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KRYLOV SUBSPACE SPECTRAL METHODS FOR VARIABLE-COEFFICIENT
INITIAL-BOUNDARY VALUE PROBLEMS

�
JAMES V. LAMBERS

�
Abstract. This paper presents an alternative approach to the solution of diffusion problems in the variable-

coefficient case that leads to a new numerical method, called a Krylov subspace spectral method. The basic idea
behind the method is to use Gaussian quadrature in the spectral domain to compute components of the solution,
rather than in the spatial domain as in traditional spectral methods. For each component, a different approximation
of the solution operator by a restriction to a low-dimensional Krylov subspace is employed, and each approximation
is optimal in some sense for computing the corresponding component. This strategy allows accurate resolution of all
desired frequency components without having to resort to smoothing techniques to ensure stability.
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1. Introduction. Let � be a self-adjoint second-order differential operator of the form�������
	��
���������������(1.1)

where ��	������ � and �!	"�#�%$&� are ')( -periodic functions. We consider the diffusion equation
on a bounded domain, �#*����+���,�-�.�0/��1/2'3(4�.56�&�
�(1.2) ��	"�7�8�9�+�,:;	"�#�<�=�0/��1/2'3(4�(1.3)

with periodic boundary conditions��	>�-�85?�;�@�;	>'3(4�85?�A�.56�B�
C(1.4)

In Section 4 we will discuss applications of the methods presented in this paper to more
general problems.

1.1. Difficulties of Variable-Coefficient Problems. Spectral methods are extremely ef-
fective for solving the problem (1.2), (1.3), (1.4) in the case where the coefficients � and � are
constant; see for instance [1], [7]. Unfortunately, the variable-coefficient case presents some
difficulties for these methods:D Let E3F
G;	����IH�J�KMLGONMP be the natural basis of Q trial functions defined byF G 	������ RS ')(%T U G � C

In the constant-coefficient case, these trial functions are eigenfunctions of � , but this
is not true in the variable-coefficient case; in fact, the matrix of � in this basis is a
full matrix in the general case.D The phenomenon of aliasing can lead to weak instability (see for instance [5]), which
manifests itself in the sudden blow-up of the solution. Unlike strong instability, it
cannot be overcome simply by using a smaller time step, but rather one must use
more grid points or filtering techniques (see [1]).V
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As a result, substantially more computational effort must be expended for less information
than in the constant-coefficient case. As variable-coefficient problems can be viewed as per-
turbations of their constant-coefficient counterparts, it should be possible to develop numeri-
cal methods that exploit this useful perspective.

1.2. Proposed Approach. Traditional Galerkin methods seek a solution in the space of
trial functions that satisfies the PDE (1.2) in an average sense. In this paper we will instead
compute an approximate solution W��	"�7�85?� of the formW�;	����?5?��� JXG!N L Y� G 	"5?�?F G 	����
where E�FZG�H JG!N L is an orthonormal set of trial functions. For each 5[�\� , the coefficientsE Y�#G�	"5?�IH JG!N L are approximations of the coefficients of the exact solution �;	����?5?�]� T K�^ * :;	"�#�in the basis E3FZG7H . Specifically,Y�ZG�	�5?���`_>FZG��aW�;	�bc�?5?�8d�e�_fF
G;�8g<h!i7jk�%�+5ml�:nd
where the inner product _�bc�obpd is defined by_>:#�?q!d+�srutwvP :;	��#��qn	��#�-x��
and the solution operator gohOiMjk�%�+5ml is approximated using Krylov subspaces of � . This ap-
proach, in and of itself, is not new; for example, Hochbruck and Lubich have developed a
method for approximating g<h!i7jk�%y%5ml{z , for a given vector z and Hermitian positive definite
matrix y , using a Krylov subspace| 	"y}�?z+�8~[�6� span E�z+�8y�z+�8y t z+�oC�CoCo�wy�� KnL z4H(1.5)

for some choice of ~ . However, this approach is most accurate when the eigenvalues of y
are clustered, which is not the case for a matrix that represents a discretization of � . For
such stiff systems, one must take care to choose ~ sufficiently large, or 5 sufficiently small,
in order to obtain sufficient accuracy (see [8] for details).

Our approach is to use a different approximation for each component
Y�MG;	�5?� . By writing_>FZG�� T K#^ * :nd+� R�a����_>FZG0� � :#� T K#^ * 	fFZG0� � :n�?d;�2_>FZG�� � :#� T K�^ * 	fFZG�� � :n�?dm�4�

for some nonzero constant
�
, we can reduce the problem of approximating _>FMG;� T K#^ * :nd to

that of approximating quadratic forms _��3G�� T K�^ * �3GMd
where �3G���FZG�� � : . Each such quadratic form is computed using the Krylov subspace| 	"�%�8�3G��8�7� for some � . In this way, each frequency component of W��	"�7�85?� can be computed
independently, using an approximation that is, in some sense, optimal for that component;
we will elaborate on this statement in Section 3. Furthermore, as we will see in Section 2,
high-order temporal accuracy can be obtained using only low-dimensional Krylov subspaces.

2. Krylov Subspace Spectral Methods. In this section we describe Krylov subspace
spectral methods and prove results concerning their convergence.
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2.1. Elements of Functions of Matrices. We first discuss the approximation of quadratic
forms _����w:;	>�����nd
where, in our application, :;	f�Z�]��gohOiMjk���
5ml for some 5%�@� . We first discretize the operator� on a uniform grid �!�����O�7�����@�
� R �oCoC�C<�8Q\� R �=��� '3(Q �(2.1)

where Q is the number of gridpoints. On this grid, � is represented by an Q���Q symmetric
positive definite matrix � J defined by� J 	"5?���2goh!i7j��%� J 5mlm��j � J l �w� ���4��	k�O�#�<j � tJ l �w� ���#�>	c�9�#�<j � J l �w� ���!	k�O�Z�<�(2.2)

where � J is a discrete differentiation operator defined on the space of grid functions. The
function � is represented by an Q -vector� J � � ��	"� P � b�bob��;	�� J�KnL � �o¡ C

We denote the eigenvalues of � J by¢ �@� L $ � t $sbob�b-$2� J �,£¤�&�
and the corresponding eigenvectors by ¥ L ��CoCoCo�8¥ J . We can compute the quantity� ¡J :;	>� J � � J(2.3)

using a Gaussian quadrature rule to evaluate the Riemann-Stieltjes integral¦ j :Zl#��r�§¨ :;	>�#�!x9©�	f�Z�(2.4)

where the measure ©�	f�Z� is defined by©�	f�Z�6�«ª¬­ ¬® � ��/2£¯ J� N Uc° L�± � ¡J ¥Z� ± t � Uc° L³² ��/2� U¯ J� N L+± � ¡J ¥ � ± t ¢ ² �7C(2.5)

The nodes and weights of the Gaussian quadrature rule can be obtained by applying the
symmetric Lanczos algorithm (see [3]) to � J with initial vector � J . After ´ iterations, we
obtain a ´µ�¶´ tridiagonal matrix

·a¸ �
¹ºººººº» © L�¼�L¼nL © t ¼ t. . .

. . .
. . .

