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DISPLACEMENT PRECONDITIONER FOR TOEPLITZ LEAST
SQUARES ITERATIONS ∗

RAYMOND H. CHAN † , JAMES G. NAGY ‡ , AND ROBERT J. PLEMMONS §

Abstract. We consider the solution of least squares problems min ||b − Ax||2 by the precon-
ditioned conjugate gradient (PCG) method, for m × n complex Toeplitz matrices A of rank n. A
circulant preconditioner C is derived using the T. Chan optimal preconditioner for n × n matrices
using the displacement representation of A∗A. This allows the fast Fourier transform (FFT) to
be used throughout the computations, for high numerical efficiency. Of course A∗A need never be
formed explicitly. Displacement–based preconditioners have also been shown to be very effective in
linear estimation and adaptive filtering. For Toeplitz matrices A that are generated by 2π-periodic
continuous complex-valued functions without any zeros, we prove that the singular values of the
preconditioned matrix AC−1 are clustered around 1, for sufficiently large n. We show that if the
condition number of A is of O(nα), α > 0, then the least squares conjugate gradient method con-
verges in at most O(α logn+1) steps. Since each iteration requires only O(m logn) operations using
the FFT, it follows that the total complexity of the algorithm is then only O(αm log2 n +m logn).
Conditions for superlinear convergence are given and numerical examples are provided illustrating
the effectiveness of our methods.

Key words. circulant preconditioner, conjugate gradient,displacement representation, fast
Fourier transform (FFT), Toeplitz operator.
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1. Introduction. An m × n matrix A is called a Toeplitz matrix if its entries
are constant along each diagonal, i.e.,

A = [aj,k] = [aj−k]0≤j≤m−1, 0≤k≤n−1 .

Least squares problems

min
x
||b−Ax||2,(1.1)

in which A is an m×n Toeplitz matrix, m ≥ n, occur in a variety of applications, es-
pecially in signal and image processing. Since these problems arise in many important
areas where there is need for computing solutions in near “real time”, considerable
effort has been devoted to developing fast algorithms for the solution of (1.1). Most
of this work has focused on direct methods, such as the fast QR factorization algo-
rithms of Bojanczyk, Brent and de Hoog [4], Chun and Kailath [11], Cybenko [13] and
Sweet [26]. The stability properties of these algorithms are not well understood, see
Bunch [5] for nonsingular Toeplitz systems, and Luk and Qiao for direct orthogonal
factorization for least squares problems [22]. Almost all fast orthogonal factorization
methods involve the square of the condition number of the data matrix in their error
analyses [22]. Advantages and disadvantages of direct versus iterative methods for
symmetric positive definite systems are described in detail in Linzer [20, 21].
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Here we consider the use of iterative methods, such as preconditioned conjugate
gradients (PCG) for the solution of (1.1). Although the classical PCG algorithm
applies only to Hermitian positive definite systems of equations, extensions to non-
Hermitian, indefinite and least squares problems exist, cf. Freund, Golub and Nachti-
gal [15]. In particular, one can apply the classical PCG method to the factored form
of the normal equations

A∗(b−Ax) = 0,

as in the PCGLS algorithm, cf. Björck [3]. Here A∗ denotes the conjugate transpose.
For completeness, we list the PCGLS algorithm here.

Algorithm PCG for Least Squares. Let x(0) be an initial approximation to
Tx = b, and let C be a given preconditioner. This algorithm computes the least
squares solution, x, to Tx = b.
r(0) = b− Tx(0)

p(0) = s(0) = C−∗T ∗r(0)

γ0 = ‖s(0)‖22
for k = 0, 1, 2, . . .

q(k) = TC−1p(k)

αk = γk/‖q(k)‖22
x(k+1) = x(k) + αkC

−1p(k)

r(k+1) = r(k) − αkq
(k)

s(k+1) = C−∗T ∗r(k+1)

