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CONVERGENCE ANALYSIS OF THE ROTATED Q; ELEMENT ON
ANISOTROPIC RECTANGULAR MESHES*

SHIPENG MAO' AND SHAOCHUN CHEN#

Abstract. The main aim of this paper is to study the convergence of the well-known nonconforming rotated
Q1 element for the second order elliptic problems on anisotropic rectangular meshes, i.e., the meshes considered
in our work do not satisfy the regular assumption. Lastly, a numerical test is carried out, which coincides with our
theoretical analysis.
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1. Introduction. The regular assumption (cf. [8], [13]) of finite element meshes is a
basic condition in the convergence analysis of finite element methods (FEMs), whereas some
early papers have been written to prove error estimates under more general conditions (cf.
[7], [19]). Recently, much attention is paid to FEMs on anisotropic meshes. In particular,
for rectangular meshes we refer to Acosta [1], [2], Apel [3], [4], [5], [6], Chen [11], [12],
Duran [16], [17], Shenk [24] and references therein. The studies mainly concentrated on
some Lagrange type elements (conforming C° elements). But nonconforming methods are
hardly treated, as far as we know, there are few papers on the nonconforming elements under
anisotropic meshes. On the other hand, most of the former works are concentrated on the
estimates of the interpolation error under anisotropic meshes, in particular, the readers are
refer to [4] and [11] for some techniques of the anisotropic interpolation error estimates.
However, some elements do not satisfy the anisotropic interpolation properties. A case in
point is the famous rotated Q element of Rannacher and Turek [23]. In this paper, we will
show that the interpolation error of the rotated Q; element is not convergent, while it can be
applied to anisotropic rectangular meshes.

The goal of this paper is to obtain the error estimates of the rotated Q1 nonconforming el-
ement on anisotropic rectangular meshes. Our estimates improve the previous known results
in several aspects: Firstly, the anisotropic approximation error is obtained in a different way.
The interpolation error of the rotated Q; element is not convergent under anisotropic rectan-
gular meshes. We overcome this difficulty by constructing another operator T}, : H2(Q) —
V), instead of the interpolation operator. Then we come to the interesting conclusion that the
interpolation error may say nothing about the convergence of some FEMs. Secondly, our re-
sults improve the previous consistency error estimate of the rotated Q; element. In section 3,
we mainly study the consistency error of the rotated Q; element under anisotropic rectangular
meshes. Under moderate smoothness of the solution, accuracy with O(h) and O(h?) order
of the consistency error are both obtained by the trick of element cancellation. Lastly, the
techniques developed in our analysis can give some hints to other nonconforming elements
under anisotropic rectangular meshes.

Before the end of this section, we will recall some notations and terminology (or refer to
[8], [13]). Let (,-) denote the usual L? -inner product and ||u||p.q (resp. |ul,po) be the
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usual norm (resp. semi-norm) for the Sobolev space W™? (). When p = 2, denote W™%(Q)
by H" ().

2. Nonconforming rotated Q; element and its approximation error estimate on
anisotropic rectangular meshes. For simplicity, assume that €2 is a polygon with bound-
aries parallel to the axes and let [J;, be a partition of {2 by rectangular meshes which need
not satisfy the regular assumption. VK € Jj, denote the barycenter of element K by
(zx,yK), the length of edges parallel to x-axis and y- axis by 2hg1,2hko respectively,

hx = max{hgi,hga},h = nax hx. Assume that K = [—1,1] x [=1,1] is the refer-
h

ence element, the four vertices are: a; = ( 1,-1),a, = (1,-1),a3 = (1,1),a4 = (—1,1),
and its 4 sides are l1 aias, l2 = a»2as, 13 = Q3d4,ls = A4a1. Then there exists an unique
mapping Fix : K — K defined as

z=2xK + hki&,
Yy =Yk + hxon.

