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ON THE WORST-CASE CONVERGENCE OF MR AND CG FOR
SYMMETRIC POSITIVE DEFINITE TRIDIAGONAL TOEPLITZ MATRICES

�
JÖRG LIESEN

�
AND PETR TICHÝ

�
Abstract. We study the convergence of the minimal residual (MR) and the conjugate gradient (CG) method

when applied to linear algebraic systems with symmetric positive definite tridiagonal Toeplitz matrices. Such systems
arise, for example, from the discretization of one-dimensional reaction-diffusion equations with Dirichlet boundary
conditions. Based on our previous results in [J. Liesen and P. Tichý, BIT, 44 (2004), pp. 79–98], we concentrate
on the next-to-last iteration step, and determine the initial residuals and initial errors for the MR and CG method,
respectively, that lead to the slowest possible convergence. By this we mean that the methods have made the least
possible progress in the next-to-last iteration step. Using these worst-case initial vectors, we discuss which source
term and boundary condition in the underlying reaction-diffusion equation are the worst in the sense that they lead
to the worst-case initial vectors for the MR and CG methods. Moreover, we determine (or very tightly estimate) the
worst-case convergence quantities in the next-to-last step, and compare these to the convergence quantities obtained
from average (or unbiased) initial vectors. The spectral structure of the considered matrices allows us to apply our
worst-case results for the next-to-last step to derive worst-case bounds also for other iteration steps. We present a
comparison of the worst-case convergence quantities with the classical convergence bound based on the condition
number of � , and finally we discuss the MR and CG convergence for the special case of the one-dimensional Poisson
equation with Dirichlet boundary conditions.
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analysis, tridiagonal Toeplitz matrices, Poisson equation

AMS subject classifications. 15A09, 65F10, 65F20

1. Introduction. This paper is concerned with the convergence analysis of Krylov sub-
space methods for solving linear algebraic systems of the form�����	��

(1.1)

with a symmetric positive definite matrix
�
���������

, and a right hand side vector
�������

.
We obviously assume ����� . Starting from an initial guess

���
, Krylov subspace methods

compute the initial residual � �����! "�#�$� , and a sequence of approximate solutions (iterates)��%&
'�)(&
+*,*,*
, such that the - th residual �/. �0�# 1�#� . and the - th error 23. �4�" 1� . are of the

form � . �65 .87 ��9 � �:
 2 . �;5 .'7 �<9 2 �=
>5 . �"? . 

where

? . denotes the set of polynomials of degree at most - and with value one at the ori-
gin. Two choices of conditions for determining the polynomials

5 . have emerged as de facto
standards.

In the minimal residual (MR) Krylov subspace method, the polynomial is chosen so that
the Euclidean norm ( @BAC@ � 7 A�DEA 9 %GFG( ) of the residuals is minimized,@H�+.I@ �KJMLONP3QSR/T @ 5 7 �<9 � � @ (MR)

*
(1.2)

There are several algorithms for implementing the MR method that try to exploit as much
as possible from the properties of

�
. Examples are the conjugate residual (CR) method [18]U
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for symmetric positive definite
�

, the minimal residual (MINRES) method [17] symmetric
and nonsingular

�
, and the generalized minimal residual (GMRES) method [19] for general

nonsingular
�

.
In the orthogonal residual Krylov subspace method, the - th iterate

� . is determined
such that the - th residual �V. is orthogonal to all previous residuals � � 
+*,*,*+
 �V.XW % . A par-
ticular implementation for symmetric positive definite matrices

�
is the conjugate gradi-

ent (CG) method [8]. The symmetric positive definite matrix
�

defines a norm (
�

-norm,@BAC@HY � 7 A D � A 9 %GF8( ) in which the errors are minimized,@,2 . @HY �KJMLONP3QSR T @ 5 7 ��9 2 � @,Y (CG)
*

(1.3)

The standard approach to analyze (1.2) and (1.3) is to exclude the influence of � � and 2 � ,
and hence to consider the worst-case convergence instead of the convergence for the particular
initial vectors. It is well known [4, 6, 9] that the (attainable) worst-case convergence quantities
are given byJ[Z&\]_^/`a � JbLcNP3QSR/T @ 5 7 �<9 � � @@H� � @ �dJ[Z3\ef^/`a � JMLcNP3QSR/T @ 5 7 �<9 2 � @HY@,2 � @ Y �KJMLONP3QSR/T J[Z3\gih 5 7kj g 9 h 
(1.4)

where j g , l � � 
+*,*+*H
 � , are the eigenvalues of
�

. The rightmost term in (1.4) depends in a
nonlinear way on the eigenvalue distribution, and no explicit solution for this min-max ap-
proximation problem is known in general. Therefore, to analyze the worst-case convergence
of the MR and CG methods one needs to estimate this min-max value. Such estimation can
be based either on a suitable superset of the eigenvalues, or a suitable subset, where the first
choice leads to an upper and the second to a lower bound on the worst-case convergence.

The standard choice of a superset of the discrete set of matrix eigenvalues is their convex
hull m j$npo q 
 j$npr's/t . Using scaled and shifted Chebyshev polynomials of the first kind on this
interval, one can show the classical boundJMLONP3QSR T J[Z3\g h 5 7kj g 9 hvudw x�y z 7 �<9p �y z 7 �<9!{ ��| . 
(1.5)

where
z 7 �<9�� j nprGs~} j npo q is the condition number of

�
; see, e.g., [5, Theorem 3.1.1]. Be-

cause of (1.4), the term on the right hand side of (1.5) represents a bound on the relative
residual norm @H�V.8@ } @B� � @ for MR and the relative

�
-norm of the error @H2&.G@ Y } @,2 � @ Y for CG

for each initial residual � � and each initial error 2 � , respectively. The bound (1.5) is particu-
larly useful in practical applications when only partial information about the spectrum of

�
is available or can be estimated. But one should be aware that this bound is obtained from
a different kind of approximation problem than the one solved by the MR and CG methods
(worst-case rather than for a specific � � or 2 � , and continuous rather than discrete), and hence
that it might provide misleading information about the actual convergence of these methods;
see [12] for more details and references.