γk+1 = ‖s(k+1)‖22
βk = γk+1/γk
p(k+1) = s(k+1) + βkp

(k)

The convergence rate of the PCGLS algorithm depends on the spectrum of the
preconditioned matrix AC−1, where C is an n×n nonsingular preconditioner matrix.
Specifically, if the singular values of AC−1 are clustered around 1 then convergence will
be rapid, cf. Axelsson and Barker [1]. The cost per iteration of PCGLS is dominated
by matrix vector multiplies with A and A∗, and by linear system solves with C as a
coefficient matrix. If A is an m × n Toeplitz matrix, then matrix vector multiplies
with A and A∗ can be accomplished in O(m log n) operations using the fast Fourier
transform (FFT). Therefore, to make the PCGLS algorithm an efficient method for
solving Toeplitz least squares problems, we must be able to construct a preconditioner
matrix C such that (i) the singular values of AC−1 are clustered around 1, and (ii)
the linear system with a coefficient matrix C can be easily solved. The construction
of a preconditioner with these properties has been successfully done by the authors
for an important class of Toeplitz matrices, arising in least squares problems, through
the use of circulant approximations [8].

An n× n circulant matrix is a Toeplitz matrix that satisfies the additional prop-
erty that each column (row) is a circular shift of the previous column (row). That is,
the entries of C satisfy cn−j = c−j . An important property of circulant matrices is
that they can be inverted in O(n log n) operations using the FFT, cf. Davis [14]. The
circulant preconditioner described in [8] was obtained by partitioning the overdeter-
mined matrix A into n×n submatrices, approximating the submatrices with circulant
matrices, and then combining these to obtain a circulant approximation to A∗A.

In this paper we describe how to obtain an effecient circulant preconditioner for
the solution of (1.1) by using the displacement structure of A∗A, without explicitely
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forming A∗A. An alternate displacement–based approach for the square case of A has
been studied by Freund and Huckle [16].

In Section 2 we review some definitions and results on displacement representa-
tions of Toeplitz matrices. The development of a circulant preconditioner for overde-
termined Toeplitz matrices based on the displacement representation of A∗A is intro-
duced in Section 3. Displacement–based preconditioners have been shown to be very
effective also in linear estimation and in adaptive filtering [24]. Additionally, Section
3 contains a detailed theoretical convergence analysis of the displacement precondi-
tioner. In Section 4 some numerical results are reported, including comparisons with
a block-based preconditioning scheme suggested in [8].

2. Displacement Structure. In this section we briefly review relevant defini-
tions and results on displacement structure representation of a matrix. We introduce
the n × n lower shift matrix Z, whose entries are zero everywhere except for 1’s on
the first subdiagonal. The displacement operator ∇ is defined by

∇A = A− ZAZ∗,

where ∇A is called the displacement of A, cf. Chun and Kailath [11]. Let L(w) denote
the n×n lower triangular Toeplitz matrix with first column the vector w. Using these
definitions, the following lemma can be proved [12].

Lemma 2.1. An arbitrary n× n matrix A can be written in the form

A =
ρ∑
i=1

L(ui)L∗(vi),

where ρ = rank(∇A) and ui and vi are n–vectors.
The sum given in Lemma 2.1 above is called the displacement representation of

the given matrix A and the scalar ρ is called the displacement rank of A. Square
Toeplitz matrices and close to Toeplitz matrices have small displacement rank [12].
For example, if A is a Hermitian Toeplitz matrix, then

A = L(x+)L(x+)∗ − L(x−)L(x−)∗,

where

x± = [
1
2
(a0 ± 1), a1, · · · , an−1]∗.

To see this, we observe that x+ = x− + e1, where e1 = [1, 0, · · · , 0]∗. Hence

x+x∗+ − x−x∗− = e1x
∗
− + x−e∗1 + e1e

∗
1 =


a0 a1 a2 · · · an−1

a1

a2 0
...

an−1

 = ∇A.