. . . . . . ¼ ¸ KnL¼ ¸ KnL © ¸
½�¾¾¾¾¾¾¿(2.6)

whose eigenvalues are the Gaussian quadrature rules for the integral (2.4). The weights are
the squares of the first components of the eigenvectors of

· ¸
. With :;	>�#�%� T KnÀ * , Gaussian

quadrature yields a lower bound for
¦ j :Zl (see [15] for details). We can extend

· ¸
to obtain

a tridiagonal matrix
· ¸ ° L that has an eigenvalue at £ . The resulting rule is a Gauss-Radau

rule, which yields an upper bound for
¦ j :Zl (see [3]).



ETNA
Kent State University 
etna@mcs.kent.edu

KRYLOV SUBSPACE SPECTRAL METHODS 215

2.2. Algorithm Description. We now describe an algorithm for solving (1.2), (1.3),
(1.4) using the quadrature rules described above. First, we consider the computation of
quadratic forms of the form (2.3), where :;	>�#���@g<h!i7jk���-5ml for given 5 .

For convenience, We denote by Á J the space of real-valued ')( -periodic functions of the
form :;	������ RS ')( J4Â tXG!N K�J;Â t ° L T U G � Y:;	ÄÃ��<�=�0/��1/ '3(4�
and assume that the initial data :;	���� and the coefficients � and � of the operator � belong toÁ J . Furthermore, we associate a grid function � J with the function � J 	��#��Å[Á J defined by� J 	"�#��� J;Â t KnLXG!N K#J4Â t ° L W� J 	�Ã�� T U G � �
where W� J 	�Ã���� � JS '3( J�KnLX� NnP T K U G �wÆ�Ç j � J l � �È� J � ')(Q C
If we discretize the operator � by an QÉ�ÊQ matrix � J and compute z J �Ë� J � J , then
high-frequency components of � J are lost due to aliasing.

We can avoid this loss of information using a finer grid. Given a grid function Ì defined
on an Q -point uniform grid of the form (2.1), the grid function Ì�Í , for ÎÏ��Q , is defined
by interpolating the values of Ì on the finer Î -point grid; i.e.,j Ì�ÍÐl � � RS '3( J4Â t KnLXG!N K�J;Â t ° L T U G twv � Â Í W:;	�Ã��A�Ñ�Ò�,�-��CoC�C<�wÎÑ� R �
where W:;	ÄÃ��+�ÔÓ � JS '3( J�KMLX� NnP T K U G �<Æ Ç j ÌolÄ��Õ0C
If ÎÖ$×')Q , and the coefficients of � belong to Á J , then z Í �Ë� Í � Í retains the high-
frequency components of �+� J .

In the following algorithm, we compute bounds on _�� J � T K�^ * � J d using a ´ -point Gaus-
sian rule and a 	>´Ø� R � -point Gauss-Radau rule. Both quadrature rules are obtained by ap-
plying the symmetric Lanczos algorithm to the matrix � Í�Ù with initial vector � ÍÚÙ , whereÎ ¸ �s' ¸ Q . Because the coefficients of � belong to Á J , we do not need to work with � Í�Ù
explicitly at each iteration; we can instead begin with a '�Q -point grid and refine after each
iteration.

After ´ iterations of the Lanczos algorithm, the ´Ô�1´ tridiagonal matrix
· ¸

defined
in (2.6) is obtained. The Gaussian quadrature approximation of _"� J � T K#^ * � J d is given by� ¡J � J j g<h!i7	?� · ¸ 5?�ml L8L . Then,

· ¸
is extended to a matrix

· ¸ ° L that has an eigenvalue that ap-
proximates the smallest eigenvalue of � . For details on the extension of

·!¸
, see [3]. Finally,

the Gauss-Radau approximation of _�� J � T K#^ * � J d is given by � ¡J � J j g<h!i7	?� ·a¸ ° L 5?�ml L8L .We now describe the algorithm in full detail.
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Algorithm 2.1 Given a real-valued grid function � J defined on an Q -point uniform grid
(2.1), a self-adjoint differential operator � of the form (1.1) and a scalar 5 , the following
algorithm computes bounds Û L and Û t on � ¡ Í Ù g<h!i7jk�%� ÍÚÙ 5ml � Í�Ù , where ´ is the number of
Gaussian quadrature nodes to be computed and Î ¸ �s' ¸ Q .¼ P �ÝÜ � J Ü tÌ LJ � � J³Þ ¼ PÌ PJ �sßÎ«�@')Q
for �Ò� R �oC�CoC<�w´à � Í �,��Í�Ì �Í©M�Ú��j Ì �Í l ¡ à � Íá � Í � à � Í �â©n��Ì �Í �äãa� KnL Ì � KnLÍ¼ � �ÝÜ á � Í Ü tÌ � ° LÍ � á � Í Þ ¼ �Î«�s'�Î
end
Let
· ¸

be the ´å�[´ matrix defined by (2.6)Û L �,� ¼ tP j gohOi�	�� ·a¸ 5?�ml LwLLet £ be an approximation to the smallest eigenvalue of �
Solve 	 ·a¸ �Ê£ ¦ � � � ¼ t¸çæ ¸© ¸ ° L �@£ç� ��¸
Let
·a¸ ° L be the matrix obtained from

·O¸
by adding© ¸ ° L to the diagonal, ¼ ¸ to the superdiagonal

and ¼ ¸ to the subdiagonalÛ t �,� ¼ tP j gohOi�	�� · ¸ ° L 5?�ml L8LThe approximation to the smallest eigenvalue of � , required by the Gauss-Radau rule,
can be obtained by applying the symmetric Lanczos algorithm to a discretization of � with
initial vector � RÖR b�bob R �o¡ . This choice of initial vector is motivated by the fact that,
as ± Ã ± increases, � T U G �}è ��	��#� ± Ã ± t T U G � . Therefore, in order to obtain a function � for whichÜ<���;Ü Þ Ü<�;Ü is as small as possible, it is a good heuristic to avoid high frequencies.

Now, we can describe an algorithm for computing the approximate solution W��	"�7�?5?� of
(1.2), (1.3), (1.4) at times éÒ5A�w'aé}5A��CoC�C<�?�7éÒ5
�Ë58ê Ucë ¨Iì . At each time step, we compute ap-
proximate Fourier components of the solution by using the polar decomposition� ¡ :;	>y���z�� R�í��	 � �íz�� ¡ :;	>y��o	 � �íz��4�&	 � �Êz�� ¡ :;	"yÚ�<	 � ��z��m�(2.7)

to express the Fourier components in terms of quadratic forms, which in turn are approxi-
mated using Algorithm 2.1.

To avoid complex arithmetic, we use the grid functionsj Yî G l���� RS (�ï<ð9ñ 	�Ã��9�#�A�Ñ���@�
�oC�CoC<�wQò� R �óÃ�� R �oC�CoC<�wQ Þ '�� R �j Yô G lk��� RS ( ñ8õcö 	ÄÃ��O�#�A�Ñ�Ò�,�-��CoC�C<�8Q\� R �óÃu� R ��CoC�C<�8Q Þ '�� R �
and j Yæ P<l � � RS '3( �Ñ��� �-��CoC�C<�8Q\� R C



ETNA
Kent State University 
etna@mcs.kent.edu

KRYLOV SUBSPACE SPECTRAL METHODS 217

Also, it will be assumed that all bounds on quantities of the form � ¡ gohOiM	?�%y�éÒ5?� � , for any
matrix y and vector � , are computed using Algorithm 2.1.