To obtain a lower bound on the worst-case convergence one can in principle consider
any subset of the eigenvalues. As shown in [4, 13], for each subset of exactly - { � distinct
eigenvalues �+� %/
,*+*,*+
 �C.c� %V��� � j %3
+*,*,*,
 j � � ,JMLONP3QSR T J[Z3\g h 5 7�j g 9 hb� JMLONP3QSR T J[Z3\g h 5 7 � g 9 h � ��� .c� %�� a % .O� %� ���������&� h ��� hh ���  � � h��,�� W % *(1.6)
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Apparently, for each choice of - { � distinct eigenvalues � % 
+*,*,*+
 � .c� % , the right hand side of
(1.6) represents an explicit lower bound on the worst-case convergence quantities. Moreover,
in our case of real eigenvalues, there exists a subset of - { � eigenvalues, for which the lower
bound (1.6) is attained. Therefore, if the subset of - { � eigenvalues is properly chosen, one can
obtain a very good convergence estimate. Since this estimate of the worst-case convergence
requires precise knowledge about at least some eigenvalues of

�
, its main use is in the analysis

of model problems, where the eigenvalues are known explicitly.
In this paper we consider such a class of model problems, namely the linear systems with

symmetric positive definite tridiagonal Toeplitz matrices
�

. Such systems arise, for example,
in the discretization of one-dimensional reaction-diffusion equations. We focus on the slow-
est possible convergence of the MR and CG methods. By this we mean the situation when the
worst-case convergence quantity is attained in the next-to-last iteration step. For this step the
only possible subset �V� %V
,*+*,*+
 �C.c� %/� of the eigenvalues of

�
to be chosen in (1.6) is the set

of all distinct eigenvalues of
�

, so that the solution of the min-max approximation problem
is known explicitly. Based on our previous results in [13], we determine the worst possible
initial data, i.e. the vectors �&�� and 2/�� leading to the slowest possible convergence of the MR
and CG method, respectively. Knowing the initial vector 2S�� explicitly, we identify source
terms and boundary conditions in the one-dimensional reaction-diffusion equation that yield,
after discretization, the slowest possible CG convergence. We also address the identification
of such data for the MR method, which appears to be considerably more complicated than
for CG. Moreover, we determine (or very tightly estimate) the worst-case convergence quan-
tities in the next-to-last step, and compare these to the convergence quantities obtained from
average (or unbiased) initial residuals as well as the classical convergence bound (1.5). The
spectral structure of the considered matrices allows us to apply our worst-case results for the
next-to-last step to derive worst-case bounds also for other iteration steps. Finally, we con-
sider the case of one-dimensional Poisson equation, which is a popular model problem for the
convergence analysis of Krylov subspace methods, in particular of CG; see, e.g., [1, 2, 15, 16].

We point out that the convergence of GMRES for nonsymmetric tridiagonal Toeplitz
matrices is studied in [10]. The results in [10] hold explicitly for the highly nonnormal case,
i.e. the case when a tridiagonal Toeplitz matrix can be considered a perturbed Jordan block.
Hence the results presented in this paper are neither special cases nor generalizations of the
results in [10].

The paper is organized as follows. Section 2 presents basic formulas for the next-to-last
MR and CG iteration step. In Section 3 we focus on symmetric positive definite tridiago-
nal Toeplitz matrices that arise from the discretization of one-dimensional reaction-diffusion
equations with Dirichlet boundary conditions, and study the MR and CG convergence quanti-
ties in the next-to-last step. Section 4 compares our results with known results for the Poisson
equation model problem. Our conclusions are given in Section 5, and the Appendix lists all
trigonometric formulas used in the proofs.

2. Formulas for the next-to-last MR and CG iteration step. Let a symmetric positive
definite matrix

�������)���
be given and denote by

��� ��¡¢� D its eigendecomposition,
where

� D ���¤£ and
¡���¥�L¦Z&§ 7�j % 
,*,*+*,
 j � 9 . To avoid unnecessary technical complications

we assume that all eigenvalues of
�

are distinct. Next, we parameterize the initial residual � �
and the initial error 2 � by� �¨�>� mª© % 
,*+*,*H
 © � t D 
 2 ���>� m « % 
+*,*+*,
 « � t D *(2.1)

Note that, since � � �¬� 2 � , we have © g � j g « g for all l � � 
,*+*,*H
 � . Without loss of
generality we restrict our analysis to vectors � � with © g®­�°¯ for all l � � 
,*,*+*H
 � . In case
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WORST-CASE CG AND MR CONVERGENCE 183± � � coordinates © � are zero, the corresponding eigencomponents do not play any role, and
hence the formulas for - � �  � presented below will hold for - � �  ±  � .

2.1. General results. As shown in [13, Theorem 2.1], the MR residual norm in the7 �  � 9 st (next-to-last) iteration step is given by@H�&²=³� W % @ � �� ��� a %�´´´´~µ �© � ´´´´
( �� W %'F8( � �� ��� a %�´´´´¶µ �j � « � ´´´´

( �� W %GF8( 
(2.2)

where

µ g¨·
�� ���¸��8��~¹ h j � hh j �  j g h *(2.3)

To obtain a similar result for the
�

-norm of the CG error, it suffices to realize that@ 5 7 ��9 2 � @,Y � @ 5 7 �<9'� %GFG( 2 � @ · @ 5 7 �<93º� � @ *(2.4)

Hence the
�

-norm of the CG error can be seen as the MR residual norm, when MR is started
with the initial residual

º� � �»� %GF8( 2 � . Parameterizing
º� � by

º� � ��� m º© %3
,*,*+*,
¸º© � t�D , i.e.
º© g �j �k¼¾½g « g � j W �k¼¾½g © g , we obtain@,23¿�À� W % @,Y � �� ��� a % ´´´´´ µ �j %GF8(� « � ´´´´´

( �� W %GFG( � �� ��� a % ´´´´´ j
%GF8(� µ �© � ´´´´´

( �� W %GFG( *(2.5)

The formulas (2.2) and (2.5) provide explicit a priori information about the next-to-last MR
and CG convergence quantities in terms of the matrix eigenvalues and the coordinates of � �
or 2 � in the matrix eigenvectors. To simplify the notation, we will write residuals and errors
without superscript MR or CG. When we speak about residuals � . , we always mean residuals� ²=³. of the MR method. Similarly, 2 . always denotes the error 2 ¿¸À. of the CG method. The
superscript can be now used to indicate the association of a residual or error with a particular
initial residual or error.