If A is an m× n, m ≥ n, Toeplitz matrix, then A∗A is in general not a Toeplitz
matrix. However the following well-known lemma indicates that A∗A does have a
small displacement rank, ρ ≤ 4, and provides a useful displacement representation for
it.



ETNA
Kent State University 
etna@mcs.kent.edu

Displacement Preconditioners 47

Lemma 2.2. Let A be an m× n Toeplitz matrix. Then a displacement represen-
tation of A∗A is

A∗A = L(x1)L(x1)∗ − L(x2)L(x2)∗ + L(y1)L(y1)∗ − L(y2)L(y2)∗,

where

x1 = A∗Ae1/||Ae1||, x2 = ZZ∗x1,

y1 = [0, a−1, a−2, · · · , a1−n]∗ and y2 = [0, am−1, am−2, · · · , am−n+1]∗.

Proof. See [12], Lemma 2.
Observe that L(x1) = L(x2) + ||Ae1||I and, therefore,

L(x1)L(x1)∗ − L(x2)L(x2)∗ = ||Ae1||L(x2) + ||Ae1||L(x2)∗ + ||Ae1||2I ≡ T,

where T is the Hermitian Toeplitz matrix with first column A∗Ae1. Thus, A∗A can
be expressed in the form

A∗A = T + L(y1)L(y1)∗ − L(y2)L(y2)∗,

where T is Hermitian and Toeplitz and the L(yi) are lower triangular Toeplitz matri-
ces.

3. Displacement Preconditioner. The idea of using circulant precondition-
ers in the PCG for solving square symmetric positive definite Toeplitz systems of
equations was first proposed by Strang [25]. Since then, several other circulant pre-
conditioning techniques have been proposed, see for instance T. Chan [10], R. Chan
[6], Tyrtyshnikov [27], Ku and Kuo [19] and Huckle [18]. In particular, when A is an
n×n Toeplitz matrix, T. Chan’s circulant preconditioner (which we denote as c(A)) is
defined to be the optimal circulant approximation to A in the Frobenius norm. That
is, c(A) is the circulant matrix which minimizes ||A−C||F over all circulant matrices
C. The diagonals cj of c(A) are given by

cj =
{

n−j
n aj + j

naj−n, 0 ≤ j < n,
cn−j , −n < j < 0,

(3.1)

see [10] for details.
Circulant preconditioning has also been considered for solving least squares [8]

and discrete ill-posed problems [17]. In [8], we constructed a circulant preconditioner
for m× n matrices A, m ≥ n, by partitioning A into n× n submatrices

A =


A1

A2

...
Ak

 ,

approximating each Ai with c(Ai), and then combining these to obtain a circulant
approximation to A∗A. In this paper we take an alternate approach. Namely, we pro-
pose to use circulant approximations of the factors in the displacement representation
to form a circulant approximation to A∗A.
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It should be noted that in [8], as well as in our derivation below, any of the
circulant approximations for n× n Toeplitz matrices can be used to derive circulant
preconditioners for least squares problems. The T. Chan preconditioner c(A) is defined
for general square matrices A, not necessarily of Toeplitz form. We note that the
operator c preserves the positive-definiteness of A. This is stated in the following
Lemma due to Tyrtyshnikov [27].

Lemma 3.1. If A is an n× n Hermitian matrix, then c(A) is Hermitian. More-
over, we have

λmin(A) ≤ λmin(c(A)) ≤ λmax(c(A)) ≤ λmax(A),

where λmax(·) and λmin(·) denote the largest and the smallest eigenvalues, respectively.
In particular, if A is positive definite, then c(A) is also positive definite.