Algorithm 2.2 Given a grid function Ì J representing the initial data :;	��#� on a uniform Q -
point grid of the form (2.1), a final time 58ê Ukë ¨Iì and a timestep éÒ5 such that 58ê Ukë ¨Iì �ò�7éÒ5
for some integer � , the following algorithm computes an approximation W� ë)° L� to the solution��	"�7�85?� of (1.2), (1.3), (1.4) evaluated at each gridpoint �
�Ú�u�O� for �Ò�@�-� R �oC�CoC<�wQË� R with���@')( Þ Q and times 5 ë �@�7éÒ5 for �1�@�
� R �oCoC�CA�?5?ê Ucë ¨Iì Þ éÒ5 .W� P �,Ì Jfor �[�,�-� R �oC�CoC<�85 ê Ukë ¨Aì Þ éÒ5 do

Choose a nonzero constant
�z�� Yæ P�� � W� ë÷ � Yæ P6� � W� ë

Compute bounds T LwL and T L t for z ¡Í Ù gohOi�j��%�6Í Ù é}5ml{z7Í Ù
Compute bounds T t L and T twt for ÷ ¡Í�Ù g<h!i7jk�%��Í Ù éÒ5ml ÷ Í Ù
Let
Y� ë)° LP �ø	 T t U � T L � � Þ 	 �9� � where ù and �
are chosen to minimize error in

Y� ë�° LP
for Ã�� R ��CoC�C<�8Q Þ 'Ú� Rz�� Yî G � � W� ë÷ � Yî G � � W� ë

Compute bounds ú LwL and ú L t for z ¡ÍÚÙ g<h!i7jk�%��Í Ù éÒ5mlcz7Í Ù
Compute bounds ú t L and ú t8t for ÷ ¡ÍÚÙ gohOi�j��%� Í�Ù éÒ5ml ÷ ÍÚÙz�� Yô G � � W� ë÷ � Yô G � � W� ë
Compute bounds û L8L and û L t for z ¡Í�Ù g<h!i7jk�%� ÍÚÙ éÒ5ml{z Í�Ù
Compute bounds û t L and û t8t for ÷ ¡Í Ù goh!i7j��%� Í�Ù éÒ5ml ÷ ÍÚÙ
Let úAG¶�`	"ú t U �âú L � � Þ 	 �a� � where ù and �

are chosen to minimize error in ú G
Let û G �`	>û t U �âû L ��� Þ 	 �a� � where ù and �

are chosen to minimize error in û GY� ë�° LG �@ú G �íù�û GY� ë�° LK G �@ú<G¤��ù�û�GendW� ë)° L � ü KnL Y� ë)° L (inverse discrete Fourier transform)
end

In computing quantities of the form � ¡ :;	"yÚ��z using the polar decomposition (2.7), this
algorithm actually computes Lý j � ¡ :;	"yÚ�<	 � z��ml where the scalar

�
is chosen at the beginning

of each time step. On the one hand, smaller values of
�

are desirable because the quadrature
error is reduced when the vector ÷ in ÷ ¡ :;	"yÚ� ÷ is an approximate eigenvector of the matrixy . However,

�
should not be chosen to be so small that � and � � � z are virtually indis-

tinguishable for the given precision. In practice, it is wise to choose
�

to be proportional toÜ W� ë Ü when computing W� ë)° L . This explains why
�

is chosen at the beginning of each time
step in the preceding algorithm.

Various strategies can be used to determine whether the upper or lower bound on each in-
tegral should be used in computing the approximation to each component of the solution. For
example, a Gauss-Radau rule with an appropriate choice of prescribed node can be compared
with the approximation computed using a Gaussian rule in order to estimate its accuracy. Al-
ternatively, Gauss-Kronrod rules can be used from the previously constructed Gaussian rules
to estimate the accuracy of each bound; for details see [2].
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2.3. Convergence Analysis. We now prove that Algorithm 2.2 is convergent. The ap-
proach is analogous to that used to prove convergence for finite-difference schemes. We will
denote by W� 	fé}5A�IéÒ�7þw:n� the result of applying Algorithm 2.2 to the function :;	��#� using a
discretization of space and time with uniform spacings éÒ� and éÒ5 , respectively.

2.3.1. Consistency. First, we will prove that the approximate Fourier components of the
solution at time éÒ5 computed by Algorithm 2.2, using a ´ -point Gaussian quadrature rule,
converge to the corresponding Fourier components of the exact solution as éÒ56ÿ � at a rate
of
� 	>éÒ5 t ¸ � . In order to analyze the quadrature error for the integrand :;	>�#���@g<h!iMj����
5ml , we

first need to consider the case :;	>�#�+�,� � .
LEMMA 2.1. Let y be an ���Ð� symmetric positive definite matrix. Let � and z be fixed

vectors, and define � ý � � � � z . For � a positive integer, let Wq3�a	 � � be defined byWq � 	 � ��� R' æ ¡ L ü �ý æ L Ü � ý Ü tt �
where ü ý is the Jacobi matrix produced by the symmetric Lanczos iteration applied to y with
starting vector � ý . Then, for some � satisfying �Ò/���/ � ,Wq � 	 � �;�@Wq � 	?� � �' � � � ¡ y � z��� K ¸X� N ¸ æ ¡ L � ü ��� ¡ � � ¡ y � � � á æ ¡¸ ü � K � KnL æ L � ¡ � �(2.8) � t� Ó � K ¸X� N ¸ æ ¡ L � ü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KMLý æ L � ¡ý � ý Õ � �������� ý N
	

Proof. See Appendix A.1.
The following corollary summarizes the integrands for which Gaussian quadrature is

exact.
COROLLARY 2.2. Under the assumptions of the lemma,Wq��a	 � �;�@Wq���	?� � �' � � � ¡ y � z+�

for � ² �Ð/2')´ .
Lemma 2.1 can be used to show consistency of the computed solution with T K�^ Ç * Ì J ,

but we need to show consistency with the exact solution of the underlying PDE, �;	����?5?�}�T K#^ * :;	���� . Therefore, we need the following result to relate the discrete inner products em-
ployed by Algorithm 2.1 to the continuous inner products that describe the frequency com-
ponents of �;	����?5?� . Recall the definition of Á J from the beginning of Section 2.2.

LEMMA 2.3. Let :�Å1Á J and � be an ~ -th order differential operator of the form (1.1)
such that the coefficients � and � belong to Á J . Then ��:1Å1Á t J and_ YT G �8��:nd4� Yæ ¡G � Í Ì Í �«Ãu����Î Þ '�� R �oC�CoC<�IÎ Þ 'Ú� R �(2.9)

for Îó�,' � Q , where � is a positive integer.
Proof. See Appendix A.2.
We can now bound the local truncation error in each Fourier component of the computed

solution.
THEOREM 2.4. Let � be a self-adjoint ~ -th order positive definite differential operator

with coefficients in Á J , and let :;	"�#�]Å�Á J . Then Algorithm 2.2 is consistent; i.e._ YT G � W� 	>éÒ5A�wéÒ�7þI:n�;�Êg<h!i7jk�%��éÒ5mlÄ:nd4� � 	>éÒ5 t ¸ �A�
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for Ãu���%Q Þ '�� R ��CoCoCo�8Q Þ '�� R C
Proof. Let Wq#	 � � be the function from Lemma 2.1 with y �`� ÍÚÙ , � � î G and z2�ÝÌ .