To begin with, we will introduce the finite element space of the rotated Q; element.
Set

13 = Spa"{17§;777§2 - 772})

and VF C 0K, forany v € H'(K), we define

1
Mp(v) = W/des.

Then the finite element space is defined as
Vi = {v € L*(Q)[v o Fx € P, v is continuous regarding Mg (-), Mp(v) = 0,VF € 8Q}.
We will define two interpolations I and II on H!(K), H2(K) respectively,

2. V12 + V23 + V34 +U4 U2z — 1141'E VU3g — V12

Iy =
v 4 2 2
3(—V12 + Uzz — U4 + V1)
+ ] (§2 _772)5
~ U1 + U2 + U3 + U4 —U1 + Vg + 03 — 04 —Uy — U9 + U3 + 04
o = 3
4 4 4
U1 — U9 + U3 — 04
&,

4

where @’i(i-l—l) = ‘l| /Ud/\, /UZ = /U(az), 1= ]. 2 3 4. Let Ih|K = IK and thK = HK

be the 1nterp01at10ns of the rotated Q; and bilinear element on K, respectively, where Ix =
IOFK g —HOF_
For the convenience of simplicity, we consider the following Poisson problem:

—Au = f, in €,
@1 { u=0, on H.

Then the weak form of (2.1) is:

- 1
2.2) { Find u € H} (), such that

a(u,v) = f(v), Vv e Hs(Q),
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where

a(u,v) = / VuVudzdy, f(v) = / fudzdy.
Q Q
The approximation of (2.2) reads as:

23) { Find up, € V3, such that
' ah(uh,vh) = f(’l)h), Yo, €V

with

ap(up,vp) = Z / VupVopdzdy.
K

KeJn

We will define the broken norm as

1

||-||h=< > |-|f,K>§-

KeJn

It is obvious that || - || is a norm on V4.

The following theorem shows that the interpolation I} is unstable or even divergent in
the energy norm sense under anisotropic rectangular meshes.

THEOREM 2.1. (cf.[22]) Let Q be a rectangular and a uniform mesh division in each
direction with the diameter h and h' respectively, and 1 < % < 0. we have

2.4 lu = Iyu|lp < Ch(1+ h/h")|ul2,q.

It’s seen from Theorem 2.1 that the aspect ratio h/h' appears in the right hand side of
(2.4). The following counterexample shows that this is the true case (cf. [5]).

Taking an element K = [—hy, hy] X [—hy, hy](he > hy),u = 22, then by a direct
calculation, we have

A 2 1
Ipu = §h2 - ihi(g —n?),
O(u — Ixu) 1 1 8(11—1}%12) 2 5 _1
”T' 0.k = hy " (hahy)2 || on llo,& = _3h$2hy E
luax = (/ 2drdy)t = 4hZh:
K
So
O(u—Ilgu
2.5) u—Igulik ||(37y)||0,K _ V3hy e
' lul2,x |ul2, Kk 6 hy

From the above discussion one may ask if the rotated @ element is convergent under
anisotropic rectangular meshes, the answer is affirmative. In fact, from the numerical test
and theoretical analysis in this paper, one can see that the rotated Q1 element preserves the
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optimal order of convergence even if the interpolation error is divergent, which is a very
interesting result.

In order to obtain the anisotropic approximation error estimate, we construct the operator
Ty : H2(Q) — Vi with T = IKHK7Th|K = TK,VK € Jn.

LEMMA 2.2. For the operator T}, there holds:

(2.6) 1D%(0 — To)llo & < CID*8|, ¢,V & € H*(K), |af =1.

Proof. A simple calculation gives

T6:U1+1)2+U3+1)4 —1)1+’02+U3—1)4£+—1)1—112+U3+U4
4 4 4
For the case @ = (1,0),
2.7 DTy = 7 / ¢, —1)d€ + Do(¢,1))de & F(D*9).

It can be verified that

{ ()] < Cllilly g, Vb € H(K),
F() =0, Vi € Py(K).