2.2. Convergence quantities for different initial vectors. As described in the Intro-
duction, we are interested in initial residuals and initial errors that lead to the maximal relative
convergence quantities of the MR and CG method, respectively, in the next-to-last iteration
step. We denote such a worst-case initial residual for the MR method by � �� , and the corre-
sponding residual in the next-to-last step by �S�� W % . In [13, Theorem 3.1] we show that� �� ��� mª© � % 
,*+*,*+
 © �� t D 
 h © � g h ( �dÁ µ g 
 l � � 
,*+*,*H
 � 
(2.6)

where
Á � ¯ is any scaling factor, and that@B�3�� W % @@B� �� @ ��J[Z&\] ^ `a � JMLcNP3QSR/Â3Ã � @ 5 7 ��9 � � @@B� � @ � x ��g a % µ g |

W % *
(2.7)

Using the relation (2.4) and the definition of �&�� it is not hard to see that the corresponding
worst-case initial error 23�� for CG is given by2 �� �¨� m « �% 
+*,*+*,
 « �� t D 
 h « �g h ( �ÄÁ j W %g µ g for l � � 
,*,*+*H
 � 
(2.8)
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where
Á � ¯ is any scaling factor, and that@H2/�� W % @ Y@H2 �� @,Y ��J[Z3\ef^3`a � JMLcNP3QSRVÂ&Ã � @ 5 7 ��9 2 � @ Y@H2 � @,Y � x ��g a % µ g |

W % *
(2.9)

We also consider the initial residual�3Å� �Æ� mª©/Å% 
,*+*,*H
 ©/Å� t D 
 ©3Åg � � 
 l � � 
,*+*,*H
 � *(2.10)

The vector � Å� can be considered as a representative of the initial residuals which are uncor-
related with the matrix

�
, in the sense that their components in the eigenvectors of

�
are

of (approximately) equal size. We call such vectors unbiased with respect to
�

. The MR
method started with the initial residual (2.10) will produce, in the next-to-last iteration step,
the residual vector � Å� W % . Using (2.2), the relative MR residual norm is given by@H� Å� W % @@H� Å� @ � x � ��g a % µ

( g | W %GF8( *(2.11)

The CG method started with the initial residual � Å� , i.e. with the initial error2 Å� �>� W % � Å� �>� m « Å% 
,*,*+*,
 « Å� t D �Ç� m j W %% 
,*,*+*H
 j W %� t D 
(2.12)

generates in the next-to-last iteration step the error 2 Å� W % . Based on (2.5), the relative
�

-norm
of this error is given by@H2 Å� W % @ Y@H2 Å� @HY � x ��g a % j g µ

( g | W %GF8( x ��g a % �j g | W %GF8( *(2.13)

The vector 2 Å� is by its definition correlated with the eigenvalue distribution of
�

and thus
can be considered biased. We have deliberately made this choice to contrast the convergence
quantities of MR and CG for the same initial residual.

3. Symmetric positive definite tridiagonal Toeplitz matrices. Consider the one-dim-
ensional reaction-diffusion equation ÉÈ)Ê Ê 7ÌË 9C{1Í�È 7ÌË 9���Î 7�Ë 9H
 Ë � 7 ¯Ï
 � 9B
(3.1)

for some parameter
Í � ¯ , with Dirichlet boundary conditionsÈ 7 ¯~9��ÐÈ � 
ÑÈ 7 � 9��ÐÈ�%�*(3.2)

Then for each positive integer � , the central finite difference approximation of (3.1)–(3.2) on
the uniform grid lÏÒ , l � � 
,*+*,*H
 � , Ò � 7 � { � 9 W % , leads to a linear system of the formÓÔÔÔÔÕ w 7 � {®Ö&9× � � . . . . . .

. . . . . .
 � � w 7 � {®Ö&9

ØªÙÙÙÙÚÛ ÜBÝ Þ�
�ß� Ò ( ÓÔÔÔÔÕ Î 7 Ò 9

...

...Î 7 �EÒ 9
ØªÙÙÙÙÚ {

ÓÔÔÔÔÕ È)�ÈC%
ØªÙÙÙÙÚÛ ÜBÝ Þ�
*

(3.3)
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In the expression for
�

we have defined
Ö · Í Ò ( } w for notational convenience.

The � distinct and positive eigenvalues j g , and the normalized eigenvectors à g of
�

are
given byj g � w 7 � {®Ö&9� w�á g � w Öâ{1ã:äGLON ( 7 l ? Ò } w 9�
 á gå·�æHç ä 7 l ? Ò 9�
(3.4) à g � 7 w Ò 9 %GF8( m ä'LcN 7 l ? Ò 9�
8ä'LcN 7 w l ? Ò 9�
,*,*+*H
GäGLcN 7 �El ? Ò 9 t D 
 l � � 
+*,*,*,
 � 
(3.5)

cf., e.g., [20, pp. 113–115]. We write the eigendecomposition of
�

as
�è�0�é¡¢� D , where��� m à %&
,*,*+*H
 à � t , and

¡®��¥�L¦Z&§ 7�j %&
,*+*,*,
 j � 9 .
REMARK 3.1. We have chosen to derive our results for the tridiagonal Toeplitz ma-

trix
�0��ê8ëGL¦¥�L¦Z&§ 7  � 
 w 7 � {ìÖ&9H
, � 9 in (3.3) because of its direct relation to the differential

equation (3.1)–(3.2). However, our results hold equally well for any symmetric tridiagonal
Toeplitz matrix of the form í �Äê8ëGL¦¥�L¦Z&§ 7Xî 
8ï:
 î 9 with

ïð� w$h î h 7 � {ðÖ&9 � ¯ , for some
Ö � ¯ .

Obviously, í � h î h ê8ëGL¦¥�L¦Z&§ 7Xî } h î h 
 w 7 � {®Ö&9B
 î } h î h 9 . If îòñ ¯ , then í � h î h � , and if î � ¯ ,
then í � h î h £�ó���£�ó , where

£�óô��¥�LcZS§ 7 � 
, � 
,*+*,*H
 7  � 9'� � % 9 . In either case,
�

and í have
the same set of orthogonal eigenvectors, and the eigenvalues í coincide with those of

�
up

to a scaling by h î h . It is easy to check that all of our results are invariant under such scaling
of the eigenvalues of

�
.

