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Abstract. It is well known that generalized conjugate gradient (cg) methods, fulfilling a mini-
mization property in the whole spanned Krylov space, cannot be formulated with short recurrences
for nonsymmetric system matrices. Here, Krylov subspace methods are proposed that do fulfill
a minimization property and can be implemented as short recurrence method at the same time.
These properties are achieved by a generalization of the cg concept. The convergence and the
geometric behavior of these methods are investigated.

Practical applications show that first realizations of these methods are already competitive
with commonly used techniques such as smoothed biconjugate gradients or QMR. Better results
seem to be possible by further improvements of the techniques. However, the purpose of this paper
is not to propagate a special method, but to stimulate research and development of new iterative
linear solvers.
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1. Introduction. We are interested in the solution of the linear system

Ax = b.(1.1)

The matrix A is a real square matrix of dimension n, i. e. A ∈ IRn×n, and
x, b ∈ IRn. In general the matrix A is nonsymmetric and not positive definite. Let
us assume A to be nonsingular.

We use the following notations: Let Z be a symmetric, positive definite matrix,
then the norm ‖y‖Z of any vector y ∈ IRn is defined by ‖y‖Z =

√
yTZy. If Z is

nonsymmetric and not positive definite, then ‖y‖2Z is a mnemonic abbreviation for
yTZy. ‖y‖I is the Euclidean norm ‖y‖. Let Kk(B, y) = span(y,By, . . . , Bky) be
the Krylov space spanned by the matrix B ∈ IRn×n and the vector y ∈ IRn. The
symmetric part of the matrix B ∈ IRn×n is 1

2 (B + BT ) and the skew-symmetric
part is 1

2 (B − BT ).
For large and sparse linear systems arising from the discretization and lin-

earization of systems of partial differential equations, iterative solution techniques
have become a powerful solution tool, because they are limited in their storage re-
quirements and generally need less computing time than direct solvers if a limited
accuracy is required.

Usually the linear system (1.1) is preconditioned in order to accelerate the
convergence. We apply preconditioning from the right-hand side and consider the
linear system

APy = b(1.2)
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instead of (1.1), where P ∈ IRn×n is a nonsingular preconditioning matrix. The
solution of (1.1) is obtained from the solution of (1.2) by

x = Py.(1.3)

Any iterative method applied to (1.2) with approximations yk can be reformulated
so that an iterative method for the original system (1.1) is induced by

xk = Pyk.(1.4)

We will always reformulate preconditioned iterative methods accordingly in the
following definitions.

Among iterative methods generalized conjugate gradient (cg) methods converge
quickly in many cases. These methods are vectorizable, parallelizable, parameter-
free and therefore widely used. The technique is as follows:

Choose a right-hand preconditioning matrix P and an initial guess x0. Calculate
approximations xk and residuals rk = Axk − b for k ≥ 1 so that

xk ∈ x0 +Kk−1(PA,Pr0),(1.5)

with

rTk Zrk−i = 0(1.6)

for i = 1, . . . , σk, where Z is an auxiliary, nonsingular matrix. The method is called
exact if σk = k, restarted if σk = (k− 1) mod σres + 1 with σres fixed, truncated if
σk = min(k, σmax) with σmax fixed, combined if the truncated method is restarted.

Convergence properties are well-known for exact generalized cg methods [16].
If APZ−1 is positive real, i.e. the symmetric part of APZ−1 is positive definite,
then

‖rk‖ZP−1A−1 ≤
√

1 +
ρ2(R)
µ2
m

min
Πk
‖Πk(AP )r0‖ZP−1A−1(1.7)

is valid for exact generalized cg methods. Πk is a polynomial of degree k with
Πk(0) = 1. ρ(R) is the spectral radius of the skew-symmetric part R of ZP−1A−1.
µm is the minimum eigenvalue of M , the symmetric part of ZP−1A−1. In particular
if Z = AP , then

‖rk‖ = min
Πk
‖Πk(AP )r0‖.(1.8)

If we apply an exact method to systems with arbitrary matrices, then in general
the required storage and the computational work increase with the iteration. The
reason is that for the calculation of the new approximation all preceding approxima-
tions are required to fulfill equation (1.6). Thus we get long recurrences except for
certain favorable cases. Therefore, exact methods are not feasible for large systems.
In this section we will survey well-known techniques to obtain short recurrences.

