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OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE
RIGHT-HAND SIDES*

K. JBILOUY, H. SADOK?, AND A. TINZEFTE$

Abstract. In the present paper, we describe new Lanczos-based methods for solving nonsymmetric linear
systems of equations with multiple right-hand sides. These methods are based on global oblique projections of the
initial residual onto a matrix Krylov subspace. We first derive the global Lanczos process to construct biorthonormal
bases and we give some of its properties. Then we introduce new methods such as the global BCG and the global
BiCGSTAB algorithms. Look-ahead versions of these algorithms are also given. Finally numerical examples will be
given.
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1. Introduction. In many applications, we have to solve a few linear systems of equa-
tions with the same coefficient matrix and different right-hand sides. This is the case, for
example, in numerical simulation of wave propagation. When all the right hand sides are
available simultaneously, the problem we are concerned with can be expressed as

(1.1 AX =B,

where A is an N x N real nonsymmetric matrix, B = [by, by, ...,bs]and X = [z, 2, ..., 25
are rectangular matrices of order N x s with s < N.

For nonsymmetric problems, several block Krylov subspace methods have been devel-
oped during the last years. The most popular methods are the block-biconjugate gradi-
ent (BI-BCG) method [11, 17], the block-generalized minimum residual (BGMRES) algo-
rithm [14, 20], the block-quasi-minimal residual (BI-QMR) algorithm [8, 10] and the block-
biconjugate gradient stabilized (BI-BiCGSTAB) method [6]. We note that block-methods
require a deflation procedure to detect and delete linearly or almost linearly dependent vec-
tors in the block Krylov subspaces generated during the iterations; see [8] for details.

The matrix equation (1.1) can also be solved by applying a method for a single-vector
right-hand side to one of the columns, say b,, ¢ € {1,...,s}, of B and solving the linear
system

The preceding linear system is refereed as a seed system. The residuals of the other systems
with a single right-hand side are then projected onto the Krylov subspace associated with
the seed system. This procedure has been used in [4, 18, 19]. This technique is especially
attractive when the right-hand sides b;, 7 = 1,...,s of (1.1) are not available at the same
time; see for example [12, 21].

In the present paper, we use a third approach for solving the problem (1.1). This ap-
proach, which we previously used to define the global GMRES algorithm [9], is based on
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oblique projections onto a matrix Krylov subspace and allows us to define the global Lanc-
zos procedure that will be used to obtain the global Lanczos algorithm. We introduce global
Lanczos-based algorithms, such as the global biconjugate gradient (GI-BCG) algorithm, the
global BiCGSTAB algorithm and look-ahead versions of these algorithms.

The paper is organized as follows. In Section 2, we introduce the global Lanczos process
with some properties. In Section 3, we describe the global BCG algorithm and give some
techniques for curing breakdowns. Section 4 is devoted to the global BiICGSTAB method
with a look-ahead version. Finally, in Section 5 we give some numerical examples.

In the last section, we give some numerical examples to show the effectiveness of these
new methods.

Throughout this paper, we use the following notations. For two matrices X and Y in
RY*?, we define the inner product < X,Y >p= tr(XTY"), where tr(Z) denotes the trace
of the square matrix Z and X7 the transpose of the matrix X. The associated norm is the
Frobenius norm which we denote by || . ||z. For a matrix V€ R¥*?, the matrix Krylov
subspace K1, (A, V) is the subspace of R™ *® generated by the matrices V, AV, ..., A*1 V.
A system of matrices of R™*? is said to be F-orthogonal if it is orthogonal with respect to
the inner product < .,. >F.

2. The global Lanczos process. Let V be an N x s real matrix and denote by K (A4, V)
the matrix Krylov subspace of R™*# spanned by V, AV;..., A*~1V . Note that

k
ZeKyAV)= 2= aA"'V; ;€ R; i=1,...,k

i=1

In other words K (A, V') is the subspace of R™** of all N x s matrices which can be written
as Z = P(A)V, where P is a polynomial of degree not exceeding k — 1. This means that
each column of Z is associated with one Krylov subspace.

Remark also that the matrix Krylov subspace K (A, V') is quite different from the block
Krylov subspace K (A, V) used in block methods. In fact

k
ZeKnAV) = 2= AT'VQ; Qe R, i=1,..k

i=1

In this case, each column of Z is associated with a sum of s Krylov subspaces.

The minimal polynomial of A for V is the nonzero monic polynomial of lowest degree
such that P(A)V = 0. The degree m of this polynomial does not exceed N. We have the
following result which is easy to prove.

PROPOSITION 2.1. Let m be the degree of the minimal polynomial of A for V. Then we
have

(1) Kn(A,V) is invariant under A.
(2) dim(Ki(A,V)) = min(k,m).

