7.22e-6 7.55e-5
4096 — — — — 558.8 912.8

— — — — 2.61e-8 2.66e-8

the inverse Riemann mapping function is approximated by an m− 1 degree trigono-
metric polynomial using m equally-spaced nodes on the unit circle, and the symmetry
of the domain is exploited. The error is taken to be ‖θn − θ‖∞ (numerically computed
by evaluating the difference at n = 120 equally-spaced points in the parameter interval
of the underlying integral equation).

Example 1 (Inverted Ellipse (0 < p ≤ 1).).

z(t) =
√

1− (1− p2) cos2 t eit,

tan t = p tan θ(t).

Table 5.1 shows the results for the multigrid w-cycle and the generalized conjugate
gradient method. For each n, both the cpu time (top value) and the accuracy (bottom
value) are given. For the w-cycle, the coarsest grid was chosen such that the coarsest
two-grid matrix had an approximate norm of less than .25, and for the conjugate
gradient method, we chose the initial approximation to be the forcing term. Both
iterations were stopped once the norm of the residual was smaller than the square of
the approximate discretization error.

As p → 0, the domain has a sharp “pinch,” making the problem harder (see3

Figure 5.1). We can see that the w-cycle is substantially faster only after enough
points are used to decrease the discretization error.

Example 2 (Ellipse (0 ≤ ε < 1, eccentricity= 1+ε
1−ε) ).

z(t) = eit + εe−it,

θ(t) = t+ 2
∞∑
m=1

(−1)m

m

εm

1 + ε2m
sin (2mt).

Problems arise once the eccentricity is ≥ 20.0. These values correspond to very thin
ellipses.

Figure 5.2 is a logscale graph of the error of the boundary correspondence function
for eccentricity= 25.0.

3 Due to scaling, the contours do not appear to intersect at right angles.
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1e-20

1e-10

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
t parameter

Fig. 5.2. Boundary correspondence function error for the ellipse, eccentricity= 25.0

Table 5.2

Ellipse, ε̂ = eccentricity= 1+ε
1−ε

ε̂ = 5.0 ε̂ = 10.0 ε̂ = 20.0 ε̂ = 25.0
n mgw cg mgw cg mgw cg mgw cg
128 .9 1.0 1.2 1.0 — — — —

1.14e-6 1.12e-6 2.76e0 3.01e0 — — — —
256 3.3 3.7 2.8 3.5 — — — —

1.89e-11 5.09e-14 7.60e-5 5.46e-4 — — — —
512 — — 13.8 16.8 9.4 14.9 15.7 22.2

— — 4.92e-11 2.26e-10 1.49e0 3.05e0 3.13e0 3.13e0
1024 — — 35.0 71.8 35.1 84.3 52.1 95.9

— — 3.40e-12 4.35e-12 4.02e-4 2.74e-5 1.05e-3 1.81e-3
2048 — — — — 138.1 363.1 137.1 409.2

— — — — 3.83e-7 5.38e-7 1.85e-4 9.89e-5

Example 3 (Epitrochoid (0 ≤ α < 1)).

z(t) = eit +
α

2
e2it

θ(t) = t.

As α→ 1, a cusp forms at − 1
2 . This non-smoothness creates some difficulties for both

methods, especially for the multigrid iteration since interpolations are involved. A
graph of the real part of the Szegő kernel reflects this (see Figure 5.3).
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Table 5.3

Epitrochoid

α = 0.9 α = 0.95 α = 0.99
n mgw cg mgw cg mgw cg
64 1.1 0.8 1.1 0.7 1.0 0.8

4.69e-6 4.55e-6 5.97e-4 5.93e-4 5.32e-2 5.18e-2
128 2.9 2.0 2.8 1.9 3.4 3.3

1.70e-9 3.59e-9 2.79e-6 2.67e-6 6.19e-3 6.14e-3
256 9.8 8.2 9.4 8.2 11.6 8.0

7.44e-15 2.66e-15 1.32e-9 1.23e-9 3.83e-4 3.87e-4
512 — — 36.8 34.0 36.8 37.9

— — 3.15e-14 1.19e-13 1.06e-6 9.74e-7
1024 — — — — 215.7 196.4

— — — — 6.20e-9 6.20e-9
2048 — — — — 594.6 781.9

— — — — 4.61e-13 3.56e-13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600
component