Faber and Manteuffel [2] give conditions for short recurrences of exact OR-
THODIR implementations. Joubert and Young [8] prove similar results for the
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simplification of ORTHOMIN and ORTHORES implementations. An exact OR-
THORES method can be formulated as a three-term recurrence, if

PTATZ = ZAP.(1.9)

Condition (1.9) is valid if AP is symmetric and Z = I, but in most practical cases
AP is nonsymmetric. Jea and Young [7] show that a matrix Z fulfilling (1.9) for
fixed AP always exists, but the determination of such a matrix is usually impossible
for systems arising from practical applications.

The choice Z = I and P = AT satisfies (1.9) for an arbitrary matrix A (Craig’s
method [1]), but then the iteration matrix is AAT resulting in slow convergence for
systems where the eigenvalues of AAT , the singular values of A, are scattered, see
inequality (1.7).

For the biconjugate gradients (BCG) [3, 9], the double system Âx̂ = b̂, i. e.(
A 0
0 AT

)(
x
x∗

)
=
(

b
b∗

)
,

is considered. b∗ is arbitrary. The residuals have the form r̂ =
(

r
r∗

)
and

Z = ZB =
(

0 I
I 0

)
. P is the unit matrix. As ÂTZB = ZBÂ, condition (1.9)

is valid, thus we obtain a short recurrence. Property (1.7) becomes

(r∗k)T A−1rk = min
Πk

(r∗k)T A−1Πk(A)r0,(1.10)

where we cannot easily estimate the Euclidean norm of the residual rk.
Sonnefeld’s CGS [14] is a method using a short recurrence that minimizes the

same expression as the biconjugate gradients, equation (1.10), but uses as residual
polynomial

rk = Π2
k(A)r0.

As for the biconjugate gradients the Euclidean norm of the residual is hard to
determine from equation (1.10).

Freund’s and Nachtigal’s QMR method [5] and the biconjugate gradients smoothed
by Schönauer’s minimal residual algorithm [11, 12] fulfill the minimization property,
see also [17],

‖rk‖ ≤
√
k + 1 min

z1,...,zk

∥∥ ‖r0‖e1 −Hkz
∥∥ ,(1.11)

≤
√
k + 1 ‖V −1

n ‖ min
Πk
‖Πk(A)r0‖

where e1 is the first unit vector, z = (z1, . . . , zk)T ∈ IRk, Vk = ( r0
‖r0‖ , . . . ,

rk−1
‖rk−1‖ )

and

AVk = Vk+1Hk.(1.12)
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Hk ∈ IR(k+1)×k is the tridiagonal matrix resulting from the nonsymmetric Lanczos
process, or a block tridiagonal matrix resulting from a look-ahead Lanczos process
to avoid breakdowns. Similar results are valid for Freund’s TFQMR [4]. The
minimization property is quite more complex than (1.7) and the right-hand side of
(1.11) is growing - however small it may be - with the iteration.

In order to obtain short recurrences for nonsymmetric matrices A there are
various other possibilities, among them

• restarted or truncated versions,
• CGSTAB approaches [6, 13, 15] introduced by van der Vorst.

However, all techniques mentioned above produce short recurrences, but do not
fulfill the convergence properties (1.7) or (1.8). We will show in the following that
we can enforce automatic termination of the sequence by allowing the matrix Z to
be dependent on the iteration step and to maintain at the same time convergence
property (1.7).

2. Conjugate Krylov Subspace Methods. We start by further general-
izing the generalized cg methods and by showing some fundamental convergence
properties. The difference from cg methods in the following definition is that the
matrix Z is substituted by step-depending matrices Zk.