Let V; and W, be two N x s matrices and denote by K (A4, V1) and K, (AT, W) the ma-
trix Krylov subspaces generated by {Vi, AVi, ..., A®~DV; }and {W;, ATWy, ..., AT(R-1)
W1 }, respectively.

The global Lanczos process constructs a pair of two global biorthogonal bases {V7, Va,
..o, Vi, }and {Wy, W, ..., Wi} of the matrix Krylov subspaces K, (4, V1) and Ky, (AT, W),
respectively, such that

<Vi,W; >p=tr(VEW;) =6ij; 4,5 =1,..., k.



ETNA

Kent State University
etna@mcs.kent.edu

OBLIQUE PROJECTION METHODS 121

The algorithm is defined as follows:

ALGORITHM 1 The global Lanczos process
1. Choose two N x s matrices V7 and Wi such that < Vi, W1 >p=1,
2. setfBr =01 =0and Wy =V =0,
3. forj=1,2,...,k
a; =tr(W;" AVj),
Vigr = AV; — a; Vi = BV ,
Wj+1 =ATW; —a;W; — ;W1 ,
Fi+1 =] tr(Viia Wisa) ['V/2,
Bi+1 = tr(Viha Wjt1)/dj41 .
Vitr = Vit1/Gj11
Wjt1 = Wit1/Bj+1
end.

Note that a breakdown occurs in the algorithm if, for some j, tr(V:E Wj+1) =0.If

B Jj+1

Vj4+1 = 0 for some j, then the matrix Krylov subspace K;(A, V;) is invariant under A and
then j > m the degree of the minimal polynomial of A for V7. We will see that in this case

we obtain the exact solution of the problem (1.1).

Below we will give a look-ahead Lanczos-type algorithm that avoids the breakdown.
Note that, since Algorithm 1 does not involve matrix inversions, the problem of linear depen-
dence of vectors in the sequences Vi, AVq,...and Wy, ATW,. .. is not an issue. Therefore
no deflation procedure to delete linearly or almost linearly dependent vectors is required.
From now on, we set Vi, = [V1,...,Vi] and Wy, = [W1, ..., W], two matrices of dimen-

sion N x ks. Let Ty, be the tridiagonal matrix of dimension k x k defined as:

a; fe

T, = d2  an

Br

(5k (677

where o, 3; and §; are the scalars defined in the Algorithm 1.

Note that, for the Block Lanczos algorithm, the corresponding matrix is a block-tridiagonal

matrix of dimension ks x ks.
Define the matrix

- Ty
T, = ,
* [ Spr1e€), ]
where e, = (0,...,0,1)T € RF.
We use the notation * defined in [9] for the following product

k

@.1) Ve xy=>_ yVi=W(y® L),
i=1
where y = (y',%2,...,y%)7 is a vector of R, and analogously
2.2) Ve * T =[Vie *T 1, Ve * T o,...., Vi T ],

where T' ; denotes the i-th column of the matrix T.
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Using these notations, we have the following result.

PROPOSITION 2.2. Assume that the global Lanczos algorithm does not break down
before k steps. Then {Vi,...,Vi} and {Wy, ..., Wy} form bases of the matrix Krylov sub-
spaces Ky (A, V1) and Ky, (AT, W), respectively, and we have the following relations :

2.3) A Vi =V *xT} + 6k+1[0, M. ,0, Vk+1]7
(2.4) AVk = Vk+1 * Tk.

Proof. From the definition of the product * and the structure of the matrix 7%, we have
forj=1,...,k—1,

VixT j =05V +611Vip + BV
= AV},

and

Ve *xT g = BeVi—1 + ar Vi
= AV + 0r41Viya-

Then we obtain
AV = Vi x Ty + 0p41[0, ..., 0, Viya].
For the relation (2.4), we have

Vi1 * T = Vi, Via] * T
= Vi x T), + Sp1€t Vi
=V, x T} + 5k+1[07 ...,0, Vk+1].