We present our derivation and analysis of the displacement preconditioner for
overdetermined least squares problems into two subsections. First we consider n× n
Hermitian Toeplitz matrices A and show that the displacement preconditioner in this
case is simply the T. Chan [10] approximation c(A). We then use these results to
derive the displacement preconditioner for the m× n case, and we provide a detailed
convergence analysis. Our convergence analysis relies on the concept of generating
functions for Toeplitz matrices. A function f defined on [−π, π] is said to be a
generating function of A if the diagonal entries, a`, of A are given by the Fourier
coefficients of f , i.e.

a` =
1
2π

∫ π

−π
f(θ)e−i`θdθ, ` = 0,±1,±2, · · · .

3.1. Hermitian Toeplitz Case. In this subsection, we consider the case where
the matrix A is an n-by-n Hermitian Toeplitz matrix. We first recall that a displace-
ment representation of A is given by

A = L(x+)L(x+)∗ − L(x−)L(x−)∗,(3.2)

where

x± = [
1
2
(a0 ± 1), a1, · · · , an−1]∗.(3.3)

Using (3.2), we define our preconditioner to be

C = c(L(x+))c(L(x+))∗ − c(L(x−))c(L(x−)∗).(3.4)

Clearly, C is a Hermitian circulant matrix.
Lemma 3.2. Let A be a Hermitian Toeplitz matrix and C be the circulant approx-

imation to A defined in (3.4). Then C = c(A), the optimal circulant approximation
to A.

Proof. Let

x = [
1
2
a0, a1, · · · , an−1]∗.

Then clearly A = L(x) + L(x)∗. We note also that

L(x±) = L(x± 1
2
e1) = L(x)± 1

2
L(e1) = L(x)± 1

2
I,
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where I is the identity matrix. Thus by the linearity of the circulant operator c, we
have

C = c(L(x+))c(L(x+))∗ − c(L(x−))c(L(x−))∗

= [c(L(x) +
1
2
I)][c(L(x) +

1
2
I)]∗ − [c(L(x)− 1

2
I)][c(L(x)− 1

2
I)]∗

= c(L(x) + L(x)∗) = c(A).

It follows from Lemma 3.1, that if A is positive definite, then so is C = c(A).
Using the convergence results on c(A) presented in [9], we obtain the following result.

Corollary 3.3. Suppose the generating function f of a Hermitian Toeplitz
matrix A is a 2π-periodic continuous function. Then for all ε > 0, there exist integers
N and M > 0, such that when n > N , at most M eigenvalues of the matrix C − A
have absolute values larger than ε. If moreover f is positive, then the same property
holds for the matrix AC−1 − I.

It follows easily from the above Corollary that the conjugate gradient method,
when applied to the preconditioned system AC−1, converges superlinearly, see [9].

3.2. General Rectangular Toeplitz Case. In this subsection, we let A be
an m-by-n rectangular Toeplitz matrix with m ≥ n. Recall that the displacement
representation of A∗A can be written as

A∗A = T + L(y1)L(y1)∗ − L(y2)L(y2)∗,(3.5)

where y1, y2 are given in Lemma 2, and T is a Hermitian Toeplitz matrix with

Te1 ≡


t0
t1
...

tn−1

 = A∗Ae1.(3.6)

Substituting the displacement representation (3.2) for the symmetric Toeplitz
matrix T in (3.5), we then have a displacement representation of A∗A:

A∗A = L(t+)L(t+)∗ − L(t−)L(t−)∗ + L(y1)L(y1)∗ − L(y2)L(y2)∗,(3.7)

where by (3.3)

t± = [
1
2
(t0 ± 1), t1, · · · , tn−1]∗.

Accordingly, we should define our preconditioner to be

c(L(t+))c(L(t+))∗ − c(L(t−))c(L(t−))∗ + c(L(y1))c(L(y1))∗ − c(L(y2))c(L(y2))∗.