Definition 1. Let x0 be any initial guess, r0 = Ax0 − b the starting resid-
ual. The following recurrence is called a conjugate Krylov subspace (CKS) method.
Choose a right-hand preconditioning matrix P and calculate for k ≥ 1 the residuals
rk and approximations xk so that

xk ∈ x0 +Kk−1(PA,Pr0),(2.1)

with

rTk Zkrk−i = 0(2.2)

for i = 1, . . . , k, where Zk are auxiliary, nonsingular matrices.
If Zk = Z = const, then definition 1 describes exact generalized cg methods as

special case.
It is quite easy to verify that the approximations xk, the residuals rk and the

errors ek = xk − x of CKS methods can be represented as follows:

xk =
k∑
i=1

νi,kP (AP )i−1r0 + x0(2.3)

=
k∑
i=1

µi,kPrk−i + x0

= β0,kPrk−1 +
k∑
i=1

βi,kxk−i,

rk =
k∑
i=1

νi,k(AP )ir0 + r0(2.4)



ETNA
Kent State University 
etna@mcs.kent.edu
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=
k∑
i=1

µi,kAPrk−i + r0

= β0,kAPrk−1 +
k∑
i=1

βi,krk−i,

ek =
k∑
i=1

νi,k(PA)ie0 + e0(2.5)

=
k∑
i=1

µi,kPAek−i + e0

= β0,kPAek−1 +
k∑
i=1

βi,kek−i,

with

k∑
i=1

βi,k = 1.(2.6)

We can prove the following theorems in analogy to generalized cg methods. The
next lemma is the basis for all convergence analysis and it is equivalent to the same
statements for generalized cg methods [16].

Lemma 2. For CKS methods

rTk ZkP
−1A−1rk = rTk ZkP

−1A−1Πk(AP )r0(2.7)

is satisfied for all matrix polynomials Πk(AP ) =
∑k
i=1 θi(AP )i+ I (i. e. θ1, . . . , θk

are arbitrary). In particular

rTk Zk(AP )ir0 = 0(2.8)

for i = 0, . . . , k − 1.
Proof. By analogy with lemma 3.5 in [16].
The next theorem shows the geometric behavior of the approximations of CKS

methods and generalizes the result for exact generalized cg methods.
Theorem 3. The residuals rk and the errors ek of CKS methods satisfy∥∥∥∥rk − r̃j

2

∥∥∥∥2

ZkP−1A−1

=
‖r̃j‖2ZkP−1A−1

4
,(2.9) ∥∥∥∥ek − ẽj

2

∥∥∥∥2

ATZkP−1

=
‖ẽj‖2ATZkP−1

4
(2.10)

for j = 0, . . . , k with

r̃j = 2
(
ZkP

−1A−1 + (ZkP−1A−1)T
)−1

ZkP
−1A−1rj ,(2.11)

ẽj = 2
(
ZkP

−1 + (ZkP−1A−1)TA
)−1

ZkP
−1ej .(2.12)
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In particular if ATZkP−1 is symmetric, then

r̃j = rj ,(2.13)
ẽj = ej .(2.14)

Proof. By analogy with theorem 3 in [18].
Theorem 3 describes geometric figures, in general hyperellipsoids, see [18] for

a classification and an explanation. The next theorem analyzes the convergence
behavior of the approximations of CKS methods. We obtain the same results as for
exact generalized cg methods.

Theorem 4. If APZ−1
k is positive real, i.e. the symmetric part of APZ−1

k is
positive definite, then

‖rk‖ZkP−1A−1 ≤
√

1 +
ρ2(R)
µ2
m

min
Πk
‖Πk(AP )r0‖ZkP−1A−1(2.15)

‖ek‖ATZkP−1 ≤
√

1 +
ρ2(R)
µ2
m

min
Πk
‖Πk(PA)e0‖ATZkP−1(2.16)

holds for CKS methods. Πk is a polynomial of degree k with Πk(0) = 1. ρ(R) is the
spectral radius of the skew-symmetric part R of ZkP−1A−1. µm is the minimum
eigenvalue of M, the symmetric part of ZkP−1A−1.

Proof. By analogy with theorem 3.9 in [16].
We have seen by the theorems 3 and 4 that CKS methods have a similar con-

vergence behavior as generalized cg methods, see [16, 18]. In the next section we
will show how to construct short recurrences.

3. Short Recurrences. The next lemma is the key to construct the matrices
Zk of a CKS method so that we will obtain short recurrences.