Fig. 5.3. Real part of the Szegő kernel fo the epitrochoid, α = 0.99.
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Table 5.4

Oval of Cassini

α = 0.99 α = 0.999 α = 0.9999
n mgw cg mgw cg mgw cg
128 1.0 0.8 0.9 0.8 1.1 0.9

4.87e-6 1.89e-6 6.89e-3 6.68e-3 3.25e-1 3.33e-1
256 2.8 2.5 2.2 2.2 2.3 2.3

7.13e-11 1.57e-11 9.03e-5 8.52e-5 3.50e-2 3.52e-2
512 9.3 10.1 7.3 8.1 7.2 8.1

2.38e-14 2.38e-14 1.71e-7 7.23e-8 1.96e-3 1.98e-3
1024 — — 28.3 38.2 28.3 30.2

— — 6.51e-11 2.31e-12 8.67e-6 1.09e-5
2048 — — 150.3 182.3 112.5 148.8

— — 1.67e-13 1.67e-13 3.56e-9 4.19e-9
4096 — — — — 451.1 721.1

— — — — 1.67e-12 1.67e-12

Example 4 (Oval of Cassini (0 ≤ α < 1)).

|z − α| |z + α| = 1,

z(t) =
(
α2 cos 2t+

√
1− α4 sin2 2t

) 1
2
eit,

θ(t) = t− 1
2
arg(w(t)),

where

w(t) =
√

1− α4 sin2 2t+ iα2 sin 2t.

This smooth corpuscle-shaped domain is quickly solved by both methods.

Fig. 5.4. Oval of Cassini, α = 0.95

Example 5 (Unit square).

cos (θ(t)) = dn(Ky),
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Table 5.5

Unit square

n mgw cg
256 1.1 0.9

7.51e-4 7.38e-4
512 3.7 2.3

4.01e-4 4.06e-4
1024 13.7 8.2

1.59e-4 1.61e-4
2048 54.1 34.5

6.00e-5 6.09e-5

where dn denotes the Jacobian elliptic function. This boundary is only continuous,
and the tangents at the corners are not even defined. We define these values as in
[12]: these tangents point in the directions of the sums of their adjacent sides. Hence,
we can expect some problems in the multigrid cycle (see Table 5.5).

Fig. 5.5. Unit square

Example 6 (Clover leaf). There is a cusp also in this domain. Hence, we
can expect the multigrid scheme to fare worse than the conjugate gradient scheme,
as confirmed in Table 5.6. Figure 5.6 reflects some of the problems in the multigrid
iteration.
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Table 5.6

Clover leaf

n mgw cg
256 1.0 0.8
512 3.6 2.2
1024 16.3 8.2
2048 73.4 30.4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600
component

Fig. 5.6. Real part of the Szegő kernel for the clover leaf

clover leaf

Fig. 5.7. Clover leaf
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6. Conclusions. The numerical examples illustrate the major advantage and
disadvantage of the multigrid w-cycle. For reasonably smooth regions, the w-cycle
can be substantially better than the conjugate gradient method. For example, for
smooth but very elongated regions, when a large number of discretization points is
required on the boundary, the w-cycle can be expected to outperform the conjugate
gradient approach substantially (see the results in Tables 5.2 and 5.3). However, once
the boundary contains some sharp changes, the conjugate gradient iteration appears
to be better. This may be expected because the norm of the two-grid matrix, and
hence the multigrid iteration matrix, depends on the quadrature error.
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