Furthermore, denote the entries of ü ý by

ü ý � ¹ººººº» © L 	 � � ¼ L 	 � �¼ L 	 � � © t 	 � � ¼ t 	 � �. . .
. . .

. . .¼ ¸ K t 	 � �«© ¸ KnL 	 � � ¼ ¸ KML 	 � �¼ ¸ KnL 	 � � © ¸ 	 � �
½�¾¾¾¾¾¿ C

Finally, let ¼ P 	 � ���ÝÜ � ý Ü t and ¼ ¸ 	 � �+�`Ü á ý Ü t . Then, by Lemmas 2.1 and 2.3,_ Yú G �?�;	�bc�wéÒ5?�?d4�Êú G � �X� NnP éÒ5 ��
� � _ Yú G �w� � :nd�� Wq��a	 � �;�@Wq��)	?� � �' � �� �X� NnP éÒ5 ��
��� _ YúAG;�8� � :nd�� î ¡G � � ÍÚÙ Ì��� K ¸X� N ¸ æ ¡ L xx � � ü �ý � ¡ý � � ¡ý � �Í Ù � ���� ý NnP á æ ¡¸ ü � K � KML æ L�� �� 	 � éÒ5 t ¸ �� éÒ5 t ¸	>'�´���� æ ¡ L xx ��� ü ¸ý � ¡ý � � ¡ý � ¸ Í Ù � ���� ý NnP á æ ¡¸ ü ¸ KML æ L �� 	 � éÒ5 t ¸ �� éÒ5 t ¸	>'�´���� æ ¡ L xx � ¹» ¸ KnLX� NnP ü �ý æ ¸ á ¡ý � ¸ K � KnLÍ�Ù ½¿ ������ ý NnP á æ ¡¸ ü ¸ KnL æ L �� 	 � éÒ5 t ¸ �� éÒ5 t ¸	>'�´���� æ ¡ L xx � � ü ¸ KnLý æ ¸ á ¡ý � ���� ý NnP á æ ¡¸ ü ¸ KnL æ L � � 	 � é}5 t ¸ �� R' éÒ5 t ¸	f')´Ê��� xx � � Ü á ý Ü æ ¡ L ü ¸ KnLý æ ¸ � t ���� ý NnP � � 	 � é}5 t ¸ �� R' éÒ5 t ¸	f')´Ê��� xx � 	 ¼ P 	 � �nbobob ¼ ¸ 	 � �8� t ���� ý NnP � � 	 � éÒ5 t ¸ �� � 	>éÒ5 t ¸ �AC(2.10)

A similar argument applies to _ Yû�G��?�;	�bc�wéÒ5?�?d4�âû�G .
The preceding result indicates that even if low-dimensional Krylov subspaces are used to

approximate each component of the solution, high-order temporal accuracy can be obtained.
On the other hand, it is important to note that the spatial error depends heavily on the

smoothness of the coefficients of the operator � , as well as the initial data :;	"�#� . The following
result quantifies the effect of the smoothness of the coefficients.

THEOREM 2.5. Let ��	"�#�]�2� and �!	����]$2� belong to Á J , and let���� Avg ��� R')( r twvP ��	����!xa�7� ��³� Avg �OC
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Let � be defined as in (1.1), and assume that, �����&�BÁ , where����� ��
� ��� � ��OC
Let F G 	������ L� twv T U G � , and let W¦ G 	>éÒ5?� be the approximation of¦ G;	>éÒ5?���`_>FZG;� T K#^�� * FZGMd
computed using Algorithm 2.1 with an Q -point grid of the form (2.1) and ´ Gaussian
quadrature nodes. Then, for ± Ã ± /2Q Þ ' ,¦ G 	fé}5?�+� W¦ G 	fé}5?��� � 	fé}5 t ¸ ÜoÁ ÍÚÙ Ü��AC

Proof. See Appendix A.3.
Note that this result implies that Krylov subspace spectral methods reduce to the Fourier

method in the case where � has constant coefficients.

2.3.2. Stability. We now examine the stability of this time-stepping algorithm. For sim-
plicity, we only consider the case where the ´�� R ; that is, we are using a one-node Gaussian
rule for each Fourier component.

THEOREM 2.6. Let the differential operators � , � and Á be defined as in Theorem 2.5,
and let :BÅBÁ J . Let ´ � R in Algorithm 2.2, and assume that the algorithm uses only the
bounds obtained from Algorithm 2.1 by Gaussian quadrature. Then, in the limit as

� ÿó� ,
the approximate solution W� 	>éÒ5A�wéÒ��þw:n� to (1.2), (1.3), (1.4) computed by one time step in
Algorithm 2.2 is given by W� 	>éÒ5A�Ié}��þw:n��� T K���� *! J 	 ¦ �íéÒ5?Á}�?:#�
where  J is the orthogonal projection onto Á J .

Proof. We use the notation of Algorithm 2.2. First, we note that" õ$#ý&% P ú G � R' xx � �"	 Yî G � � � ë � ¡ 	 Yî G � � � ë �!g<h!i7jk��é}5�© G 	 � �mlc� ���� ý NnP �(2.11)

where © G 	 � �+� 	 Yî G � � � ë � ¡ � Í(' 	 Yî G � � � ë �	 Yî GÐ� � � ë � ¡ 	 Yî GÐ� � � ë � C(2.12)

A similar statement applies to û G and
Y� ë�° LP . The result then follows from a von Neumann

stability analysis of the approximate solution obtained from the limits of ú G , û G and
Y� ë)° LP

as
� ÿ.� , which can be computed by differentiating expressions such as (2.11) and (2.12)

analytically.
Because Á*)ò� when the operator � has constant coefficients, the preceding theorem

indicates that stability is dependent on the variation in the coefficients, not their magnitude,
as is the case with explicit finite-difference methods. In fact, it can be shown that, if the
coefficients of � are sufficiently smooth, then Algorithm 2.2, under the assumptions of the
theorem, is stable regardless of the time step éÒ5 . Stability will be discussed further in an
analysis that will be presented in [13].
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2.3.3. Convergence. We are now ready to state and prove the principal result of this
paper. As with the Lax-Richtmyer Equivalence Theorem for finite-difference methods, the
consistency and stability of Algorithm 2.2 can be used to prove that it is also convergent.