Hence, using the relation (2.3), the result of (2.4) holds. 0

Consider now the block linear system (1.1), let X be an initial guess and let Ry = B —
AXj be the corresponding residual. The global Lanczos method for solving (1.1) generates,
at step k, the iterate X}, such that

(2.5) Xy — Xo = Zp € Ki(A, Ro)
and
(2.6) Ry, =B — AX; Lr Kr(A", Ro),

where f{g is a given N x s matrix provided that, < RO,RO > 7 0. Let S denote the
oblique projector onto AKX (A, Ry) and orthogonal to K (AT, Ry). Then it follows from the
relations (2.5) and (2.6) that

2.7 Ry = Ry — Sk Ro.

Let {Vi,...,Vi} and {W1,...,W}} be the sets of matrices constructed by Algorithm 1,
generating the matrix Krylov subspaces K (A, Ro) and K (AT, Ry), respectively, with the
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initializations Vi = Rg/ || Ro ||r and Wy such that, < Vi, W; >p= 1. Now, from the
relation (2.5) it follows that,

(2.8) X = Xo+ Vi *ys
where y, is the vector of R¥ obtained from
< Ry — AV x yp, Ws; >p=0,
which is equivalent to
2.9) < Ry, W; >p=< AV} xyp, W; >p; i =1,...,k.

Hence, (2.9) can be written as
k .
> yltr(WAV)) =|| Ro ||r
=1
and

yitr(WlrAV;) = 0; i =2,..., k.

k
=1

J
Finally, the preceding linear system can be expressed as
(2.10) Tiyr. =I| Ro Ilr ef,

where egk) is the first vector of the canonical basis of RF. If the tridiagonal matrix T}, is

nonsingular, the iterate X} obtained by the global Lanczos method is then given as
(2.11) X = Xo+ || Ro |l Ve x T el

Let us see now how to compute the norm of the residual R without actually having to
compute the approximation X . This will be useful for determining whether convergence is
achieved without explicitly using X. The residual R, is given as

Ry = Ry — AVy * vy,
From the relation (2.3) and the fact that, Ry =|| R ||r V4, it follows that,
Ry, =|| Ro ||lr Vi = Vi * Thyk + 0k41[0,0, ..., V1] * yg.
On the other hand, since V; = V), * egk) , We obtain
Ry, = Vi * (|| Ro || ) = Thyr) + 6641[0,0, - .., Viga] * -
Finally, using (2.11) in the preceding equation, we get
(2.12) | Ry [lr=I k4198 | | Vira lle,

where y,’j is the last component of the vector yy,. If m is the degree of the minimal polynomial
of A for Ry, then K,,, (A, Rp) is invariant and X, = X is the exact solution of (1.1). As
m < N, the algorithm converges in at most N iterations.

In what follows, we describe some global Lanczos-based methods for solving the multi-
ple linear system (1.1).
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3. The Global Biconjugate Gradient method.

3.1. The Global BCG algorithm. The Global Biconjugate Gradient (GlI-BCG) algo-
rithm can be derived from Algorithm 1 in the same way as the classical BCG has been ob-
tained in [7]. At step k, the residual Ry, generated by this algorithm is such that, Ry — Ry lies
in the right matrix Krylov subspace K (4, ARy) = span{ARy, ARy, ..., A*Ry} and R,
is F-orthognal to the left matrix Krylov subspace K1 (AT, Ry) = span{f%o, ATRy, ..., ATH=
RO}, where Ro is a given N X s matrix.

The algorithm is defined as follows

1

ALGORITHM 2  The Global Biconjugate Gradient (GI-BCG) algorithm

1. Compute Ry = B— AXO for a given Xy, and choose Ry such that, < Ry, Ry > FZ£ 0,
2. set Py = Ry and Po = Ro,

3. forj =0,1,...compute

>F

< Ry,
a. Xj11 = X; + a;Pj, where a; = J

J+1 J J < AP P
b. Rj+1 = Rj - OéjAPj,

¢. Rjy1 = R; —a;ATP;,
< Rjt1,Rjv1 >F

d. Py = R;+1 + B;P;, where 8; = =
j+1 Jj+1 :89 J /8] <Rj,Rj >p

e. Pj+1 = Rj+1 + ij)]

It is not difficult to prove the next results.
PROPOSITION 3.1. The matrices produced by the GI-BCG algorithm satisfy the follow-
ing relations:
(1) <Ry, R >p=0and < APy, P >p=0; k#1.
(2) span{Py,..., Py} = span{Ry,..., AFRy}.
(3)  span{Py,..., P} = span{Ry, ... ,ATkRO}.
(4) Ry — Ro € Ki(A, Ro) and Ry, is orthogonal to Ky, (A”, Ro).
The residual Ry, produced by the GI-BCG algorithm can also be expressed as

Ry = Pr(A)Ry,

where Py, is a polynomial of degree k with scalar coefficients satisfying Py (0) = 1. The
matrix direction P can also be written as

Py = ¢r(A)R

Here ¢y, is a polynomial with scalar coefficients. Note that R, and Py, also can be expressed
as

Ry = Pr(AT)Ry and Py, = ¢x(AT)R,

One disadvantage of the GI-BCG algorithm is the fact that breakdowns may occur in the
algorithm. In the following subsection we give a look-ahead Lanczos-type algorithm that
avoids this problem.
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3.2. A look-ahead global Lanczos-type algorithm. The global Lanczos method con-
structs a sequence of approximations (Xg), k = 1,2, ... such that,

X — Xo € Ki(A, Ro)
and
Ry Ly Ki(AT, Ry),
where Rq and X, are chosen N x s matrices. Hence the residual Ry, satisfies
Ry, = Pr(A)Ro,

where Py, is a scalar polynomial of degree at most k& with Py (0) = 1. Then the F-orthogonality
property gives

< AT'Ro Ry >p=10;i=0,...,k—1.

