Electronic Transactions on Numerical Analysis.
Volume 20, pp. 198-211, 2005.
Copyright © 2005, Kent State University.
ISSN 1068-9613.

RECURSIVE COMPUTATION OF CERTAIN INTEGRALS OF ELLIPTIC TYPE*

P. G. NOVARIO

Abstract. An algorithm for the numerical calculation of the integral function

$$
N_{n}(x)=\int_{0}^{\pi / 2} \frac{\cos ^{2 n}(\Phi)}{\sqrt{1-x \cdot \sin ^{2}(\Phi)}} \cdot d \Phi \quad(0 \leq x<1 ; n=0,1,2, \ldots),
$$

distinguished solution of the second-order difference equation
$(2 n+1) \cdot x \cdot N_{n+1}(x)+2 n \cdot(1-2 x) \cdot N_{n}(x)=(2 n-1) \cdot(1-x) \cdot N_{n-1}(x) \quad(n=1,2, \ldots)$, that uses the recurrence relation and its related continued fraction expansion, is described and discussed. The numerical efficiency of the algorithm is analysed for various x values of the interval $(0 \leq x<1)$. A twelve digits tabulation of $N_{n}(x)$ for $n=1(1) 20$ and $x=0(0.02) 1$ is presented as example of the algorithm utilization.

Key words. recurrence relations, elliptic integrals, continued fractions
AMS subject classifications. 65Q05, 33E05, 11A55

[^0]
[^0]: *Received March 1, 2005. Accepted for publication May 17, 2005. Recommended by F. Marcellan.
 ${ }^{\dagger}$ A. Olivetti 61, 10019 Strambino (TO), Italy. (p.novario@libero.it).