THEOREM 2.7. Let ��	"�7�85?� be the solution of (1.2), (1.3), (1.4), where � is a self-adjoint
positive definite differential operator with coefficients in Á J and the initial data :;	"�#� belongs
to Á J . Let the differential operators � and Á be defined as in Theorem 2.5. Furthermore,
assume that the Fourier coefficients E Y��	ÄÃ%�Ié}5?�AH of ��	"�7�Ié}5?�0�òg<h!i7jk�%��éÒ5ml�:;	���� satisfy an
estimate ± Y��	�Ã%�wéÒ5?� ± ² �± Ã ± Í �«Ã�+�@�-�=� ² é}5 ² 5 ê Ucë ¨Iì �ÈÎ.� R C
Let W��	��7�85?ê Ukë ¨Aì � be the approximate solution computed by Algorithm 2.2. If" õ$#� �-, � * % P éÒ� Í KnLéÒ5 �,�-�=éÒ�¶� '3(Q �
and é}5 satisfies .. T K���� *  J 	 ¦ �íéÒ5?Á}�  J .. ^0/ / R �(2.13)

then Algorithm 2.2, in conjunction with Algorithm 2.1 using ´«� R Gaussian quadrature
nodes, is convergent; i.e. " õ1#� �2, � * % P Ü-W��	?bk�85?ê Ucë ¨Iì �;���;	�bc�?5?ê Ucë ¨Iì ��Ü%�@�
C

Proof. Let T ë 	����6� W��	"�7�85 ë �4�Ê��	"�7�85 ë �AC If we choose the parameter
�

sufficiently small
in Algorithm 2.2, then it follows from Theorems 2.4 and 2.6 thatÜ T ë)° L Ü��`Ü-W��	?bk�85 ë)° L �����;	�bc�?5 ë)° L �oÜ�`Ü W� 	>éÒ5A�wéÒ��þ9W�4	�bc�?5 ë �8�;��goh!i7j��%�6éÒ5mlc�;	�bc�?5 ë �oÜ² Ü W� 	>éÒ5A�wéÒ��þ9W�4	�bc�?5 ë �8�;� W� 	>éÒ5A�wéÒ�7þ8��	?bk�85 ë �?��Ü+�Ü W� 	>éÒ5A�wéÒ��þ?�;	�bc�?5 ë �8�;��goh!i7j��%�6éÒ5mlc�;	�bc�?5 ë �oÜ/�Ü T ë Ü+�3� L éÒ5 t �3� t éÒ� Í KML
where the constants � L and � t are independent of é}� and éÒ5 . We conclude thatÜ T ë ÜÚ/��546� L éÒ5 t �7� t éÒ� Í KnL98 / 5 ê Ucë ¨IìéÒ5 46� L éÒ5 t �3� t éÒ� Í KML:8
which tends to zero as éÒ5 , éÒ�¶ÿ � under the given assumptions.

It is important to note that because � is positive definite, it is always possible to findéÒ5��2� so that the stability condition (2.13) holds.

2.4. Practical Implementation. A companion paper [12] discusses practical imple-
mentation of Algorithms 2.1 and 2.2 in detail, but we highlight the main implementation
issues here.

2.4.1. Parameter Selection. We now discuss how one can select two key parameters
in the algorithm: the number of quadrature nodes ´ and the time step éÒ5 . While it is obvi-
ously desirable to use a larger number of quadrature nodes, various difficulties can arise in
addition to the expected computational expense of additional Lanczos iterations. As is well
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known, the Lanczos method suffers from loss of orthogonality of the Lanczos vectors, and
this vulnerability increases with the number of iterations since it tends to occur as Ritz pairs
converge to eigenpairs (for details see [4]).

In order to choose an appropriate time step éÒ5 , one can compute components of the
solution using a Gaussian quadrature rule, and then extend the rule to a Gauss-Radau rule
and compare the approximations, selecting a smaller éÒ5 if the error is too large relative to the
norm of the data. Alternatively, one can use the Gaussian rule to construct a Gauss-Kronrod
rule and obtain a second approximation; for details see [2]. However, it is useful to note that
the time step only plays a role in the last stage of the computation of each component of the
solution. It follows that one can easily construct a representation of the solution that can be
evaluated at any time, thus allowing a residual �#� Þ �Z57�&��� to be computed. This aspect of
our algorithm is fully exploited in [12].

By estimating the error in each component, one can avoid unnecessary construction of
quadrature rules. For example, suppose that a timestep é}5 has been selected, and the ap-
proximate solution W�;	����wéÒ5?� has been computed using Algorithm 2.2. Before using this ap-
proximate solution to construct the quadrature rules for the next time step, we can determine
whether the rules constructed using the initial data :;	"�#� can be used to compute any of the
components of W��	"�7�w'aéÒ5?� by evaluating the integrand at time '�éÒ5 instead of éÒ5 . If so, then
there is no need to construct new quadrature rules for these components. This idea is explored
further in [12].

2.4.2. Improving Performance. Theorem 2.6 implies that Algorithm 2.2 yields greater
accuracy if the coefficients of � are smoother. Therefore, it is advisable to use similarity
transformations to “precondition” � so that it more closely resembles a constant-coefficient
operator. Some unitary similarity transformations that can be used for this purpose will be
discussed in [11].

It is easy to see that a straightforward implementation of Algorithm 2.2 is prohibitively
expensive, as it employs the Lanczos algorithm

� 	"Qä� times per time step, with each ap-
plication requiring at least

� 	"Qä� operations. This complexity can be reduced to
� 	>Qä� by

exploiting the fact that the matrix � J represents a differential operator, and that the initial
vectors can be parametrized using the wave number. A practical implementation of Algorithm
2.2 can be found in [12].

The fact that the time step plays a limited role in the computation, and, in particular, is not
used to construct the quadrature rules, implies that the computed components can easily be
represented as simple continuous functions of 5 without using interpolation. The availability
of such a representation is exploited in [12] to obtain an even more efficient algorithm. This
representation can also be differentiated analytically with respect to 5 , which is also exploited
in [12] to construct a straightforward procedure for deferred correction.

3. Numerical Results. In this section we will display numerical results comparing the
performance of Krylov subspace spectral methods with that of other numerical methods for
problems of the form (1.2) as well as for more general problems.

3.1. Construction of Test Cases. In many of the following experiments, it is necessary
to construct functions of a given smoothness. To that end, we rely on the following result (see
[7]):

THEOREM 3.1. (GUSTAFSSON, KREISS, OLIGER) Let :;	"�#� be a '3( -periodic function
and assume that its � th derivative is a piecewise � L function. Then,± Y:;	ÄÃ�� ± ² constant Þ 	 ± Ã ± ; ° L � R �AC(3.1)
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Based on this result, the construction of a � ; ° L function :;	��#� proceeds as follows:
1. For each Ã � R ��CoCoCo�8Q Þ 'ç� R , choose the discrete Fourier coefficient

Y:;	ÄÃ�� by set-
ting

Y:�	ÄÃ��
� 	"���&ùm�O� Þ ± Ã ; ° L � R ± , where � and � are random numbers uniformly
distributed on the interval 	"�
� R � .

2. For each Ãí� R ��CoCoCo�8Q Þ '�� R , set
Y:;	?�]Ã��+� Y:;	�Ã�� .

3. Set
Y:�	"�9� equal to any real number.

4. Set :;	����+� L� t8v ¯=< G < > J4Â t Y:�	�Ã�� T U G � .In the following test cases, coefficients and initial data are constructed so that their third
derivatives are piecewise � L , unless otherwise noted.