Setting ¢; =< Ry, A'Ry >p and defining ¢ to be the linear functional on the space of
polynomials by ¢(#!) = ¢;, the orthogonality relation can be written as

c(t'Pp(t)) =0; i=0,...,k—1.

This shows that Py, is the polynomial of degree k belonging to the family of orthogonal
polynomials with respect to the functional ¢. The F-orthogonality property shows that the
polynomial Py, exists and is unique if and only if the Hankel determinant

cT ... Ck
H = L | #o.

C, .--- Cokp—1

Let ¢(V) be the linear functional defined on the space of polynomials by ¢V (#?) = ¢(t*+') =
ci+1 and let P,El) be the monic polynomial of degree k belonging to the family of formal
orthogonal polynomials with respect to ¢(1). P} and P,gl) exist under the condition that

H #0.

The recursive computation of Py, involves the computation of some scalar products which
appear as denominators and of the recurrence relationships. Thus, if one of these scalar prod-
ucts vanishes, a breakdown occurs in the algorithm. This can be avoided by jumping over
these polynomials and by computing only the existing ones (called regular). This kind of
breakdown is called true breakdown [1]. There in another possible breakdown in Lanczos-
type algorithms (called ghost breakdown [1] which is not due to the non-existence of some
orthogonal polynomials of the family Py, but to the recurrence relationship under considera-
tion which cannot be used for computing Py, for some k. For instance, in Gl-Lanczos/Ortores
(Pr+1 1s computed from Pj, and Pr—1) and in Gl-Lanczos/orthomin (GI-BICG) (Pj41 is
computed from P}, and P(l), and the polynomial P,Sr)l is computed form Py and 73,(61)).
Since we are interested only on the existing polynomials (regular), we still denote by P and
‘Pr+1 two successive regular polynomials of degrees nj, and ny + my where my, is the length
of the jump. As shown in [5], my is defined such that,

O EPMY=0; i=0,...,05 +my —2
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and
—1(1
D) (gretme—tpDy o g,
The polynomials Py1 et 77,51_)1 are computed by the following recursive relations

Prra(t) = Pelt) — twe ()P (2)
P = 6P () — Conn P, (1),

where ’P(_ll) (t) =0,C1 = 0and P(gl)(t) = 1. Here g4, is a monic polynomial of degree my,
and wy, is a polynomial of degree at most my — 1.
If we set

Ry, = Pr(A)Ro and Z, = PV (A) Ry,
then we get the following relations

Rk+1 = Rk - A’wk(A)Zk,
Xit1 = Xp —wi(4) Zg,
Zgy1 = @(A) Zy — Crp1Zk—1,

with the initializations Zyg = Ry, Z_1 = 0 and C; = 0. The scalars C1 and the coefficients
of the polynomials g;, and wy, are computed using the orthogonality relations of the polyno-

mials Pj4; and P,Sr)l. Since ’P,gl) is of degree exactly n, these orthogonality relations can
be expressed as follows

c(tiP,gl)Pk+1) =0; i=0,...,m—1,
D PMIPI Y =0; i =0,...,my -1,
and
c<1>(ti7>,§1)2) =0; i=0,...,mp—2,
o) (tmk—173£1>2) £0.
Let
Zr, = P (AT)Ro.
Then we have the recurrence relation
Zyyr = a(A") Z), — Cry1 Zga,

with Zg = Rget Z_y = 0. The length of the jump my, is computed by using the following
relations

< Zp, AT Z >p=0 fori =0,...,mp —2 and < Zy, A™ Z}, >p#0.
Letwy (t) = Y mk! ﬁgk)ti and gx(t) = 3% agk)t" with a{¥) = 1, and define

d¥ = < Zy, ARy >p; i =0,...,mp — 1,
bgk) =< Zk,Amk+iZk >F7 Z:O,,mk
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The coefficients agk) and ,Bz(k) ,t=0,...,mg—1, are given as solutions of the following two
triangular linear systems with the same coefficient matrix
M k) T r ok k . - k k) 7
B (4
b by 0 n—2 Oy o d; —by
k . .
bg ) - : -
. k k k) k
I bﬁ,’fi_l bﬁ,’ji_z oo o L B ag’ 1 Ldy, 1 —bm

As b(()k) =< Zy, A™ Z), >p# 0, the matrix of the preceding system is always nonsingular.