Lemma 5. If B ∈ IRk×k, y, b ∈ IRk, and

B =
(
B1,1 0
B2,1 B2,2

)
, y =

(
y1

y2

)
, b =

(
0
b2

)
,(3.1)

with B1,1 ∈ IRk−j×k−j nonsingular, y1 ∈ IRk−j , B2,1 ∈ IRj×k−j , B2,2 ∈ IRj×j

nonsingular, y2, b2 ∈ IRj, then the solution of the system

By = b(3.2)

is

y1 = 0,(3.3)
y2 = B−1

2,2b2.(3.4)

Proof. The proof is trivial.
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Let us apply lemma 5 to CKS methods. If β0,k 6= 0, then equation (2.2) is
equivalent to

(APrk−1 +
k∑
i=1

αi,krk−i)TZkrk−j = 0(3.5)

for j = 1, . . . , k, following from (2.4), where

αi,k =
βi,k
β0,k

(3.6)

for i = 1, . . . , k. The αi,k can be determined by the solution of the linear system

k∑
i=1

αi,kr
T
k−iZkrk−j = −rTk−1P

TATZkrk−j(3.7)

for j = 1, . . . , k. Let

Rk = (r0, . . . , rk−1),(3.8)
αk = (αk,k, . . . , α1,k)T ,(3.9)

then (3.7) can be written in the short form

RTk Z
T
k Rkαk = −RTk ZTk APrk−1.(3.10)

From lemma 5 follows directly that αi,k = 0 for i = 3, . . . , k, if

rTk−1Zkrk−i = 0,(3.11)

rTk−2Zkrk−i = 0,(3.12)

rTk−1P
TATZkrk−i = 0(3.13)

for i = 3, . . . , k.
Theorem 6. CKS methods can be formulated as three-term recurrences, if

rTk−1Zk = rTk−1Zk−1,(3.14)

rTk−2Zk = rTk−2Zk−1,(3.15)

rTk−1P
TATZk = rTk−1Zk−1AP,(3.16)

for k ≥ 3 in the following way:

rk = φk(APrk−1 + α1,krk−1 + α2,krk−2),(3.17)
xk = φk(Prk−1 + α1,kxk−1 + α2,kxk−2), where(3.18)

α2,k = −
rTk−2Z

T
k APrk−1

rTk−2Zkrk−2
,(3.19)

α1,k = − 1
rTk−1Zkrk−1

(
rTk−1Z

T
k APrk−1 + α2,kr

T
k−2Zkrk−1

)
,(3.20)

φk =
1

α1,k + α2,k
.(3.21)
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Proof. From (3.14) follows

rTk−1Zkrk−i = rTk−1Zk−1rk−i = 0(3.22)

for i = 2, . . . , k by (2.2) and from (3.15) follows

rTk−2Zkrk−i = rTk−2Zk−1rk−i = rTk−2Zk−2rk−i = 0(3.23)

for i = 3, . . . , k by (3.14) and (2.2). Thus (3.11) and (3.12) are fulfilled. From (3.16)
follows

rTk−1P
TATZkrk−i = rTk−1Zk−1APrk−i

= rTk−1Zk−1AP

k−i∑
j=1

νj,k−i(AP )jr0 + r0


by (2.4)

= rTk−1Zk−1

k−i∑
j=1

νj,k−i(AP )j+1r0 +APr0

 = 0

because of (2.8). Thus (3.13) is fulfilled and the sequence terminates automatically.
From lemma 5 and (3.7) follows that α1,k and α2,k can be calculated by

α1,kr
T
k−1Zkrk−1 + α2,kr

T
k−2Zkrk−1 = −rTk−1P

TATZkrk−1,

α1,kr
T
k−1Zkrk−2 + α2,kr

T
k−2Zkrk−2 = −rTk−1P

TATZkrk−2.

Following from (3.22) the second equation is equivalent to

α2,kr
T
k−2Zkrk−2 = −rTk−1P

TATZkrk−2.

(3.17) - (3.20) follow from simple calculations and from (3.6) and (2.4), (2.5), re-
spectively.

Theorem 6 describes an ORTHORES-like implementation. The method breaks
down if α1,k + α2,k = 0. We will assume in the following that the method does not
break down.