We will now introduce some differential operators and functions that will be used in a
number of the experiments described in this section. As most of these functions and operators
are randomly generated, we will denote by ? L �&? t ��CoC�C the sequence of random numbers
obtained using MATLAB’s random number generator rand after setting the generator to its
initial state. These numbers are uniformly distributed on the interval 	"�
� R � .D We will make use of a two-parameter family of functions defined on the intervalj �
�w')(�l . First, we define: P�&, � 	��#��� Re ª­ ® X< G < > J4Â t , G
@NnP Y:��)	�Ã��<	 R � ± Ã ± � � ° L T U G ��A BC �Ñ�a��DÐ�,�-� R �oC�CoCA�

where Y:��a	�Ã��+�E? � J ° t:F G ° J4Â t�G KML �íùH? � J ° t�F G ° J;Â t�G C
The parameter � indicates how many functions have been generated in this fashion
since setting MATLAB’s random number generator to its initial state, and the pa-
rameter D indicates how smooth the function is. Figure 3.1 shows selected functions
from this collection.
In many cases, it is necessary to ensure that a function is positive or negative, so we
define the translation operators I ° and I K byI ° :;	��#���,:;	"�#�;� #�õcö�-JLK P , t8vNM :;	����7� R �(3.2)

I K :;	"�#�+�s:;	��#�4� #PO h�2JLK P , twvQM :;	"�#�;� R C(3.3)D Some experiments will involve the one-parameter family of randomly generated
self-adjoint differential operators�6�ç�E�O�R4SI K : P , �N�O� 8 �7I ° : L , �9�TDÐ�@�
� R ��CoC�CAC
where the operators I ° and I K were defined in (3.2), (3.3).

Many of the experiments described in this section are intended to illustrate the convergence
behavior of Algorithm 2.2, with certain variations, on various problems.

3.2. Parabolic Problems. For our first example, we will solve the problem�#��#5 	��7�85?�7���VU<�;	����?5?�+�,�-�.�0/��ä/2')(4�ó56�2�-�(3.4) �;	����8�a�+�EI ° : P , U 	"�#�A� �0/��1/2'3(4�(3.5)
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FIG. 3.1. Functions from the collection WHX&Y Z-[1\2] , for selected values of ^ and _ .��	"�7�?5?���2�;	����B'3(4�85?�A�.56�B�(3.6)

using the following methods:D The Crank-Nicolson method with central differencingD Algorithm 2.2, with 2 nodes determined by Gaussian quadratureD Algorithm 2.2, with 2 nodes determined by Gaussian quadrature and one additional
prescribed node. The prescribed node is obtained by estimating the smallest eigen-
value of � using the symmetric Lanczos algorithm.

In all cases, Q«� � �
gridpoints are used. For ��� �
�oC�CoC<� � , we compute an approximate

solution � F � G 	"�7�?5?� at 5�� R , using é}5��å' K � . Figure 3.2 shows estimates of the relative
error in � F � G 	��7� R � for ���s�-��CoC�C<��` . Note the significant benefit of the prescribed node in the
Gauss-Radau rule.

3.2.1. Varying Spatial Resolution. In Figure 3.3 we illustrate the benefit of using
component-specific Krylov subspace approximations. We solve the problem (3.4), (3.5), (3.6)
using the following methods:D A two-stage, third-order scheme described by Hochbruck and Lubich in [8] for solv-

ing systems of the form a � �@ybaç�dc , where, in this case, câ�@� and y is an Q �}Q
matrix that discretizes the operator � U . The scheme involves multiplication of vec-
tors by e]	�ãn�Zy�� , where ã is a parameter (chosen to be Lt ), � is the step size, ande]	"ÛO��� 	 TQf � R � Þ Û . The computation of e6	�ãn�Zy���z , for a given vector z , is ac-
complished by applying the Lanczos iteration to y with initial vector z to obtain
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FIG. 3.2. Estimates of relative error in the computed solution gh [1\�i!jk] of (3.4), (3.5), (3.6) at j�lnm . Solutions
are computed using finite differences with Crank-Nicolson (solid curve), Algorithm 2.2 with Gaussian quadrature
(dashed curve), and Algorithm 2.2 with Gauss-Radau quadrature (dotted-dashed curve) with various time steps ando ldprq grid points.

an approximation to e]	ÄãM�
yÚ��z that belongs to the ~ -dimensional Krylov subspace| 	"y
�8z+�?~���� span E�z��8y%z��8y t z��oCoC�Co�wy � KnL z4H .D Algorithm 2.2, with ~ nodes determined by Gaussian quadrature and one additional
prescribed node. The prescribed node is obtained by estimating the smallest eigen-
value of � using the symmetric Lanczos algorithm.

We choose ~\�s' in both cases, so that both algorithms perform the same number of matrix-
vector multiplications during each time step. Note that, as Q increases from 64 to 128, there
is no impact on the accuracy of Algorithm 2.2; the curves corresponding to this method are
virtually indistinguishable. On the other hand, this increase, which results in a stiffer system,
reduces the time step at which the method from [8] begins to show reasonable accuracy.

This loss of accuracy can be explained by observing that for each component of the
solution, a Krylov subspace spectral method implicitly constructs a polynomial ��	f�Z� that
interpolates T KnÀ�� * for some éÒ5 . The interpolation points are chosen in order to maximize
the degree of a quadrature rule that is used to integrate ��	>�#� with respect to the component-
dependent measure ©�	f�Z� defined in (2.5). It is in this sense that the approximation of each
component is optimal for that component.

The method from [8] effectively uses the same polynomial approximation of T K�À�� * for
all components, resulting in a lower degree of accuracy. If the initial data is smooth, then this
uniform approximation is still very accurate for computing low-frequency components of the
solution, but as Q increases, the computed solution includes more (erroneous) high-frequency
components.

3.2.2. Convergence of Derivatives. Figure 3.4 shows the accuracy in each frequency
component of the computed solution using various methods. This accuracy is measured by
computing the relative difference in the first and second derivatives of approximate solutions
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FIG. 3.3. Estimates of relative error in the computed solution gh [$\�iSjk] of (3.4), (3.5), (3.6) at j�lsm . Solutions
are computed using the third-order method of Hochbruck and Lubich described in [8] using a Krylov subspace of
dimension tulwv (solid curve), and Algorithm 2.2 with a 2-point Gauss-Radau rule (dashed curve) with various
time steps and

o lxprq grid points (top plot) or
o lym{z�| grid points (bottom plot).W� � and W� � KnL to the problem (3.4), (3.5), (3.6). Each approximate solution W� � is computed

using é}5+�s' K � , for �Ò�,�-��CoC�C<� � , and Q � � � gridpoints. In other words, we are measuring
the error in � � using the } L and } t seminorms (see [9]), whereÜA�4Ü t~�� � r twvP ± � F1��G 	"�#� ± xa�7C(3.7)

The methods used for the comparison are Crank-Nicholson with finite differencing, backward
Euler with the Fourier method, and Gauss-Radau quadrature with two Gaussian quadrature
nodes. As can easily be seen, Gauss-Radau quadrature provides more rapid convergence
for both higher- and lower-frequency components than the other two methods. Gaussian
quadrature with no prescribed nodes does not perform as well, since the lower bounds that
it yields for each integral are not as sharp as the upper bounds obtained via Gauss-Radau
quadrature.

3.3. Non-Self-Adjoint Problems. While the development of our algorithm relied on the
assumption that � was self-adjoint, it can be shown that it works quite well in cases where �
is not self-adjoint. In [5], Goodman, Hou and Tadmor study the stability of the unsmoothed
Fourier method when applied to the problem�#��#5 	"�7�?5?�+� ��#� 	 ñ?õcö 	"�#���;	����?5?�8��� �
�=��/B��/ '3(4�.56�B�
�(3.8)
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FIG. 3.4. Relative error estimates in first and second derivatives of approximate solutions to (3.4), (3.5), (3.6),
measured using the ��� and �(� seminorms, respectively. In all cases

o lxprq gridpoints are used.