However, in Lemma 3.4 below we show that the contribution of the last term L(y2)L(y2)∗

in (3.7) is not significant as far as the conjugate gradient method is concerned, and
we therefore will not approximate it by a circulant matrix. Thus our displacement
preconditioner P is defined as follows

P = c(L(t+))c(L(t+))∗ − c(L(t−))c(L(t−))∗ + c(L(y1))c(L(y1))∗.
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According to Lemma 3.2, we see that

P = c(T ) + c(L(y1))c(L(y1))∗.(3.8)

In the following, we assume that the generating function f of A is in the Wiener
class, i.e. the diagonals of A are absolutely summable:

∞∑
j=−∞

|aj | ≤ γ <∞.(3.9)

We note that Wiener class functions are 2π-periodic continuous functions. Under the
Wiener class assumption, we will show that

P −A∗A = {c(T )− T}+ {c(L(y1))c(L(y1))∗ − L(y1)L(y1)∗}+ L(y2)L(y2)∗

is the sum of a matrix of low rank and a matrix of small norm. For simplicity, in
the following we denote by Ui Hermitian matrices with small rank and Vi Hermitian
matrices with small norm. More precisely, given any ε > 0, there exist integers N and
M > 0, such that when n, the size of the matrices Ui and Vi, is larger than N , the
rank of Ui is bounded by M and ||Vi||2 < ε.

If the generating function of A is in the Wiener class, then so is the generating
function of T . In fact,

||Te1||1 = ||A∗Ae1||1 ≤ ||A∗||1||Ae1||1 ≤ γ2 <∞.(3.10)

According to Corollary 3.3, we have

c(T )− T = U1 + V1.(3.11)

Next we show that

c(L(y1))c(L(y1))∗ − L(y1)L(y1)∗ = U2 + V2.(3.12)

The generating function of L(y1) is given by

g(θ) =
−1∑

j=−∞
aje

ijθ(3.13)

which is a function in the Wiener class. Equation (3.12) now follows by Lemma 5 of
[8].

Lemma 3.4.

L(y2)L(y2)∗ = U3 + V3.(3.14)

Proof. Since the sequence {aj}∞j=−∞ is absolutely summable, for any given ε, we
can choose N > 0 such that ∑

j>N

|aj | < ε.
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Partition L(y2) as RN +SN , where the first N columns of RN are the first N columns
of L(y2) with the remaining columns zero vectors. Then RN is a matrix of rank N
and

||SN ||1 =
m−1∑

j=m−n+N+1

|aj | ≤
m−1∑
j=N+1

|aj | < ε.

Thus

L(y2)L(y2)∗ = (RN + SN )(RN + SN )∗ = U3 + V3,

where

rank U3 = rank(RNS∗N + SNR∗N + RNR∗N ) ≤ 2N

and

||V3||2 ≤ ||SNS∗N ||2 ≤ ε2.

Combining (3.11), (3.12) and (3.14), we see that

P −A∗A = c(T )− T + c(L(y1))c(L(y1))∗ − L(y1)L(y1)∗ + L(y2)L(y2)∗(3.15)
= U4 + V4.

Next we demonstrate that

P−1(A∗A)− I = U5 + V5,

and we first show that ||P ||2 and ||P−1||2 are uniformly bounded. We begin with the
bound for ||P ||2.

Lemma 3.5. Let the generating function of the m×n Toeplitz matrix A be in the
Wiener class, i.e. (3.9) holds. Then ||P ||2 ≤ 6γ2 for all n.

Proof. By (3.8) and Lemma 3.1,

||P ||2 ≤ ||c(T )||2 + ||c(L(y1))c(L(y1))∗||2 ≤ ||T ||2 + ||c(L(y1))||22.

It follows from (3.10) that

||T ||2 ≤ ||T ||1 ≤ 2||Te1||1 ≤ 2γ2.