If Zk = Z = const, then Condition (3.16) follows from condition (1.9) and the
conditions (3.14) and (3.15) are always fulfilled. Thus we have got a generalization
where the global condition (1.9) is substituted by local conditions. It is easy to
verify that (3.14) - (3.16) are equivalent to

STk Zk = Y Tk ,(3.24)

where

Sk = (rk−1, rk−2, APrk−1) ∈ IRn×3,(3.25)
Yk = (ZTk−1rk−1, Z

T
k−1rk−2, P

TATZTk−1rk−1) ∈ IRn×3.(3.26)
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Thus

STk Zk =

 0
0

rTk−1(Zk−1AP − PTATZk−1)

+ STk Zk−1.(3.27)

Equation (3.27) shows that the change of Zk with respect to Zk−1 is caused by the
magnitude of Zk−1AP − PTATZk−1. For Zk−1 = I the change of Zk is caused by
the nonsymmetric part of AP .

4. Rank-Three Updates. In this section we propose a method how to con-
struct the matrices Zk that fulfill the assumptions of theorem 6. (3.14) - (3.16) are
vector equations that can be fulfilled by choosing

Zk = Z + akb
T
k + ckd

T
k + ekf

T
k(4.1)

as rank-three update with ak, bk, ck, dk, ek, fk ∈ IRn. It is obvious that the following
equations have to be satisfied so that (3.14) - (3.16) are valid:

rTk−1akb
T
k + rTk−1ckd

T
k + rTk−1ekf

T
k(4.2)

= rTk−1ak−1b
T
k−1 + rTk−1ck−1d

T
k−1 + rTk−1ek−1f

T
k−1,

rTk−2akb
T
k + rTk−2ckd

T
k + rTk−2ekf

T
k(4.3)

= rTk−2ak−1b
T
k−1 + rTk−2ck−1d

T
k−1 + rTk−2ek−1f

T
k−1,

rTk−1P
TATZ + rTk−1P

TATakb
T
k + rTk−1P

TAT ckd
T
k + rTk−1P

TAT ekf
T
k(4.4)

= rTk−1ZAP + rTk−1ak−1b
T
k−1AP

+rTk−1ck−1d
T
k−1AP + rTk−1ek−1f

T
k−1AP,

or in matrix form

Ψk

 bTk
dTk
fTk

 = θk(4.5)

with

Ψk =

 rTk−1ak rTk−1ck rTk−1ek
rTk−2ak rTk−2ck rTk−2ek

rTk−1P
TATak rTk−1P

TAT ck rTk−1P
TAT ek

(4.6)

=

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek)

and

θk =

 0
0

rTk−1(ZAP − PTATZ)

(4.7)
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+

 rTk−1ak−1b
T
k−1 + rTk−1ck−1d

T
k−1 + rTk−1ek−1f

T
k−1

rTk−2ak−1b
T
k−1 + rTk−2ck−1d

T
k−1 + rTk−2ek−1f

T
k−1

rTk−1ak−1b
T
k−1AP + rTk−1ck−1d

T
k−1AP + rTk−1ek−1f

T
k−1AP


=

 0
0

rTk−1(Zk−1AP − PTATZk−1)


+

 rTk−1

rTk−2

rTk−1P
TAT

 (Zk−1 − Z).

Note that θk depends only on approximations of previous steps. If ZAP = PTATZ,
then (4.5) is satisfied by bk = dk = fk = 0 for all k following from (4.7), thus
coinciding with Zk = Z = const and (1.9). If ZAP 6= PTATZ, then choose
a0 = b0 = c0 = d0 = e0 = f0 = 0 and ak, ck, ek so that Ψk can be inverted for k ≥ 1
and calculate  bTk

dTk
fTk

 = Ψ−1
k θk.(4.8)

In each iteration step two matrix-vector multiplications with the matrices AP ,
PTAT , respectively, have to be performed:

APrk−1

and

PTAT (ZT rk−1 + rTk−1ak−1bk−1 + rTk−1ck−1dk−1 + rTk−1ek−1fk−1)

for the determination of θk. The work counted in matrix-vector multiplications as
essential operations corresponds therefore to the work of the biconjugate gradients.