Employing the Bramble-Hilbert lemma yields
ID%(0 = To)llp 5 = [1D*0 = F(D*0)|y g < ClD*0|; -

Similarly, we can prove (2.6) for the case a = (0, 1). O
Assume u and uy, to be the unique solution of (2.1) and (2.3) respectively, u € H2(Q).
Then the second Strang’s Lemma (cf. [8], [13]) gives

aplu — Up, v
(2:8) lu—unlla <2 inf fu—uvplln+ sup (2B Un )
un€lh vnevirfo}  [[onlln

Now, we are in a position to bound the first term on the right hand of (2.8) firstly.

LEMMA 2.3. Under the above assumptions, we have

2.9 inf ||U — vplln < Chlulz,q.

VR EV}

Proof. By lemma 2.2, we have

1
3
inf {ju—vnlln < llu—Thulln = < > lu _TKUE,K)

VR EV)
KeJn

> D IID(u - Txu)llg k

KeTn |a|=1

= X Y e (hxihw2) D@ = Ta)l; 4

KeTn |a|=1

2
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<ol Y > h(hkahxa)l Dl 4
KeTn |a|=1
1
2
<O D0 Y D0 HID T Pulf
KeJn |a|=1|B8|=1
S Ch|u|2,9
a

REMARK 2.1. Recently, Cai, Douglas and Ye [9], [15] have proposed some new noncon-
forming midpoint-oriented four-node elements. Note that the associate interpolations have
the same properties as the rotated Q element.

REMARK 2.2. In order to overcome the deficiency of the interpolation of the rotated
Q1 element, reference [5] proposed a modified rotated Q1 element with the shape function
space P = span{1,&,n,&%} (cf. [6], [20]). However, the dissymmetry of the shape space

will influence the element geometrical inflexibility (cf. [14]).

3. Consistency error estimate on anisotropic rectangular meshes. In this section, we
will turn to the second term on the right hand of (2.8), i.e., the consistency error. The standard
technique of the consistency error estimate (cf. [8], [13]) is invalid under anisotropic meshes,
then we develop a new one for the estimate of the consistency error.

For any v € H'(K), we define

1
Pyjv = —/ vds, i=1,2,3,4.
|ll| l;

Then by Green’s formula we have

3.1

= > h+L+L+1].
KeJn

an(u — up,vp) = ap(u,vy) — (f,vn) Z Z / —Uhds
KEJ, iCOK
0 0
=> [/ —(vn —P01vh)(a—u - 016—u)dﬂ?
KeJn L y y
ou ou
+ vy, — Pysvp)(=— — Pozs—)dx
o= Pom) G = P
0 0
+ /lz(vh —Pozvh)(a—z 026_Z)dy
ou_p o

We will show that the conventional technique of nonconforming error estimate will be-
come invalid under the consideration of anisotropic meshes.
conventional method, by the trace theorem and the Bramble-Hilbert lemma, we will estimate

it as follows:

Oou
Li=|] —(vn - P i
1] “/ll (vn 01Uh)(6y 0

du
Oy

)dx

Take I; for example, in the
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< lon — Porvnllo,i, Ou_ Ola_uH
Oy oy llo,i,
= hthI_{é llon — pOlﬁh||07il ?)_Z B pm% |‘0,i1
< Chahidanly 52,

hK1 9 9 ’ ou
_ et (S s, 24
ChK2 hK || Uh”O,K 6:1] 1,K

lee|=1
When the regular assumption is satisfied, which yields % < C, then we can get
(3.2) [I1] < Chi|ula,kx |1,k

However, we do not have the regular assumption under anisotropic rectangular meshes.
On the contrary, we may have Z’;; — oo when hx — 0, and the desire convergence result
of (3.2) can not be obtained as usual. Thus it is more difficult for us to estimate nonconform-
ing error on anisotropic meshes. Now, let us turn to (3.1) again.