We also note that, Cy41 = b(()k) / b(()kfl). Summarizing we get the following algorithm:
ALGORITHM 3  Global mrz-stab(A, B, X, Ro)
1. initialization
Z.1=0,71=0,Ry =B~ AXo, Zy = Ro, Zo = Ro
ng=0,C1 =0,m_1 =0and k = 0,

2. while Ry #0do
Zyo = Zyy Lo = L, d((]k) =< Zp0, Rr >F,
Zyy = AZgo, my =1, b(()k) =< Zk,0,Zk,1 >F,

3. while b =0do
me=mp+1, Zym, = AZkm—1, b(()k) =< Zk0, Zk,my >F,
end while

4. By =diP n?

mEp—1 —

if k#0 thenCryy =" /08F",
end if
5. fori=1,---,mydo
Zyi=ATZp iy

bE'“) =< Zk i, Ztymy >F
if i # my then
d¥ =< Z}.:, R, >r
compute ﬂ(k)

mp—i—1
end if
comput (k)
pute o,
end for

6. Xiyr=Xi+ B8 Zio + B Ziy + -+ + B 1 Zimy 1
Ryy1 = Ry — [ﬂék)zm +B1Zka+ -+ 55:,2_1Zk,mk]
Zipr = 0" Zio + o Zpy + - + ag:;)c—lzk,mk—l + Zigmi — Ck1Zk—1
Zin =) Zyo + ol Zy s+ 4 agtcl)c—lzk,mk—l + Zkmi — Cra1Zk—1
7. Ng+1 = N + My,
k=k+1
end while
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The computation of the global MRZ-stab algorithm requires the storage of many matrices
of dimension N X s. To overcome this problem, we use Horner’s algorithm to compute
wy(A)Ry, and g (A)Z. Let hy, be the monic polynomial defined by

hi(t) = 267+ T
Then applying Horner’s algorithm, the polynomial hj, can be computed recursively as follows
h =1,
hgj) = th;; b +7(k) ; fori=1,... ,my,
hi(t) = W™ (0).

The coefficients fyz(k), 1 =1,...,myg, are computed such that,
B 17 4® C BT
k k -
o o ||| |
b
b(k) b(k) b(()k) (k) b(k()c .
B B k k (k) k)
ﬁnzl bﬁnzz U A A 1 | by

(k)

Then using the expressions of the coefficients gk) and o; ", one obtains

mp—1
LR SR

ar(t) = hk<) h{™) ().

Note that, with this new approach, we do not have to store all the bgk)’s but only b(()k). The
new algorithm is called global HMRZ-stab and is summarized as follows.
ALGORITHM 4  Global HMRZ-stab (A, B, Xo, Ro)
1. initialization
Z.1=0, Z1=0

RO—B AXy
Zy =Ry
Zo = Ry

no—O

Ci=0

B =0; k=0

2. while Rj; #0 do
d¥) =< 7, Ry, >
my =1
Yk = ATZk

(%

_< Yi, Zr >F
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3. while ¥ =0 do
mr =myg +1
d¥) | =< Yi, Ry >r
v = ATY,

B =< Yy, Zp >
end while

4. if k#0 then
Cots = KOs

end if

Ty = Zy

Zpy1 = —Cry1Zk—1

Ty, = Zy, N

Zry1 = —Cry1Zp—1

X1 = Xp

Ry 1 = Ry,

5. fori=1,---,m;do

U, = J%Tk .
B=dn) /5"

Xit1 = Xgg1 + BTk
Ryy1 = Rgy1 — U
¥=—-< Y, Up >F /b(()k)
Tk = Uk + ’)/Zk
if ¢#1 then
Vi = ATTy,
end if ~
Tk = Vk + ’}’Zk
end for

6. Zpy1 =2kt + Tk
Zyy1 = Zgg1 + T,
Ng+1 = Nk + Mg
k=k+1
end while

4. The global BiCGSTAB algorithm.
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4.1. The global BiCGSTAB algorithm. We have seen that at step k the residual sz

and the matrix direction Py b produced by GI-BCG satisfy

4.1 R’ =R, — oy
and
4.2) P =Ry + B, P,.

The k-th residual of global BICGSTAB is defined by

Rk = (I - ka) Sk
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where
(4.3) Sk = (I —wp_14)...(I —w A) RS,

The parameter wy, is selected to minimize the F-norm of Ry, so we have

o = < Sk,ASk >F
T CAS ASE >k
Using (4.1) and (4.3) we get
Sk = Rp_1 — ar APy
where

P, = (I—Wk—lA) A (I - (U1A) Pl‘gil

Now since Rib (k > 1) is F-orthogonal to the matrix Krylov subspace Ky, (AT, EO) it follows
from (4.3) that,

< Ro,Sk >p=0; k>1.