Zk is of the form

Zk = Z + (ak, ck, ek)

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek)

−1

θk.(4.9)

The vectors ak, ck, ek still have to be determined. A natural choice would be to
minimize

‖Zk − Z‖ =

∥∥∥∥∥∥∥(ak, ck, ek)

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek)

−1

θk

∥∥∥∥∥∥∥ ,(4.10)

so that Zk is close to Z. If the Frobenius norm is admissible, then the update

Zk = Z + Sk
(
STk Sk

)−1
(Y Tk − STk Z)(4.11)

minimizes (4.10) and fulfills (3.24). Numerical tests indicate that this choice of Zk is
not optimal. However for the Euclidean norm, the determination of Zk from (4.10)
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is a problem because of the complex structure of Zk. The determination of ak, ck, ek
is still an unsolved problem. At least we can formulate the following equivalence:

Lemma 7. Let

Zk = Z + (ak, ck, dk)

 bTk
dTk
fTk

 ,(4.12)

Z̃k = Z + (ãk, c̃k, d̃k)

 b̃Tk
d̃Tk
f̃Tk

 .(4.13)

If

(ak, ck, dk) C = (ãk, c̃k, d̃k)(4.14)

with C ∈ IR3×3, nonsingular, and Zk and Z̃k satisfy (3.24), then

Zk = Z̃k.(4.15)

Proof. From (4.9) follows

Zk = Z + (ak, ck, ek)

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek)

−1

θk

= Z + (ak, ck, ek) C C−1

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek)

−1

θk

= Z + (ak, ck, ek) C

 rTk−1

rTk−2

rTk−1P
TAT

 (ak, ck, ek) C

−1

θk

= Z̃k.

For Z = I we get the following result for the nonsingularity of rank-j updates.
Lemma 8. Let D,E ∈ IRn×j, let be I the unit matrix in IRn×n and Ij the

unit matrix in IRj×j , then I +DET is invertible if Ij +ETD is invertible and

[I +DET ]−1 = I −D[Ij +ETD]−1ET .(4.16)

Proof.

(I +DET )(I −D[Ij +ETD]−1ET )
= I +DET −D[Ij +ETD]−1ET −DETD[Ij +ETD]−1ET

= I +D
(
Ij − [Ij +ETD]−1 −ETD[Ij +ETD]−1

)
ET

= I +D
(
Ij − [Ij +ETD][Ij +ETD]−1

)
ET = I.
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5. Algorithmic Considerations. The Euclidean norm of the residuals of
generalized cg methods may oscillate heavily. The same is true for CKS methods.
Therefore we apply Schönauer’s minimal residual smoothing [11] to the original
CKS sequence. The sequence

s0 = r0 , z0 = x0 ,(5.1)
sk = sk−1 + γk(rk − sk−1) ,(5.2)
zk = zk−1 + γk(xk − zk−1)(5.3)

is a corresponding smoothed method delivering approximations zk and residuals sk.
γk is determined from ‖sk‖ = min:

γk = −
sTk−1(rk − sk−1)
‖rk − sk−1‖2

.(5.4)

The technique guarantees a monotonous decrease of the residuals

‖sk‖ ≤ ‖rk‖,(5.5)
‖sk‖ ≤ ‖sk−1‖.(5.6)

For a theoretical investigation see [16, 17]. The implementation according to (5.2)
and (5.3) can give deceptive results in practice because the updates for sk and zk
are decoupled. Alternative implementations were proposed by Zhou and Walker
[19] that perform better in some circumstances.

We can formulate the following rank-three update CKS method by means of
the preceding reflections.

Algorithm I

Choose x0 as initial guess for the solution of the system Ax = b, let r0 = Ax0 − b
be the starting residual, set r−1 = 0, a0 = b0 = c0 = d0 = e0 = f0 = 0,
a1 = b1 = c1 = d1 = e1 = f1 = 0 and Z0 = Z1 = Z = I. Set the initial val-
ues for the smoothed sequence z0 = x0 and s0 = r0.
For k > 2 calculate

β1 = −
rTk−1APrk−1

‖rk−1‖2
,(5.7)

β2 = −
rTk−2APrk−1

‖rk−2‖2
.(5.8)

If β1 + β2 = 0, then set β1 = β2 = 0 and β0 = 1, else set β0 = 1
β1+β2

.