From the construction of the element we know that %L; is independent of y, hence

(vn — Porvn) (%, yx — his)

1 zx+hi1
= vp(z,yx — hk2) — St / . vp(t, yx — hio)dt
TK—NK1

1 Tx+hi1
- / [vn(2,yx — hi2) — vn(t,yx — hi2)] dt

2hk k—hk1
1 Tx+hi1 T th
(3.3) = ol /zx—hm (/t W(r, YK — th)dr) dt

1 T +hi1 z 5
= / / ﬂ(r, YK + hio)dr ) dt
QhKl rx—hK1 t 67‘
= (vp — Posvn) (2, yx + hx2)
= w(x).
It is easy to see that
1 zr+hx1 zr+hr1 pyx+hio
w@l <y [ [
dhgihia Jog i Jox—hxr Jyx—hxs

1 th 1
— < —2 .
s /K‘ 5 (évyy)‘dmdy < e Vhrihgz|veli,x

6’Uh

B (z,y)| dzdydt

34 <

i) Suppose u € H?(Q2), we modified (3.1) slightly,

ou ou
ah(u — uh,vh)z [/ —(Uh — vah)—dm + / (’Uh — Pog’l)h)—dx
Kezjh I 9y ls 9y
0 19}
(3.5) + /l2 (v, — Pozvh)a—Zdy - /14 (v, — P04Uh)6—1;dy

= Z [J1+J3+J2+J4].
KeJn
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Substituting (3.3) into J; + J3, we get

zr+hi1 b o
Ji+ J3= / w(x) [8—Z($;QK + hka) — 6—1;(33;311( — hk2)| dz

Kk —hk1

Tk +hi1 yk+hio 62u
(3.6) :/ w(zx) / 5dy| dz
zx—hK1 yk —hko Oy
A Tk +hi1

= / w(z)Q(x)dz.

k—hk1

A combination of (3.4) and (3.6) yields
3.7 Ji + J3 < Chiilul2,k|ve|1,k-
By the same argument, we can prove
(3.8) Jo + Js < Chislula,k|vn|1,k-
Then we have
(3.9) an(u — up,vp) < Chlulz.ollvn||n-
ii) Suppose u € H?(Q), we consider (3.1) again. Set v = g_Z’ there hold

1 Tx+hixi S
QhKl,/w ) (t o (ryyrx — th)dr)d

k—hk1

(3.10) v(z,yx — hk2) — Po1v =

and

1 Trk+hi1 z 9y
(3.11) U(-’E,yK + hK2) — Pysv = —(7‘, YK + th)dT' dt.
2hK1 rx—hK1 t 87’

Substituting the above two formulas and (3.3) into I; + I3, we get

1 Tx+hi1 Tzr+hi1 T /O
3.12) I I3 = — h
610 nt= g [T | [ ([ (G )

0
_O_Z(T’ YK — hK2)> dr) dt] dz

1 Tx+hki Tk +hk1 Yk +hio 62
/ w(z) / / / ry)drdy dt | dx
2hk1 Tk —hk1 Tk —hk1 yx —hKo

A1 zrx+hk1

= 2hK1/ . w(z)Q(z)d.
TK—NK1

Obviously,

dxdy S 2hK1.2\/ hthK2|'U|2,K

Q@< 2ha [ | 22 @)
S 20K - | 9z0y 'Y
(3.13) < 4hgi1Vhgihks|u|s k.

Substituting (3.4) and (3.13) into (3.12) gives

(3.14) Ji+ Js < Ch%
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Similarly,
(3.15) Jo + Jy < Chiey|uls k|vnl1 k-
Thus we have obtained
(3.16) an(u —up,vp) < Ch2|u|3,g||vh||h.

Then we can get the following anisotropic error estimate of the nonconforming rotated
Q; element.