Using this orthogonality, we get

< Ro,Rk_1 >F
aEp = = .
< Ro, APy 1 >F

On the other hand, the global BICGSTAB direction Py, is given by
Py = (I —wiA)...(I —wA)[RY + BrP{".]
which can be written as
P, = (I —wrA)(Sk + BrPr—1)
as well as
P = (I —wiA)Qy
where

Qr = Sk + BrPr_1
=T —wp 14)...(I —w A) PP,

We now have to compute [ by using the fact that P,fb is F-orthogonal to the subspace
Kr(AT, Ry). It follows that,

< RO,AQk >p=0; k> 1.
Therefore

< Ro,ASi >r
< Ro, APy 1 >r

The global BICGSTAB algorithm is given as follows :

Br =
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ALGORITHM 5 The GI-BiCGSTAB algorithm
Compute Ry = B — AXg, where X is an initial approximate solution; Py = Ry
and Ry arbitrary,
fork=1,2,...
Vi1 = APy, 5
< Ry, Rp—1 >F

Sk =Rp—1 —op Vi1, 00 = —=
< Ro, Vi1 >rp

Ty = ASy, TS
<1k, 0k >F
X=X P, s =
k k-1 + arPr_1 + wpSk, wg <Te. T, >p
Ry = S — wiTk, B
. < Ry, Ty >
Py = Ry + B (Pec1 — wiVi_1), with B = ———2-F 78
< Ry, Vi1 >F
end.

When s = 1 the algorithm reduces to BICGSTAB of Van der Vorst [22]. We note that
global methods do not suffer from dependence of vectors during the iterations until a matrix
invariant subspace is obtained (no need for deflation). However a break-down may occur if
< Ro, Vi—1 >r=0.

4.2. A look-ahead global BiCGSTAB algorithm. The k-th residual produced by the
global BICGSTAB algorithm is expressed as

Ry = Qr(A)Pr(A)Ro,
where Qj, is a polynomial satisfying the following recurrence relation
Qr(t) = (1 —wit)Qp1(t), Qo(t) =1,

and wy, is chosen so that < Ry, Ry, >p= ||Rg||% is minimized. Let

P () = (-1)

P,gl) is a monic formal orthogonal polynomial with respect to ¢(1). The polynomials Py, and

P,gl) satisfy the recurrence relations

(4.4) Prga(t) = Pr(t) — ap1tPL (1),
73&)1 (t) = Prra () + B PV (1),

with Py (t) = Po(t) = 1.

If the Hankel determinant H ,gl) vanishes, then the polynomials Py, and 75,51) do not exist
and we have a true breakdown. This problem can be cured by jumping over the nonexisting
polynomials and by considering only the regular ones. If H ,El) # 0 and the two polynomials
are not of degree k exactly (H ]io) = 0) then we have a ghost breakdown. This kind of
breakdown is not treated in this paper.

In the sequel, we assume that H ,50) # 0. The k-th regular polynomials will be denoted
by Py, and 73151) with degree equal to ny. The next regular polynomials Pj41 and 75,£1+)1 have
degree ni1 = ng +my where my, is the jump in the degrees between two successive regular
polynomials; see [1] and [3].
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The jump my, is defined by the conditions

c(l)(tiﬁ,(cl)) =0 fori=0,...,np +my — 2,
C(l)(tnk+mk—17slgl)) 75 0.

Therefore the polynomials Pg41 and 73,321 are computed by the following recurrence rela-
tions

(4.5) Prrr(t) = Pr(t) — tne ()P (2),
P () = Praa () + Bera PV (1),

where Py(t) = Po(t) = 1 and ny, is a polynomial of degree my — 1 at most. The auxiliary
polynomial Qy, is of degree at most ny, and satisfies the recurrence

(4.6) Q1 () = A+ wFt+ P + .+ w® ™) 04 (t).

The coefficients (wi(k))lgigmk are chosen so that < Ry1, Rg+1 > is minimized.
The jump my, is determined from the relations

4.7) M (EQPMN)Y =0 for i =0,...,my —2,
C(l)(tmkfl Qk’ﬁlgl)) :/é 0.
Let 'y(k), =0,...,my — 1 be the coefficients of the polynomial 7y:
mr—1
Z ,y(k)t’l
and set
() = (W) (gma=1+ig P 4y for i =0,...,mg —1,
d®) = c(t Qi Py (1)) for i =0,...,my — 1.