ẽk = β0(APrk−1 + β1rk−1 + β2rk−2),(5.9)

ak =
APrk−2

rTk−1APrk−2
,(5.10)

ck =
APrk−3

rTk−2APrk−3
,(5.11)

ek =
ẽk

ẽTkAPrk−1
,(5.12)
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If Ψk in (4.6) is singular, then restart from the smoothed sequence, else determine
bk, dk, fk from (4.8). Set

Zk = I + akb
T
k + ckd

T
k + ekf

T
k .(5.13)

For k ≥ 1 calculate

α2,k = −
rTk−2Z

T
k APrk−1

rTk−2Zkrk−2
,(5.14)

α1,k = − 1
rTk−1Zkrk−1

(
rTk−1Z

T
k APrk−1 + α2,kr

T
k−2Zkrk−1

)
,(5.15)

If α1,k + α2,k = 0, then restart from the smoothed sequence, else

φk =
1

α1,k + α2,k
,(5.16)

rk = φk(APrk−1 + α1,krk−1 + α2,krk−2),(5.17)
xk = φk(Prk−1 + α1,kxk−1 + α2,kxk−2).(5.18)

Calculate the smoothed quantities zk and sk from xk and rk.

r̃k = Zkrk,(5.19)

Determine the approximation x̃k corresponding to the residual r̃k = Ax̃k − b from

x̃k =
1

1 + fT
k
rk

ẽT
k
APrk−1

(
xk + bTk rk

Prk−2

rTk−1APrk−2
+ dTk rk

Prk−3

rTk−1APrk−2
(5.20)

+fTk rk
β0

ẽTkAPrk−1
(Prk−1 + β1xk−1 + β2xk−2)

)
.

Calculate the smoothed quantities zk and sk again from x̃k and r̃k. If at least five
steps have been performed without restart and

‖sk − sk−1‖
‖sk‖

≤ 10−3,(5.21)

then restart from the smoothed sequence.

By this choice of ak, ck, ek the main diagonal of Ψk is equal to 1. We got very
bad convergence for the choice

ak =
rk−1

‖rk−1‖2
,(5.22)

ck =
rk−2

‖rk−2‖2
(5.23)

instead of (5.10) and (5.11) showing that the methods are sensitive with respect to
these vectors. From lemma 7 it follows that the choice according to (5.22), (5.23)
and (5.12) is equivalent to

(ak, ck, ek) = Sk.



ETNA
Kent State University 
etna@mcs.kent.edu

70 Minimization properties and short recurrences

Thus Zk fulfills (4.11) and the Frobenius norm in (4.10) is minimized.
Condition (5.21) should prevent that the smoothed residuals stagnate. The

value was optimized by numerical tests. In many cases the method restarts once in
the first iteration steps and then proceeds without restart. This can be considered
as an adaptive search for a better initial guess.

The second calculation of the smoothed quantities zk and sk from x̃k and r̃k
is implemented in order to exploit as much information as possible without essen-
tial work. Note that (5.19) and (5.20) consist only of dot products and triadic
operations. Thus we put the information of rk with the corresponding xk and the
information of Zkrk with the corresponding approximation x̃k into the smoothing
algorithm. Our tests indicate that the convergence is accelerated by the second
smoothing, whereas the first smoothing could be omitted.

6. Numerical Experiments. Let us consider the rough model of the 3–
dimensional Navier–Stokes equations

∆v + v + ρ(vT∇)v = h,(6.1)

with v = (v1, v2, v3)T , ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )T , ∆ = ∇T∇. The calculations have been

performed on a 20 × 20 × 20 grid with Dirichlet boundary conditions on the unit
cube. The right-hand side is determined so that the exact solution of equation (6.1)
consists of trigonometric functions. The linear system arises from a finite difference
discretization with consistency order 2 and from the linearization in the first Newton
step. The matrix is normalized, i.e. every row is divided by the sum of the absolute
entries in that row and all diagonal entries have a positive sign. The parameter
ρ simulates a Reynolds number. For increasing ρ the skew-symmetric part of the
system matrix increases.

We compare a CKS method according to algorithm I, denoted by R3-CKS, with
the biconjugate gradients (BCG) [3, 9], smoothed by Schönauer’s residual smoothing
[11], with QMR [5] and with GMRES [10] introduced by Saad and Schultz. GM-
RES minimizes the residuals in the Euclidean norm in the whole spanned Krylov
space. In general it is not feasible because the storage requirements and the compu-
tational work increase with the iteration. It is used as reference for the best possible
reduction of the residuals in the spanned space.