3.1. Connection with Chebyshev polynomials of the second kind. The relation of the
eigenvalues of

�
given in (3.4) to the roots of the � th Chebyshev polynomial of the second

kind, denoted by õ � 7ÌË 9 , will prove useful in our context. The polynomial õ � 7�Ë 9 has degree� , and its � distinct roots are the values á g � æHç ä 7 l ? Ò 9 , l � � 
,*+*,*H
 � . Hence all roots are
contained in the open interval 7  � 
 � 9 . The leading coefficient of õ � 7ÌË 9 is w � , which means
that õ � 7�Ë 9 can be written as õ � 7ÌË 9�� w � ��g a % 7ÌË  á g 9�*
This relation shows that the product of all eigenvalues of

�
can be expressed as��g a % j g � w � ��g a % 7 � {®Ö� á g 9ö� õ � 7 � {®Ö&9�*(3.6)

Below we study how much the MR and CG convergence quantities change with changingÖ
. For this we first need to understand the behavior of õ � 7 � {¨Ö&9 as a function of

Ö � ¯ .
To get a feeling of the growth of õ � 7ÌË 9 outside the interval 7  � 
 � 9 , we use the alternative
representation õ � 7ÌË 9�� �w 7�Ë {�÷ Ë (  � 9_� � %  7�Ë  1÷ Ë (  � 9_� � %÷ Ë (  � 

(3.7)

see, e.g., [14, p. 15]. Using this formula, elementary real analysis shows thatõ � 7 � 9:� h õ � 7  � 9 h � � { � 

and that õ Ê� 7ÌË 9 � ¯ for Ë � � . In particular, õ � 7 � {®Ö&9 is positive and strictly increasing forÖ � ¯ . As shown by (3.7), h õ � 7ÌË 9 h grows exponentially outside 7  � 
 � 9 . This is illustrated in
Fig. 3.1, where we plot õ � 7ÌË 9 } 7 � { � 9 for � ��ã$
Gø$
 � ¯ .
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FIG. 3.1. ù$ú�û¦ü,ýÌþ+ûcÿ����Gý for different ÿ .

3.2. Worst-case data. Our goal here is to characterize data (source term
Î

and boundary
conditions) in (3.1)–(3.2), that lead to the maximal relative convergence quantities in the
next-to-last step when MR and CG with the initial guess

�����Ð¯
are applied to the discretized

system (3.3). Our main tools are the parameterizations (2.6) and (2.8) of the worst-case initial
vectors �3�� and 2/�� , which we evaluate explicitly using the known eigendecomposition of

�
,

and then translate back into data for (3.1)–(3.2). The vectors �3�� and 2/�� depend on the terms

µ g , which are characterized by the following lemma.

LEMMA 3.2. Suppose that j % 
+*,*+*H
 j � are given by 7 3.4
9

for some
Ö � ¯ . Then µ g as

defined in 7 2.3
9

satisfies

µ g � Ò�õ � 7 � {®Ö&9
ä'LcN ( 7 l ? Ò 9Ö { w äGLON (�� g R��(�� *(3.8)

In particular, for
Ö ��¯

,

µ g � w æHç ä (
	 l ? Òw�� *(3.9)

Proof. The denominator of µ g can be written as�� ������G���¹ h j �  j g h � �� ���¸��G��~¹ h w�á g  w�á � h � w ( � W ( �� ������G���¹ ´´´´ äGLON ( 	�
 Ò ?w��  öäGLON ( 	 lÏÒ ?w�� ´´´´� � { �w äGLON ( 7 l ? Ò 9 
(3.10)

cf. identity (A.1). According to (2.3), (3.6) and (3.10),

µ g � õ � 7 � {®Ö&9j g � w äGLcN ( 7 l ? Ò 9� { � � Ò<õ � 7 � {®Ö&9 ä'LcN ( 7 l ? Ò 9Öâ{ w äGLON ( � g R��(�� *(3.11)
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The relation (3.9) for
Öé��¯

follows immediately from õ � 7 � 9�� � { � � Ò W % and
äGLON 7 l ? Ò 9��w äGLON 7 l ? Ò } w 9 æ,ç ä 7 l ? Ò } w 9 .

Now consider the parameterization of 2 �� given in (2.8). Clearly, for any
Á � ¯ , the set

of coefficients « �g · � Á j W %g µ g �
%GFG( 
 l � � 
+*,*,*,
 � 
(3.12)

leads to a worst-case initial error 23�� � � m «&�% 
+*,*,*+
 «&�� t¦D for CG. If CG is started with initial
guess

� � ��¯
, then 2/�� represents the solution, and

� 23�� the right hand side of a linear system
that leads to the maximal relative

�
-norm of the error in the next-to-last iteration step.

Using the coefficients (3.12), and the explicit form of µ g in (3.11),j g « �g � j g 	 Á j W %g õ � 7 � {®Ö&9j g � w äGLON ( 7 l ? Ò 9� { � � %'F8(� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GF8( ä'LcN 7 l ? Ò 9�

and, therefore, � 2 �� � 7 �é¡â� D 9 7 � m « �% 
+*,*,*,
 « �� t D 9�Æ� m j % « �% 
,*,*+*,
 j � « �� t D� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GFG( � m äGLON 7 ? Ò 9H
,*+*,*,
8ä'LcN 7 � ? Ò 9 t D� 7 Á w Ò<õ � 7 � {1Ö&9G9 %GFG( � 7 w Ò 9 W %'F8( à %� 7 Á õ � 7 � {®Ö&9'9 %'F8( mO� 
G¯$
,*+*,*H
8¯ t D *(3.13)

Since
Á � ¯ can be chosen arbitrarily, we conclude that any right hand side vector

�
that is

a positive multiple of the first unit vector leads to the worst possible relative
�

-norm of the
error in the next-to-last step of CG (with

� � ��¯
) for the linear system

�#� �Æ�
given by (3.3).

The convergence of CG (with
� � � ¯

) for
���ò�è�

is obviously the same as for
�#�®�° ��

,
and therefore any negative multiple of the first unit vector is a worst-case right hand side in
the just described sense as well.

Instead of the coefficients (3.12) we may define« �g · 7  � 9 g � % � Á j W %g µ g �
%GF8( 
 l � � 
+*,*+*H
 � *(3.14)

Then, using 7  � 9 g � % äGLON 7 l ? Ò 9:�ÐäGLcN 7 �El ? Ò 9 , we obtainj g « �g � 7 Á w Ò<õ � 7 � {®Ö&9'9 %GFG( äGLcN 7 �El ? Ò 9�*
A computation analogous to the one leading to (3.13) shows that, for the initial error 23��
defined by the coefficients (3.14),� 2 �� � 7 Á õ � 7 � {®Ö&9G9 %'F8( m ¯Ï
,*+*,*H
8¯Ï
 � t D 
(3.15)

i.e., any nonzero multiple of the � th unit vector also is a worst-case right hand side for CG.
Both examples show that the right hand sides leading to the very unfavorable conver-

gence behavior of CG may look rather unsuspicious at first sight. In terms of the differential
equation (3.1)–(3.2), the worst possible relative

�
-norm of the next-to-last error in CG (for� � ��¯

) is obtained simply byÎ"�Ð¯
and

È � ���3
!ÈC% �Ð¯$

or

È � �Ð¯$
!ÈC%â����

(3.16)
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for any nonzero constant
�
.