�;	����8�9�+� RS '3( J4Â t KnLXG!N K�J;Â t ° L T U G � ùfÃ K U �=�0/B�1/2')(4�(3.9)

�;	��7�85?���2�;	��0��')(4�?5?�A�.56�2�-C(3.10)

Figure 3.5 compares the Fourier coefficients obtained using the Fourier method with those
obtained using Gauss-Radau quadrature as in Algorithm 2.2. It is easy to see that using
Algorithm 2.2 avoids the weak instability exhibited by the unsmoothed Fourier method. As
noted in [5], this weak instability can be overcome by using a sufficiently large number of
gridpoints, or by applying filtering techniques (see [1]) to remove high-frequency components
that are contaminated by aliasing. Algorithm 2.2, by computing each Fourier component
using an approximation to the solution operator that is tailored to that component, provides
the benefit of smoothing, without the loss of resolution associated with filtering.

While the theory presented and cited in Section 2 is not applicable to the non-self-adjoint
case, a plausible explanation can be given as to why Gaussian quadrature methods can still be
employed for such problems. Each component of the solution is computed by approximating
quantities of the form :;	 � ��� � ¡ goh!i7j��%yÚéÒ5ml � �
where � is an Q -vector y is an Q��uQ matrix that may or may not be symmetric. The
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approximation W:;	 � � of :;	 � � takes the formW:�	 � ��� � ¡ ¹»��X� NnP�� � T KnÀ9�{� * y � � ½¿ � � ¡  � 	"yÚ� � �
and satisfies :;	 � �;� W:�	 � ��� � ¡3� �X� N t � 	�� R � � éÒ5 �D�� y �Q� � �
due to the construction of the two sets of Lanczos vectors generated by the unsymmetric
Lanczos iteration. In this sense, the high accuracy of Gaussian quadrature generalizes to
the non-self-adjoint case. Each quantity :;	 � � can be viewed as an Riemann-Stieltjes integral
over a contour in the complex plane; the use of Gaussian quadrature to evaluate such integrals
is discussed in [14].

It should be noted, however, that instability can still occur if the integrals are not com-
puted with sufficient accuracy. Unlike the weak instability that occurs in the Fourier method,
the remedy is not to use more gridpoints, but to ensure that the same components are com-
puted with greater accuracy. This can be accomplished by choosing a smaller timestep or
increasing the number of quadrature nodes, and both tactics have been successful with (3.8),
(3.9) in practice.

4. Generalizations. This paper has focused primarily on the applicability of Krylov
subspace spectral methods to the diffusion equation in one space dimension with periodic
boundary conditions. However, as illustrated in the previous section, they are well suited to
many other categories of problems, which we enumerate here.

1. Problems in higher space dimension: In [10] numerical results are presented for
first-order wave equations and diffusion equations in two space dimensions, as well
as discussion on how to use Krylov subspace spectral methods in any number of
space dimensions.

2. Non-periodic boundary conditions: In [6] Krylov subspace spectral methods are
applied to a problem with Dirichlet boundary conditions. More general discussion
of other boundary conditions is contained in [10].

3. Second-order wave equations: Problems that contain higher-order derivatives in
time, can be solved using Krylov subspace spectral methods very easily, because
the computed solutions can be differentiated analytically with respect to time. This
is exploited in [6] to solve the variable-speed wave equation in one space dimension.
Results for two and three dimensions have been obtained and will be presented in an
upcoming paper.

5. Conclusions. By reconsidering the role of numerical quadrature in Galerkin meth-
ods, we have succeeded in developing a class of numerical methods for solving the problem
(1.2), (1.3), (1.4) that overcome some of the difficulties that variable-coefficient problems
pose for traditional spectral methods. By using a low-order Krylov subspace approximation
of the solution operator for each component instead of a single higher-order Krylov subspace
approximation for all components, high-order accuracy and near-unconditional stability is
attained.

Future work will be devoted to realizing further benefit by exploiting two key properties
of these methods: first, that they are more accurate for problems with smoother coefficients,
and second, that the components of the computed solution in the basis of trial functions can
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FIG. 3.5. Fourier coefficients of the approximate solution gh [$\�iS��] of (3.8), (3.9), (3.10) computed using the
Fourier method (top graph) and Algorithm 2.2 with Gauss-Radau quadrature (bottom graph) with

o l�prq nodes
and time step ��j�l�m&�rv�z .
be represented as continuous functions of 5 that have a reasonably simple structure. One
goal is to combine methods for efficiently computing approximate eigenfunctions of � with
Krylov subspace spectral methods to construct a continuous function that represents a highly
accurate approximation of the exact solution �;	��7�85?� over as large a domain in 	"�7�?5?� -space
as possible, with less computational effort than that which traditional time-marching meth-
ods and subsequent interpolation would require. Such an approximation should yield useful
insight into the nature of the exact solution as well as that of the eigensystem of � .

Appendix A. Proofs.

A.1. Proof of Lemma 2.1. From � ¡ý � ý � ¦ we obtainx�ü �ýx ��� � KnLX� NnP ü �ý xZ	 � ¡ý y � ý �x � ü � K � KnLý
� � KnLX� NnP ü �ý jk	 � �ý � ¡ y � ý � � ¡ý y � �ý l{ü � K � KnLý
� � KnLX� NnP ü �ý jk	 � �ý � ¡ 	 � ý ü ý � á ý æ ¡¸ �M�,	 æ ¸ á ¡ý �íü ý � ¡ý � � �ý l{ü � K � KnLý��	 � �ý � ¡ � ý ü �ý �íü �ý � ¡ý � �ý �
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230 J. V. LAMBERS� KMLX� NnP ü �ý 	 � �ý � ¡ á ý æ ¡¸ ü � K � KnLý �uü �ý æ ¸ á ¡ý � �ý ü � K � KnLý C
From symmetry, it follows thatR' xx ��� æ ¡ L ü �ý æ L�� � æ ¡ L 	 � �ý � ¡ � ý ü �ý æ L � � KMLX� NnP æ ¡ L ü �ý 	 � �ý � ¡ á ý æ ¡¸ ü � K � KnLý æ L C
From repeated application of the relation y � ý � � ý ü ý � á ý æ ¡¸ , we obtainy � � ý � � ý ü �ý � � KMLX� NnP y � á ý æ ¡¸ ü � K � KnLý �
which yieldsR' xx � � æ ¡ L ü �ý æ L � � æ ¡ L 	 � �ý � ¡ � ý ü �ý æ L � � KMLX� NnP æ ¡ L ü �ý 	 � �ý � ¡ á ý æ ¡¸ ü � K � KMLý æ L� æ ¡ L 	 � �ý � ¡ y � � ý æ L �� KMLX� NnP æ ¡ L � ü �ý 	 � �ý � ¡ �&	 � �ý � ¡ y � � á ý æ ¡¸ ü � K � KnLý æ L� æ ¡ L 	 � �ý � ¡ y �:� ý æ L �� KMLX� NnP æ ¡ L �"	�ü �ý � � � ¡ý �íü �ý 	 � �ý � ¡ �2	 � �ý � ¡ y � � á ý æ ¡¸ ü � K � KMLý æ L� æ ¡ L 	 � �ý � ¡ y �:� ý æ L �� KMLX� NnP æ ¡ L � ü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KnLý æ L� æ ¡ L 	 � �ý � ¡ y � � ý æ L �� K ¸X� N ¸ æ ¡ L �pü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KnLý æ L C
From the relations� ý æ L � � ýÜ � ý Ü t � � �ý æ L � RÜ � ý Ü t�� z�� � ¡ z�� � z ¡ zÜ � ý Ü tt � ý�� �
we obtain Wq �� 	 � �+� R' Ó æ ¡ L xaü �ýx � æ L Ü � ý Ü tt �B' æ ¡ L ü �ý æ L 	 � ¡ z�� � z ¡ z�� Õ� æ ¡ L 	 � �ý � ¡ y � � ý æ L � ¡ý � ý �� K ¸X� N ¸ æ ¡ L � ü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KMLý æ L � ¡ý � ý �æ ¡ L ü �ý æ L 	 � ¡ z�� � z ¡ z��
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KRYLOV SUBSPACE SPECTRAL METHODS 231� � z�� � ¡ z¶� � z ¡ z� ¡ý � ý � ý�� ¡ y � � ý �� K ¸X� N ¸ æ ¡ L � ü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KnLý æ L � ¡ý � ý �� ¡ý y � � ý � ¡ z�� � z ¡ z� ¡ý � ý� � ¡ý y � z¶� � K ¸X� N ¸ æ ¡ L � ü �ý � ¡ý � � ¡ý y � � � á ý æ ¡¸ ü � K � KnLý æ L � ¡ý � ý C
The lemma follows immediately from the Taylor expansion of Wq � 	 � � .