On the other hand, using equation (9) in [8], we have

||c(L(y1))||2 ≤ 2||g||∞,

where g is the generating function of L(y1) given in (3.13). Thus

||c(L(y1))||2 ≤ 2||
−1∑

j=−∞
aje

ijθ ||∞ ≤ 2γ.
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In order to show that ||P−1||2 is uniformly bounded, we need the additional
condition that

min
θ∈[−π,π]

|f(θ)| ≥ δ > 0.(3.16)

Lemma 3.6. Let B be a square Toeplitz matrix with generating function in the
Wiener class. Then

lim
n→∞

‖c(B)c(B)∗ − c(BB∗)‖2 = 0.

Proof. The proof of the Lemma for Hermitian B is given in [7]. The case where
B is not Hermitian but square can be proved similarly.

Lemma 3.7. Let the generating function f of A be a Wiener class function that
satisfies (3.16). Then ||P−1||2 is uniformly bounded for n sufficiently large.

Proof. Since the generating function g of L(y1) is in the Wiener class, it follows
from Lemma 3.6, that given any ε > 0,

c(L(y1))c(L(y1))∗ − c(L(y1)L(y1)∗) = V6,

where ||V6||2 < ε, provided that the size n of the matrix is sufficiently large. Hence

P = c(T ) + c(L(y1))c(L(y1))∗ = c(T ) + c(L(y1)L(y1)∗) + V6

= c(T + L(y1)L(y1)∗) + V6 = c(A∗A + L(y2)L(y2)∗) + V6,

where the last equality follows from (3.5). Write A =
[

A1

A2

]
where A1 is the n-by-n

submatrix of A. The matrices A and A1 have the same generating function f and
A∗A = A∗1A1 + A∗2A2.

Since f by assumption is in the Wiener class it follows from Lemma 3.6 that,

c(A∗1A1) = c(A1)∗c(A1) + V7,

where ||V7||2 ≤ ε if n is sufficiently large. Thus

P = c(A∗A + L(y2)L(y2)∗) + V6

= c(A∗1A1 + A∗2A2 + L(y2)L(y2)∗) + V6

= c(A1)∗c(A1) + c(A∗2A2 + L(y2)L(y2)∗) + V6 + V7,(3.17)

Observe that

{λmin[c(A1)∗c(A1)]}−1 = ||[c(A1)∗c(A1)]−1||2 = ||c(A1)−1||22 ≤ 4|| 1
f
||2∞,

where the last inequality follows from equation (10) of [8]. Thus by (3.16),

λmin[c(A1)∗c(A1)] ≥
δ2

4
.

Since A∗2A2 + L(y2)L(y2)∗ is a positive semi-definite matrix, c(A∗2A2 + L(y2)L(y2)∗)
is also a positive semi-definite matrix. Thus we conclude from (3.17) that

λmin{P} ≥ λmin[c(A1)∗c(A1)]− ||V6||2 − ||V7||2 ≥
δ2

4
− 2ε.
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The Lemma follows by observing that ε is chosen arbitrarily and δ depends only on
f and not on n.

By combining (3.15), Lemmas 3.5 and 3.7, we see that if the generating function
f of the m× n Toeplitz matrix A is a Wiener class function with no zeros on [−π, π],
then

P−1(A∗A)− I = U + V,

where U is a low rank matrix and V is a small norm matrix. Thus the spectrum of
the preconditioned matrix is clustered around one.

Theorem 3.8. Let the generating function f of the m×n Toeplitz matrix A be a
Wiener class function with no zeros on [−π, π]. Then for all ε > 0, there exist N > 0
and M > 0, such that for all n > N , at most M eigenvalues of the matrix

P−1(A∗A)− I

have absolute values larger than ε.
Proof. The proof is similar to the proof of Theorem 1 in [8].
From Theorem 1, we have the desired clustering result; namely, if the generating

function f of the m × n Toeplitz matrix A is a Wiener class function with no zeros
on [−π, π], then the singular values of the preconditioned matrix AP−1/2 are clustered
around 1.