As shown in (2.4), CG for the initial error 23�� defined by (3.12) is equivalent to MR for
the initial residual

� �k¼¾½ 2/�� that can be written in the form� %GF8( 2 �� ��� W %GF8( � 2 ��� 7 Á õ � 7 � {®Ö&9'9 %GF8( � W %'F8( mª� 
G¯Ï
+*,*+*H
G¯ t D� 7 Á õ � 7 � {®Ö&9'9 %GF8( �é¡ W %GFG( à % *
Therefore, any nonzero multiple of the vector � �� · �é¡ W %GF8( à % leads to the worst-case rel-
ative residual norm in the next-to-last MR step. Obviously, the coordinates of �~�� in the
eigenvectors of

�
are given by© � g � m w Ö {òã:äGLcN ( 7 l ? Ò } w 9 t W %'F8( äGLON 7 l ? Ò 9B
 l � � 
,*+*,*H
 � *(3.17)

Because of the complicated form of the ©S�g , no simple expression for the vector �&�� �� mª©/�% 
,*+*,*H
 ©/�� t¦D exists in general. An exception for which �&�� can be found in a relatively
simple form is the case

Ö �å¯
, where ©&�g � æHç ä 7 l ? Ò } w 9 , and the



th entry of �3�� , denoted by�3���� � for


 � � 
,*+*,*H
 � , satisfies� ���� � � 7 w Ò 9 %GF8( äGLON 7 
 ? Ò 9æHç ä � R��(��  æ,ç ä 7 
 ? Ò 9 *(3.18)

As (3.18) indicates, for MR it is not as straightforward as for CG to find data for (3.1)–(3.2)
that leads to the worst case in the next-to-last step. For more details and a proof of (3.18) we
refer to [11].

3.3. Worst-case and unbiased convergence quantities. After having characterized the
worst-case initial vectors �&�� and 2/�� for the system (3.3), we next evaluate the corresponding
convergence quantity (2.7) and compare it to the quantities (2.11) and (2.13) resulting from
the initial vectors � Å� and 2 Å� . We start with deriving bounds on (2.7) and (2.11).

THEOREM 3.3. Suppose that MR is applied to a system of the form 7 3.3
9
, and the initial

residual is either �&�� or � Å� . Then� W % w {®Öõ � 7 � {1Ö&9 ñ @B� Å� W % @@B� Å� @ ñ @H�3�� W % @@H� �� @ u � w {®Öõ � 7 � {1Ö&9 *(3.19)

In particular, for
Ö ��¯

,���� w� ñ � w� � (  � � @B� Å� W % @@B� Å� @ ñ @H�/�� W % @@H� �� @ � �� *(3.20)

Proof. We first prove (3.19). The middle inequality is trivial. To show the leftmost
inequality it suffices to use the relation (2.11) and to find an upper bound on the sum of the

µ
( g . Using (3.8) and (A.4),��g a % µ

( g u õ (� 7 � {®Ö&97 � { � 9 ( 7�� ( { � 9 ( ��g a % äGLON�� 7 l ? Ò 9ã:äGLON�� � g R��(��� � ø õ (� 7 � {1Ö&97 � { � 9 ( 7 Ö#{ w 9 ( ��g a % æ,ç ä � 	 l ? Òw��� 7 ø �  w 9 õ (� 7 � {1Ö&97 � { � 9 ( 7 Ö#{ w 9 ( *
(3.21)
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Then (2.11) impliesx � ��g a % µ
( g | W %'F8( � 7 � { � 9 7 Ö#{ w 9y 7 ø �  w 9 ��õ � 7 � {1Ö&9 � �� Ö#{ wõ � 7 � {®Ö&9 *

Next note that, using (A.3),��g a % µ g � õ � 7 � {1Ö&9Ö#{ w ��g a % äGLcN ( 7 l ? Ò 9� { � � �w õ � 7 Ö { � 9Ö#{ w �� { �� �� õ � 7 Ö { � 9Ö { w 

(3.22)

and thus the rightmost inequality in (3.19) follows from applying (3.22) to (2.7).
For

Ö ��¯
we have ��g a % µ g � w

��g a % æHç ä ( 	 l ? Òw�� � � 
(3.23)

cf. (A.3), and ��g a % µ
( g � õ (� 7 � 97 � { � 9 ( ��g a % äGLcN!� 7 l ? Ò 9ã:äGLcN�� � g R��( ��Çã ��g a % æHç ä � 	 l ? Òw�� � � �  �w 


(3.24)

cf. (A.4). Substituting (3.23) and (3.24) into (2.7) and (2.11), we obtain (3.20).

Since @B�3�� W % @ } @B�3�� @ � @H2/�� W % @HY } @H2/�� @HY (compare (2.7) and (2.9)) the theorem also
characterizes @,2/�� W % @HY } @H2/�� @HY , the next-to-last worst-case relative

�
-norm of the error for

CG.
The rightmost equation in (3.20) shows that, for

Öb�¤¯
, MR in the worst case decreases

the relative residual norm in the first �  � iteration steps only to � W % . On the other hand,
since @H�3�� W % @ } @H�/�� @
" 7 � {ÄÖ&9 } õ � 7 � {ÄÖ&9 for all

Ö
, the next-to-last worst-case MR residual

norm decreases exponentially with increasing
Ö
, and hence increasing diagonal dominance of�

. Moreover, Theorem 3.3 shows that the progress MR has made in the next-to-last iteration
step for the unbiased initial residual � Å� is at most a constant factor (less than � }$# ) apart from
the worst case. In general the two cases may differ by a factor of up to � %'F8( ; see [13, Section
5], [7, Section 5].

The spectral structure of
�

allows to use the worst-case convergence result for the next-
to-last step in Theorem 3.3 to obtain a worst-case convergence bound also for other iteration
steps.