THEOREM 3.1. Suppose u € H?(SY), under anisotropic rectangular meshes, we have
the following error estimates

(3.17) lu — unlln < Chlulz,a,  llu—urllo,o < CA®|ul20

If further assume u € H3(Q), the consistency error is of one higher order, i.e.,

(3.18) sup lan(u = un, vn)|

S C"L2|U|3,Q.
onE€Va\{0} llvalln

Proof. (3.18) is a direct consequence of (3.16). Substituting (2.9) and (3.9) into (2.8), we
can obtain the first identity of (3.17). By the usual dual argument as standard finite element
theory (cf. [8], [13]), we will get the second identity of (3.17). Then the proof is completed.
O

REMARK 3.1. The results of (3.17) can be applied to the nonconforming elements dis-
cussed in [5], [6], [9], [15], [18], [21], [23]. However, the result of (3.18) does not stand for
the midpoint-oriented elements proposed by [23].

4. Numerical experiment. In order to investigate the numerical behavior of the rotated
Q1 element under anisotropic rectangular meshes, we consider the second order problem
(2.1) with f(z,y) = —m(cos(nz) sin(my) + cos(my) sin(nz)) € L2(N), and Q = [0,1] x
[0, 1]. It can be verified that the exact solution of problem (2.1) is u(z, y) = sin(wz) sin(7y).
The meshes on 2 can be obtained in the following way, the edges of 2 parallel to z —
azis (y — axis resp.) are divided into n segments with n + 1 points (1 — cos(‘X))/2,i =
0,1,....,%,(1+ sm(% —2))/2,i =% +1,...,n(mresp.). The mesh obtained in this way
for 16 x 16 is illustrated in Fig 4.1. Note that the large aspect ratio meshes can be obtained

by adjusting the ratio value of - ( refer to Table 4.1 for the aspect ratio max he),
KeJn PX

In Table 4.1, we list the numerical results of the rotated Q1 nonconforming element,
here ei = % and eh = %, where Iru denotes the interpolation of the exact
solution. From the results of this table, we can see that the optimal energy norm error between
u and uy, is obtained under large aspect ratio meshes (strongly anisotropic meshes), while the
interpolation error is divergent in such case. These results show that the constant C' at the
right hand side of the interpolation error is dependent on the aspect ratio, while that of the
error of u and uy, is independent of the aspect ratio, which coincides with our theoretical
analysis.

For the sake of a comparison with the rotated Q; nonconforming element, we also have
computed the five-node element proposed by Han in [18]. The shape space is span{1,&,n,
J 9d€dn
oo : . . L
The results are listed in Table 4.2, from which we can see that both the interpolation error and
finite element error are of optimal order on anisotropic rectangular meshes.

£2,7n%}, and the degrees of freedom are {012, a3, 934, 014, 05 } on K, where 05 =
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FIG. 4.1. The anisotropic rectangular mesh for the case n = m = 16

TABLE 4.1
Numerical results of the rotated Q1 element

mXmn 2x2 | 2x8 | 2x32 | 2x128 2 x 512 2 x 1024
eh 1.92 1.98 2.04 2.04 2.04 2.04
el 1.84 3.49 15.24 68.80 303.67 633.91
max P | 141 | 1858 | 293.69 | 4695.56 | 75125.35 | 300500.71
KeTJy PK

5. Conclusions. This paper has been studied the convergence properties of the famous
rotated Q1 nonconforming element under anisotropic rectangular meshes. The interpolation
error in the discrete H' —norm is not convergent on anisotropic rectangular meshes. But this
does not influence the convergence of the rotated Q; element. From this paper we can see
that the interpolation error does not indicate the convergence of some elements. What’s more,
the techniques developed in this paper can be applied to other nonconforming elements.

The higher order of the consistency error estimate obtained in this paper is of interest in
the superconvergence analysis of nonconforming elements (cf. [10], [25]). In fact, combined
the result of this paper with ay, (u — Inu, vp) < Ch2|ul3 o||vs||n (If we can prove this!) yields
a superclose result ||Inu — up||p < Ch?|u|3.q. Some superconvergence results of the five-
node element proposed in [18] can be obtained in this way (will be addressed elsewhere).
However, the superconvergence of the rotated Q; element is still an open problem, which
will be a future work of us.
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