It can also be shown, in a manner similar to the derivation in §4 of [8], that
if the condition number of A is of O(nα), α > 0, then the least squares conjugate
gradient method converges in at most O(α log n + 1) steps. Since each iteration
requires O(m log n) operations using the FFT, it follows that the total complexity of
the algorithm is only O(αm log2 n + m log n).

When α = 0, i.e., κ(A) = O(1), the number of iterations required for convergence
is of O(1). Hence the complexity of the algorithm reduces to O(m log n), for suffi-
ciently large n. We remark that, in this case, one can show that the method converges
superlinearly for the preconditioned least squares problem due to the clustering of the
singular values for sufficiently large n (See [8] for details). In contrast, the method
converges just linearly for the non-preconditioned case, as is illustrated by numerical
examples in the next section.

4. Numerical Results. In this section we illustrate the effectiveness of the
displacement preconditioner on some numerical examples. For each example we use
the vector of all ones as the right hand side and the zero vector as the initial guess. The
stopping criteria is ||s(j)||2/||s(0)||2 < 10−7, where s(j) is the normal equations residual
after j iterations and is a by-product of the PCGLS computations. All computations
were performed using Matlab 4.0 on an IBM RS/6000.

Throughout this section we denote a Toeplitz matrix with first column c and first
row r as Toep(c, r). We present the number of iterations needed to converge using
no preconditioner, the displacement preconditioner, and the preconditioner based on
partitioning T as discussed in [8]. We denote these by “no prec”, “disp prec” and
“part prec”, respectively.

The matrix in the first three examples satisfy the conditions of Theorem 1. We
use T=Toep(c, r) as the coefficient matrix, where c and r are given as follows.

Example 1.

c(k) = 1/k2, k = 1, 2, . . . ,m
r(k) = 1/k2, k = 1, 2, . . . , n.
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Example 2.

c(k) = e−0.1∗k2
, k = 1, 2, . . . ,m

r(k) = e−0.1∗k2
, k = 1, 2, . . . , n

Example 3.

c(k) = 1/
√

k, k = 1, 2, . . . ,m

r(k) = 1/
√

k, k = 1, 2, . . . , n

Convergence results for these examples are reported in Table 1. Observe that the num-
ber of iterations needed for convergence for the preconditioned systems is essentially
independent of the sizes of the matrices.

Table 4.1

Numbers of iterations for Examples 1, 2 and 3.

n m

16 32
32 64
64 128
128 256
256 512

Example 1.
no prec disp prec part prec

12 6 6
16 6 6
19 6 6
22 6 6
23 6 6

Example 2.
no prec disp prec part prec

24 15 12
46 15 11
79 13 10
132 11 9
177 10 9

n m

64 128
64 256
64 512
64 1024
64 2048

Example 3.
no prec disp prec part prec

59 8 8
61 6 8
62 6 8
62 6 8
64 8 8

Example 4. In this example we consider a convolution matrix, which is a 1-
dimensional horizontal blurring function used in signal processing [2]. T =Toep(c, r)
is defined by

c(k) = 1/2(w + 1), k = 1, 2, . . . , w
c(k) = 0 k = w + 1, w + 2, . . . ,m = n + w − 1
r(1) = c(1)
r(k) = 0, k = 2, 3, . . . , n

The convergence results for this example are shown in Table 2.

These numerical results illustrate that the displacement preconditioner can sig-
nificantly reduce the number of iterations needed for convergence of PCGLS for some
examples. Moreover, as in Example 4, the displacement preconditioner scheme given
here can be preferable to the partitioning approach to constructing circulant precon-
ditioners discussed in [8]. However, we consider the main contribution in this paper to
be the introduction of yet another preconditioner for possible use in solving Toeplitz
least square problems. The choice of a (best) preconditioner is undoubtedly problem
dependent.
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Table 4.2

Numbers of iterations for Example 4.

n m no prec disp prec part prec
16 23 9 3 5
32 47 21 3 5
64 95 36 3 5
128 191 62 3 6
256 383 110 3 6
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