COROLLARY 3.4. Suppose that the positive integer % divides � { � . Then for all- · 7 � { � 9 } %  w �å� ,J[Z3\] ^ `a � JMLcNP3QSR T @ 5 7 �<9 � � @@H� � @ ��J[Z3\e ^ `a � JMLcNP/QSR T @ 5 7 ��9 2 � @ Y@,2 � @HY � � W % w {1Öõ .c� % 7 � {1Ö&9 *(3.25)
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Proof. Consider the subset �+� % 
,*,*+*,
 � .O� % � � � j % 
,*+*,*H
 j � � of - { � eigenvalues of
�

given by � � � w 	 � {®Ö� æ,ç ä � 
 ?- { w � � 
 
 � � 
,*,*+*H
 - { � *
It is easy to see that the set �+� %3
,*+*,*,
 �C.O� %V� consists of the - { � distinct eigenvalues of� .c� % · êGë8L¦¥�LcZS§ 7  � 
 w 7 � {®Ö&9B
, � 9¢�¶�'& .c� % ( �)& .c� %*( . ThenJ[Z3\] ^ `a � JMLcNP3QSR T @ 5 7 �<9 � � @@H� � @ �KJbLcNP3QSR T JMZ&\g h 5 7kj g 9 h� JbLcNP3QSR/T JMZ&\g h 5 7 � g 9 h��J[Z3\]_^V`a � JMLcNP/QSR T @ 5 7 � .O� %,9 � � @@H� � @� � W % w {1Öõ .c� % 7 � {1Ö&9 

where the final lower bound results from applying Theorem 3.3 to the linear system with� .c� % .

For example, in case � � #�# , the lower bound (3.25) would apply in the steps - �w 
,+Ï
 � +Ï
 w � 
'ã�+$
 # + . Hence in addition to just the lower bound on @B�S�� W % @ } @B�3�� @ in (3.19),
which corresponds to (3.25) for - � �  � , we get additional lower bounds particularly for
the earlier phase of the iteration.

Theorem 3.3 does not characterize (2.13), i.e. the case of CG for the initial error 2 Å� . This
is done in the following result.

THEOREM 3.5. Suppose that CG is applied to a system of the form (3.3), and the initial
error is 2 Å� . Then � W % Öõ � 7 � {1Ö&9 ñ @,2 Å� W % @ Y@,2 Å� @ Y ñ � w {1Öõ � 7 � {®Ö&9 *(3.26)

For
Ö ñ � } ã , � W % Ö#{ w� %'F8( õ � 7 � {®Ö&9 ñ @,2 Å� W % @HY@H2 Å� @ Y 


(3.27)

and for
Öé��¯

, @,2 Å� W % @HY@H2 Å� @ Y � ÷ øy � 7 � { � 9 7 � { w 9 ��� W)- F8( *(3.28)

Proof. The second inequality in (3.26) follows easily from (3.19). We prove the first
inequality. Using Cauchy’s inequality we obtain, cf. (2.13),@,2 Å� @ (Y@,2 Å� W % @ (Y u x ��g a % µ � g |

%GF8( x ��g a % j ( g | %GFG( x ��g a % �j g | *(3.29)
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Since j � is the largest eigenvalue,x ��g a % j ( g | %'F8( x ��g a % �j g | ñ � %GF8( j � x ��g a % �j g | ñ � - F8( j �j %� � - F8( � {®Ö#{ á %� {®Ö� á %ñ � - F8( w {®ÖÖ *
(3.30)

It remains to find a bound on the sum of the µ � g . Using (3.8) and (A.5),��g a % µ � g u õ �� 7 � {®Ö&97 � { � 9 � 7 �( { � 9 � ��g a % ä'LcN�. 7 l ? Ò 9w � äGLcN . � g R��(��� w . õ �� 7 � {®Ö&97 � { � 9 � 7 Öâ{ w 9 � ��g a % æHç ä . 	 l ? Òw��ñ � � ��õ �� 7 � {®Ö&97 � { � 9 � 7 Öâ{ w 9 � *(3.31)

From (3.29)–(3.31) we now obtain (3.26).
Now consider the case

Ö ñ � } ã . Thenx ��g a % j ( g | %GF8( ��g a % �j g � x ��g a % 7 � {1Ö< á g 9 ( | %GF8( ��g a % �� {1Ö< á gñ x ��g a % 70/ } ãé á g 9 ( | %'F8( ��g a % ��  á g� 	 ���� ø �  �w1� %'F8( ��g a % �w äGLcN (2� g R��( �ñ 	 � ø� ø � � %GFG( � 7 � { w 9�� � %GFG( � 7 � { w 9wñ � %GFG( 7 � { � 9 (w 

(3.32)

where we have used the identities (A.7) and (A.8). Then (3.27) follows from (3.29), (3.31)
and (3.32).

For
Ö ��¯

,@H2 Å� @ (Y@H2 Å� W % @ (Y � x ��g a % ã=ä'LcN (
	 l ? Òw�� ã æ,ç ä*� 	 l ? Òw�� | x ��g a % �ã:äGLON ( � g R��( � |� 7 � { � 9 	 � 7 � { w 9ø � 

where we have used (A.6) and (A.7).
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A comparison of Theorems 3.3 and 3.5 shows that, for small
Ö
,

(MR)
@B� Å� W % @@B� Å� @ "Ç� %'F8( @,2 Å� W % @,Y@,2 Å� @ Y (CG)

*
For larger

Ö
, this difference is much less pronounced, and these MR and CG quantities are at

most a small constant apart from each other.

3.4. Comparison of the worst-case bound and the classical bound. We next compare
our worst-case convergence results in Theorem 3.3 with the classical convergence bound
(1.5), JMLcNP/QSR/T J[Z3\g h 5 7�j g 9 h u�w�3 . 
 - �Ð¯$
,*,*+*H
 �  � 
(3.33)

where 3 · 7 y z 7 ��9� � 9 } 7 y z 7 �<9E{ � 9 ñ � , for - � �  � .
For our comparison we express õ � 7 � {öÖ&9 in terms of the condition number of

�
, which

is given by
z 7 �<9:� j � } j % . First note that, by (3.4),� {®ÖÆ� á % j � { j %j �  j % � á % z 7 �<9E{ �z 7 �<9� � · á %)4 *

Next, 4  y 4 (  � � y z 7 ��9� �y z 7 ��9E{ � · 3 
 4 { y 4 (  � � 3 W % 
(3.34)

which, inserted into (3.7), yieldsõ � 7 4 91� 3 � � %  3 W &O� � %*(3  3 W % *
(3.35)