In (4.5), multiplying Py41 by [t!Qk], i = 0,...,my — 1, applying c and using the orthogo-
nality relations, we get

[ b Tr~® 1 1 0 -
b(’“’ bk) 0 Ty d?k)
(()) ’Ymk—Q dl
: bik :
(4.8) _ S | -
T R NE i
b(kfi k?i ORI (k) d(k§
L Ymp—1 mk —2 et et 1 0 4 = - L “myp—1 4

Note that, since ¢(!) (#7+ 1 Qk75,(€1)) = b(()k) # 0, the matrix of the preceding linear system is
nonsingular. Multiplying equation (4.5) by t™*—1Q, and applying c(), the coefficient B41
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is given by
By = c(t™ Qi Pry1)
+1 — — =
c(l)(tmk—l Qkfplgl))
¢(Qk+1Pr+1)

T w,(qlf,)c e (gme—1 Qk’ls,gl)) -

It follows from

APy 4
mp o) (tmk_lgkﬁél)) b(()k) )
that
_ d(k+1)
4.9) Begr = —Lme=t %0

o® P
Let Z; and S}, be defined as follows :

Zy = Qk(A)TSIEI)(A)Rm
Sk = Qr—1(A)Pr(A)Ro.

Using the relations (4.5) and (4.6), we obtain

Sk-‘,—l = Rk - A’I’}k(A)Zk,
Riy1 = Sky1 + wgk)ASk+1 + wék)A2Sk+1 + ...+ ws,lfz AT Sk,
Zkv1 = Rpy1 + Brv1(Zg + w§k)AZk + wék)AZZk +...+ w;{f,)eAmek)-

The approximations X, are then computed according to
X1 = Xe +mu(A)Z — (i Sppr + 0P ASe i + .+ w) A™18, ).

Since the coefficients (wgk))lslSmk are chosen so that < Ry41, Rg+1 >F is minimized,

they are obtained by solving the following my X my, linear system:

W < AiSpi1, ASkir >F 4o+ wlk) < AS 1 AT Spy S
=-< Ai5k+1,Sk+1 >p; t=1,...,mg.

We note that since c(t') =< Ro, A'Ry >, the coefficients (bgk)) and (dgk)) are given by

bz(k)=<R07Ai+mek >F, i=07“‘7mk_17
d" = < Ry, A'Ry >p, i=0,...,mj — 1.

The length of the jump my, is determined by the following relations
< Ry, A'Z, >p=0 fori=1,...,mp—1, and < Ry, A™ Z, >p# 0.

The look-ahead global BICGSTAB algorithm is summarized as follows:
ALGORITHM 6  The Look-ahead global BICGSTAB (A, B, Xo, Ro)
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initialization
Z_1 == 0
Ry = B AXy

(00) _< Ro,Ry >F
’I’L()—O
k=0

while R # 0do
if d(()o) =0 then stop.

Zro = 2y,
Zpa = AZy o
mr =1

b(()k =< Ro,Zk,l >F

while b{") =0do
mr =mg + 1
Rk mE—1 = ARk,mk_z
B =< Ry, Ry >r
Zy M — AZk,mk—l
b(()k) =< RO;Zk,mk >F
end while
Yoy = d(k)/b(k) Uk = Zi,m,
fori=1,---,mp —1do
U, = AU;~c
b" =< Ro, Uy >r
com (k)
pute ’ymk—i—l
end for i . .
Skt = Ri =1 Zia{V Zyp — -+ - 7&2 1Zk,ma
construct the matrices My, = [ASg11,---, A™ Sk 11T [ASki1,-- -, A™* S 1]
and Nk = [A8k+1, . ,Am’“Sk+1]TSk+1
solve Mw;, = —Nj, where  wy = [w(k) (k), .. (kz]T
Xp1 = Xk+’Y(gk)Zk,o+"'+%(,f,z 1Zk mp—1— WS )Sk+1_ —wi) A 1S
Rigy1 = Sg+1 + wgk) ASpy1 +. (k) GA™ESE
d(()k+1) =< Ro, Rxt+1 >F
d(k+1) (k)
Brt1 = _% Tm-1
ull]
Zk+1 = Riq1 + Bry1 (Zro + w§k)Zk,1 +--- 4 w(’“) Zk,my,)
N1 = Ng + Mg
k=k+1
end while

5. Numerical examples. In this section, we give some experimental results. Our exam-
ples have been coded in Matlab and have been executed on a SUN SPARC workstation.