We present the tests for ρ = 10, ρ = 50, ρ = 100 and ρ = 1000. We always count
the matrix-vector multiplications as essential operations instead of the iteration
steps. One iteration is equivalent to one matrix-vector multiplication for GMRES,
while for BCG, QMR and R3-CGS two matrix-vector multiplications have to be
performed in each step. For all Reynolds numbers the R3-CKS algorithm restarts
because of condition (5.21) monitoring the convergence, see table 6.1. The relation
between the original R3-CKS residuals and the smoothed residuals according to the
strategy of algorithm I for ρ = 50 is depicted in figure 6.1. As already mentioned, the
norm of the original residuals oscillates heavily, as it does in general for related cg
methods, see also [16]. In figure 6.2 the non-smoothed R3-CKS residuals are shown
in comparison with the non-smoothed original BCG residuals. The qualitative
behavior is the same. The investigation shows that smoothing is very advisable.
Therefore, only the smoothed residuals are presented in the following tests.
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Fig. 6.1. Relative residuals of R3-CKS for ρ = 50

Fig. 6.2. Relative, non-smoothed residuals of BCG and R3-CKS for ρ = 50
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ρ restart at matrix-vector multiplication (mvm)
10 46
50 16

100 18
1000 16 and then every 10 mvm

Table 6.1

Restart because of slow convergence

Fig. 6.3. Relative residuals for ρ = 10

For ρ = 10, ρ = 50 and ρ = 100, R3-CKS is competitive with BCG and QMR,
see figures 6.3, 6.4 and 6.5. Up to a reduction of the relative residual of 10−4 for ρ =
10, of 10−3 for ρ = 50 and of 10−2 for ρ = 100 R3-CKS is mostly better than BCG
and QMR. For higher accuracies R3-CKS becomes worse. As the linear system
comes from a Newton linearization high accuracies are in general not required, so
that the method becomes attractive for practical applications. Moreover, for a small
reduction of the relative residual R3-CKS seems to be very close to GMRES if we
count the iteration steps. Note that one R3-CKS iteration needs two matrix-vector
multiplications, while GMRES needs one.

For ρ = 1000 R3-CKS fails while BCG and QMR still slowly converge, see figure
6.6. This may be due to the fact that the method restarts too often, see table 6.1.

However, R3-CKS has been proven to be competitive with the commonly used
BCG and QMR algorithms. We think that further improvements of R3-CKS are
possible by changing the restart philosophy and in particular by another choice of
the rank-three update vectors.
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Fig. 6.4. Relative residuals for ρ = 50

Fig. 6.5. Relative residuals for ρ = 100
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Fig. 6.6. Relative residuals for ρ = 1000

7. Outlook. CKS methods minimize a norm depending on Zk, thus depending
on the iteration step. Moreover, the properties of Zk are up to now unknown. By
choosing the preconditioning matrix

Pk = Zk,(7.1)

also depending on the iteration step, we obtain from (2.16)

‖ek‖A ≤
√

1 +
ρ2(R)
µ2
m

min
Πk
‖Πk(ZkA)e0‖A,(7.2)

where ρ(R) is the spectral radius of the skew-symmetric part of A−1. µm is the
minimum eigenvalue of the symmetric part of A−1. Thus we get a Krylov subspace
method that minimizes the energy norm of the error and can be formulated as a
short recurrence at the same time. Of course the determination of the rank-three
update vectors becomes more complex. This will be the subject of further research.

8. Conclusion. CKS methods have been proposed generalizing the cg con-
cept. Convergence and geometric properties have been shown that are similar to
well known cg results. It has been proven that CKS methods, minimizing resid-
uals in the whole spanned space, can be implemented as short recurrences. A
first realization of these methods based on a rank-three update is competitive with
smoothed biconjugate gradients and QMR. There still are many open questions for
the choice of the here introduced matrices Zk. The potential of CKS methods is
not yet exhausted and further research seems to be promising.
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Our proper aim has been to stimulate research and development for new iter-
ative approaches. The goal is to improve CKS methods so that they become more
robust and efficient. If it is possible to get a convergence close to GMRES, then
for certain cases very elaborate preconditioning techniques may be unnecessary. As
nearly all robust preconditioners are recursive by nature it is difficult to implement
them on vector and parallel computers, whereas CKS methods are optimally suited
for advanced computer architectures.
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