Since õ � 7�Ë 9 is strictly monotonically increasing for Ë � � , and á %65 � ,õ � 7 � {®Ö&9�5 õ � 7 4 91� 3 W � { 3 W � � ( { 3 W � � � {Ð*+*,*V{ 3 � 
(3.36)

where “
5

” means that the inequality is close. In the notation established above,w�3 � W % � @H�/�� W % @@H� �� @ � @H2/�� W % @ Y@H2 �� @,Y(3.37) 7 @H� Å� W % @@B� Å� @ " ãá % w {®Öõ � 7 � {1Ö&9(3.38) 7 ã 4õ � 7 4 9(3.39) 7 w3 õ � 7 4 9 � w83 � W %� { 3 ( {�*,*,*/{ 3 ( &O� W %*( { 3 ( � *(3.40)

In (3.37) we use (3.33) for - � �  � , and in (3.38) we use (3.19), where the unimportant
multiplicative factor (between � } � and

�
) was replaced by

ã } á % for convenience. Next, in
(3.39) we use (3.36) as well as the relation

4 � 7 � {ìÖ&9 } á % , from which we receive (3.40)
using (3.36) and the inequality w 4 ��3 W % � 4

.
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The main point in this derivation is that the actual convergence quantities on the right
hand side of the inequality in (3.37) are always quite close to (3.40), i.e.@H�/�� W % @@H� �� @ � @H2/�� W % @HY@H2 �� @ Y " w93 � W %� { 3 ( {�*,*+*V{ 3 ( &O� W % ( { 3 ( � *
The tightness of the upper bound (3.37) to the actual convergence quantities therefore depends
on the size of 3 , and hence on

z 7 �<9 , which for a fixed matrix size � is a strictly decreasing
function of the parameter

Ö � ¯ .
For small

z 7 �<9 (or
Ö

bounded away from zero), the difference between (3.37) and (3.40)
is small, i.e. the classical bound provides accurate information about the actual convergence
quantities of CG and MR in (3.37) and (3.38). On the other hand, when

z 7 �<9 is large (orÖ
is close to zero), then the lower bound (3.40), and with it the CG and MR convergence

quantities will be smaller (up to the factor � W % ) than predicted by the classical upper bound
(3.37). In the limiting case

Ö��Ð¯
,JMLcNP3QSR Â3Ã � J[Z3\%;: g : � h 5 7�j g 9 h � ��=< w�3 � W % Â?>9@ )A w 2 W R *

This clearly demonstrates that, for reasonably large � , the classical bound (3.33) cannot de-
scribe the worst-case convergence values of CG or MR in later iterations. Asymptotically
(for � ACB

) the weakness of the classical bound in this context has also been noticed before
by Axelsson [1, Example 13.7] and others.

4. Poisson equation. Now we consider the case of one-dimensional Poisson equation
with Dirichlet boundary conditions, i.e. the problem (3.1)–(3.2) with

Í¨�°¯
. Then

Öô�°¯
and the corresponding system matrix in (3.3) is

�¨�ÐêGë8Lc¥ÏLcZS§ 7  � 
 w 
, � 9 . In this case, simple
explicit expressions for �&�� as well as 2/�� are known (see Section 3.2). Moreover, we have
determined the exact MR and CG convergence quantities in the next-to-last step for the worst-
case as well as the unbiased initial vectors (see Theorems 3.3 and 3.5). In addition, it is
possible, in this particular case and for special starting vectors including the ones considered
in this paper, to determine the whole MR and CG convergence curve a priori. In the following
we recall known results from [15] for the unbiased case, and state (without proof) a new
convergence result for the worst case.

Assuming that
���ð��¯

, and hence 2 �ð� �
, the papers [15, 16] present exact analytic

expressions for the relative
�

-norm of the CG errors for solutions of the form�EDGF0HE�¨� m « DIFJH% 
,*+*,*,
 « DGF0H� t D 
 « DGF0Hg ��äGLON WEK 	 l ? Òw�� 

(4.1)

for some parameter L ��M �
. Two of these solutions are of particular interest in our context.

A simple calculation shows that
� D ½ H �Æã 2 Å� as defined in (2.12). Moreover,

� %'F8( � D � H � w � Å� ,
where � Å� is defined in (2.10). Using these relations and the exact analytic convergence curves
derived in [15] gives the following result.

PROPOSITION 4.1. Suppose that CG and MR are applied to the system 7 3.3
9

with
Öé��¯

,
and the respective initial error and residual are given by 2 Å� and � Å� . Then the resulting CG
errors 2 Å. and MR residuals � Å. , - ��¯Ï
+*,*,*,
 � , satisfy@H2 Å. @ Y@H2 Å� @ Y � N 7 �  - 9 - { � 7 �  - 9 ( { w 7 �  - 9� 7 � { � 9 7 � { w 9 O %'F8( ·QP ¿ 7 - 9�
(4.2) @B� Å. @@B� Å� @ � N 7 �  - 9C{ 7 �  - 9 (� 7 � { � 9C{ w ��- 7 �  - 9 O %'F8( ·QP ² 7 - 9�*(4.3)
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An elementary computation using (4.2) shows thatP ¿ 7 - 9P ¿ 7 -  � 9 � 	 �  -�  - { � � %GF8( 
 - � � 
,*+*,*H
 � 

which represents a strictly decreasing function of the iteration step - . The “superlinear” be-
havior of P ¿ 7 - 9 can be related to the distribution of the eigenvector coordinates of the initial
error 2 Å� . As proved asymptotically by Beckermann and Kuijlaars [2], CG may for the model
problem (3.3) with

Ö®�6¯
converge superlinearly, when the initial error exhibits a certain

distribution of eigencomponents that is far from an equilibrium distribution. This appears to
be the case in our example, where 2 Å� is biased, cf. (2.12).