Example 1: We compared the performance of the global BCG, global BICGSTAB and the
block BCG algorithms. We used the matrices from the Harwell-Boeing collection: A1=PDE2961
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(N = 2961) and A>=Sherman4 (N = 1024). The number of nonzero entries of 4; and
Ay are nnz(A;) = 14585 and nnz(A;) = 3786. The tests were stopped as soon as
maz(|| RY |l / | R [l2) < 1077, forj =1,...,s.
The initial guess Xy was taken to be zero. We set B = rand(N, s), where the Matlab
function rand creates an N X s random matrix with entries uniformly distributed in [0,1].
In Table 5.1, we list the CPU-time (in seconds) obtained with the three algorithms. In
parentheses, we give the ratio s - t(1)/¢(s), where t(s) is the CPU-time for the global or the
block method and #(1) is the CPU-time obtained when applying the corresponding method
for one linear system with one right-hand side. Note that the time obtained with one right-
hand side solver depends on which right-hand side was used. (1) was obtained by dividing
the time needed for the s right-hand sides by s. We note that a global method is effective
if the indicator s - t(1)/t(s) is greater than 1. The maximum number of 500 iterations was
allowed for all the algorithms. As mentioned in [18], we used Ro = AB for the BI-BCG
algorithm.

TABLE 5.1
Runtimes to convergence for GI-BCG, GI-BiCGSTAB and Bl-BCG. Matrices Ay and Aa; s = 10 and s = 20.

Matrix s || GI-BCG || GI-BiCGSTAB || BI-BCG
PDE2961 || 10 98 40 -
(N=2961) (1.39) (1.43) -

20 | 201 81 -
(1.43) (1.45)

SHERMAN4 || 10 17 10 -
(N=1140) (1.37) (1.34) -

20 36 19 24
(1.41) (1.39) (1.35)

Table 5.1 shows that GI-BiCGSTAB returns the best results. Note that, for Sherman4
and s = 20, BI-BCG performs better than GI-BCG. For the matrix PDE2961, BI-BCG failed
to converge and this was also the case for Sherman4 with s = 10.

Example 2: For this experiment we consider the matrix

-1 a 1
-1 a |

with B = In,, Xo = rand(N,s), Ry = Ins N = 200, s = 6 and a = 0. In Figure
5.1, we plotted the logl0 of the Frobenius norm of the residual versus the iterations. As
shown in this figure, the GI-BCG (dashed line) does not converge. Setting ¢ = 1078, the
global Hmrz-stab(solide line) makes jumps of length mj = 2 and we obtain n1gg = 200 with
| Ruyoo |l = 3.14 10711,

Example 3: For this experiment, the matrix A is the same as in Example 2 with N = 1000,
s =6,a =0,Xy =0n,and Ro = Ro. Figure 5.2 shows the results obtained with the
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25

200w~ - 4

| — Gl Hmrz-stab
| —  Glbicg

log10(frobenius norm of the residual)
<
o
L

5 4

50 100 150 200 250
nk

FIG.5.1. N =200, s =6, ¢ = 10~8

GI-BICGSTAB (solid line) and the look-ahead Gl-BiCGSTAB (dashed line) algorithms. In
this figure we plotted the Frobenius norm (in the logarithmic scale) of the residuals vesus the
iterations. With € = 10~1% many jumps are detected in the look-ahead GL-BiCGSTAB algo-
rithm. The first jump is obtained at iteration n1g = 16 (n17 = 18), the second one is detected
at iteration ne3 = 24 (n24 = 26). The last jump is of length m; = 11 and is detected at
iteration ngg = 51 (n3z7 = 62).

2 T

— Gl-bicgstab
— Gl-bicgstab with look-ahead

ok 4
2k
4+

6t

log10(frobenius norm of the residual)

Il
10 20 30 40 50 60 70 80
nk

FIG.5.2. N = 1000, s = 6 and e = 10~ 10

Example 4: For this last experiment, the matrix A = PDFE2961 is taken from the Harwell
Boeing collection (N = 2961). The nonzero entries of A are nnz(A4) = 14585. We used
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$=10,B = In,,, Xo = On,s and Ry = Ry. Figure 5.3 reports on the results obtained with
the GI-BICGSTAB (solid line) and the look-ahead Gl-BiCGSTAB (dashed line) algorithms.
We plotted the Frobenius norm of the residuals versus the iterations.
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(21
31
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(71
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[13]

1 T

T T
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— Gl-bicgstab with look-ahead

log10(frobenius norm of the residual)

7 I I I I I N I

0 10 20 30 40 50 60 70 80
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FIG.5.3. N = 2961, s = 10, e = 10—10
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