Using the same techniques as in [15] based on Lagrange multipliers, it is also possible
to determine the exact values of the relative

�
-norm of the error in every step of CG with

the initial error 2/�� . This technique is quite involved, and the full proof would take us several
pages to state. The final result is the following,@H2/�. @,Y@H2 �� @,Y � N �  -� 7 - { � 9RO %GF8( ·SPUT 7 - 9�
 - �¨¯Ï
,*+*,*H
 � *(4.4)

Because of the equivalence (2.4) between CG and MR, the relative MR residual norms for
the initial residual �&�� also satisfy @B�3�. @ } @H�3�� @ � P8T 7 - 9 . Note thatP ² 7 - 9 ñ P8T 7 - 9 ñ ÷ w P ² 7 - 9�
 - � � 
,*,*+*H
 �  � *(4.5)

Obviously, the worst-case convergence value (1.4) of CG and MR at each step - must be
larger than (or equal) to any other attainable convergence value. Hence the maximum of the
three convergence curves P ¿ 7 - 9 , P ² 7 - 9 and P T 7 - 9 forms a lower bound on the worst-case
value, JbLcNP3QSR T JMZ&\g h 5 7kj g 9 h¸� J[Z3\ � P ¿ 7 - 9B
 P ² 7 - 9B
 P T 7 - 9I�:
 - ��¯Ï
,*+*,*H
 �  � *(4.6)

Figure 4.1 illustrates the above results for the model problem (3.3) with � � � w ¯ andÖv�¤¯
. The computations were performed in MATLAB [21], on an AMD Athlon XP 2100+

personal computer with machine precision V
W¤� ¯ W % X .
As predicted by (4.5), the curves P ² 7 - 9 (dashed dotted) and P9T 7 - 9 (solid) are very close.

The left hand side of (4.6) (bold) was computed by the function cheby0 of the semidefinite
programming package SDPT3 [22]. Except for the last few steps, the maximum on the right
hand side of (4.6) is given by P ¿ 7 - 9 (dashed). Overall, the bound (4.6) is quite tight. The
bound (3.33) is tight in step - , if there exist -  � eigenvalues of

�
, that closely approximate

extrema of the - th scaled and shifted Chebyshev polynomial of the first kind. In our example
this is not the case for the later phase of the iteration, where the two sides of (3.33) differ
significantly.

As mentioned above, MR with the right hand side �S�� (we used
� � � ¯

for MR and
CG) and CG with the right hand side

� 2 �� have the same convergence curve given by P'T 7 - 9
(solid). However, the curves of MR with the right hand side

� 2&�� (dotted) and CG with the
right hand side �&�� (dashed dotted; coincides with P ² 7 - 9 ) differ by orders of magnitude from
each other. Hence a right hand side that leads to the worst-case convergence for one method
does not lead (in general) to similar convergence for the other method.
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FIG. 4.1. CG and MR convergence curves, and both sides of û 3.33 ý .
5. Conclusions. In this paper we have applied our previous results in [13] to study the

convergence of the CG and MR methods for linear systems with symmetric positive definite
tridiagonal Toeplitz matrices. The structure of the matrix spectra allowed us to answer the
questions how slow the convergence of the iterative solvers might possibly be for the consid-
ered model problems, which initial vectors lead to the maximal convergence quantity in the
next-to-last iteration step, and how much the convergence quantity in this case differs from
an “average” (or unbiased) case. We also were able to derive lower bounds on the worst-case
convergence quantities in other iteration steps using the lower bound for the next-to-last step.
The presented approach can be applied also to other classes of model problems in which the
matrix eigenvalues are known, and the Lagrange factors µ g in (2.3) can be evaluated.
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Appendix. Let Ò � 7 � { � 9 W % , � �YM
. Then the following identities hold:� { �w ( � W % �ä'LcN ( 7 l ? Ò 9 � �� ���¸��G���¹ ´´´´ ä'LcN ( 	 
 ? ÒwZ�  ÉäGLcN ( 	 l ? Òw�� ´´´´ 
(A.1) � { �w � � ��� a % äGLON 7 
 ? Ò 9�
(A.2) � w � ��� a % æHç ä ( 7 
 ? Ò 9ö� ��� a % äGLON ( 7 
 ? Ò 9�
(A.3) � �  �w - � ��� a % æHç ä � 	�
 ? Òw[� 
(A.4) � / �  w #w]\ � ��� a % æHç ä . 	 
 ? Òw[� 
(A.5)
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 ? Òw � æ,ç ä � 	 
 ? Òw � 

(A.6) w � 7 � { w 9� � ��� a % äGLON W ( 	 
 ? ÒwZ� 
(A.7) ���� ø �  �w � ��� a % 	 /ã  æHç ä 7 
 ? Ò 9 � ( *(A.8)

Identity (A.2) can be found in [3, p. 40], and the sums (A.3)–(A.8) can be verified using
MAPLE [23]. To prove the non-standard identity (A.1), we note that�� ���¸��8��~¹ NXä'LcN (
	 
 ? ÒwZ�  öä'LcN (
	 l ? Òw�� O� �� ���¸��8��~¹ äGLON 	 7 
 { l 9_? Òw � �� ���¸��G�� Â�^ � Ã ¹ æHç ä 	 7 
 { l 9f? Òw � *
If lÏÒ � %( then, � { �  l � l , and the product in (A.1) takes the form�� ���¸��G���¹ ´´´´ ä'LcN 	 7 
 { l 9f? Òw � æHç ä 	 7 
 { l 9f? Òw � ´´´´ � �w � W % �� �k����G���¹ h äGLON 7G7 
 { l 9_? Ò 9 h� �w � W % ��� a % äGLcN 7 
 ? Ò 9ö� � { �w ( � W % 

cf. (A.2). Clearly, (A.1) holds since

ä'LcN ( 7 l ? Ò 9�� � for l$Ò � %( .
If lÏÒ ­� %( , then the product in (A.1) can be written ash æ,ç ä 7 l ? Ò 9 h �� �k����G���¹�G�� Â�^ � Ã ¹ ´´´´ ä'LcN 	 7 
 { l 9f? Òw � æHç ä 	 7 
 { l 9f? Òw � ´´´´� h æ,ç ä 7 l ? Ò 9 hw � W ( �� �k����G���¹�G�� Â�^ � Ã ¹ h ä'LcN 7G7 
 { l 9f? Ò 9 h� h æHç ä 7 l ? Ò 9 hw � W ( h ä'LcN 7 w l ? Ò 9 h � �� �k����G�� Â�^ � Ã ¹ h ä'LcN 7G7 
 { l 9f? Ò 9 h� w äGLcN 7 l ? Ò 9 æ,ç ä 7 l ? Ò 9w � W % äGLON 7 l ? Ò 9�äGLON 7 w l ? Ò 9 � �äGLcN 7 l ? Ò 9 ��� a % ä'LcN 7 
 ? Ò 9� � { �w ( � W % �ä'LcN ( 7 l ? Ò 9 *
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