A.2. Proof of Lemma 2.3. For convenience, we write��� �X� NnP £ � 	"�#� � ��#� � � �
where £ t 	��������4��	��#� , £ L 	"�#���ø�4� � 	���� , and £ P 	������,�!	��#� . For �Ò� R , we have��:;	"�#�+� �X� NnP £ � 	���� � ��#� � � :;	����� �X� NnP��� RS '3( J4Â t KnLXG!N K�J;Â t ° L Y£ � 	�Ã�� T U G �2�� �� RS '3( J4Â t KMLX� N K�J;Â t ° L Y:�	k���<	�ù6��� � T U � �2��� �X� NnP ª­ ® RS ')( J4Â t KMLXG!N K�J4Â t ° L

¹» RS ')( J4Â t KnLX� N K#J4Â t ° L Y£ � 	�Ã�� Y:;	k���<	�ù6��� � T U F G ° � G �
½¿ A BC� �X� NnP ª­ ® RS ')( J4Â t KMLXG!N K�J4Â t ° L

¹» RS ')( J�KnLX	oN K#J ° L Y£ � 	ÄÃ�� Y:;	 ���äÃ��o	�ù6��� � T U 	 �
½¿ A BC� �X� NnP ª­ ® RS ')( J�KnLX	oN K#J ° L RS ')(

¹» J4Â t KMLXGON K#J4Â t ° L Y£ � 	ÄÃ�� Y:;	 ���äÃ��o	�ù6��� �
½¿ T U 	 ��A BC �

thus �6:�Å�Á t J . Because Fourier interpolation of ��: , for any degree $`')Q , is exact, (2.9)
follows.

A.3. Proof of Theorem 2.5. Let the vector
Yæ G be a discretization of F#G4	������ L� twv T U G �on a uniform grid of the form (2.1); that is,j Yæ G lk��� RS '3(%T U G �wÆ �Ñ��� �-� R ��CoCoCo�8Q\� R C

The approximation W¦ G 	>éÒ5?� of
¦ G 	féÒ5?� computed by Algorithm 2.1 has the formW¦ G 	>éÒ5?��� æ ~ L T K ¡ � *mæ L �

where ü is the ´µ�[´ Jacobi matrix produced by the symmetric Lanczos algorithm applied
to the matrix �6Í Ù defined in (2.2) with initial vector

Yæ G . Thus we have� ÍÚÙ � � � üí� á æ ~¸ � � ~ � � ¦ ¸ � � æ L � Yæ G C
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We can express the error I�G�	féÒ5?���ø_fFZG��8g<h!iMjk�%��éÒ5mlÄFZGnd;� W¦ G4	>éÒ5?� asI�G�	féÒ5?���ø_fFZG��8g<h!i7jk�%��éÒ5mlÄFZGnd;� W¦ G�	féÒ5?�� �X� NnP éÒ5 ��
� 	?_fF G �w� � F G d�� æ ~ L ü � æ L �� �X� NnP éÒ5 ��
� 	?_fFZG��w� � FZGMd�� Yæ ~G � � ÍÚÙ Yæ G��Yæ ~G � � Í Ù Yæ G � æ ~ L � ~ � ü � æ L �� �X� NnP éÒ5 ��
� 	?_fF G �w� � F G d�� Yæ ~G � � ÍÚÙ Yæ G �Yæ ~G 	"� � ÍÚÙ � � � ü � � æ L �� �X� NnP éÒ5 ��
�¢¡ _fF G �w� � F G d;� Yæ ~G � � Í Ù Yæ G �Yæ ~G � � KnLX� NnP � �ÍÚÙ á æ ~¸ ü � K � KML � æ L Õ0C(A.1)

We first consider the expression æ ~¸ ü � æ L , where � is a positive integer and ´�� R . Then¼ L �@ü t L �`Ü�Á ÍÚÙ Yæ G Ü t C
It follows from the fact that ü is tridiagonal, that± j ü � l ¸ L ± ² Ü�Á ÍÚÙ Ü�Ü:£�� ÍÚÙ Ü � KnL
and therefore, for � ² D�/í�³� R ,± Yæ ~G � �Í�Ù á j ü � K � KMLIl ¸ L ± ² £ � K � K t ÜoÁ#Í Ù ÜaÜ<�6Í Ù Ü � ° ¸ K t C
When ���EDÚ� R and ´å� R , the expression on the left side vanishes. If ´ � R , then ü �,© L
and á �sÁ#Í ' Yæ G , which yields a similar bound for � ² D ² �
� R .

Next, we consider the expression I�G , � �\_>FZG��w� � FZGnd�� Yæ ~G � � ÍÚÙ Yæ G , where � is a non-
negative integer. By Lemma 2.1, I�G , � �ø� for � ² '�´ . For �1��'�´ , we define :3G , ¤ 	������� ¤ F
G4	"�#� for any nonnegative integer ¥ . Furthermore, for even positive integers Î we define
the following operators on the space of continuous functions defined on j �-�w')(�l :D  Í is the orthogonal projection onto Á Í : Í :;	����+� RS '3( Í Â t KMLXG!N K Í Â t ° L T U G � Y:;	�Ã��ACD7¦ Í is the composition of  Í and the Î -point interpolation operator, using an Î -

point uniform grid of the form (2.1):¦ Í :;	"�#��� RS '3( Í Â t KnLXGON K Í Â t ° L T U G � �� �S '3(
Í KnLX� NnP T K U G twv �wÆ :;	k�O�#� �� �

with ��� twvÍ C Certainly, if :1Å�Á Í , then ¦ Í :¶�,: .
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Using these definitions, we obtainI G , ���`_>F G �w� � F G d;� Yæ ~G � � ÍÚÙ Yæ G�`_>: G , ¸ ��j � � K t ¸ �&	 ¦ ÍÚÙ � ¦ ÍÚÙ � � K t ¸ l�: G , ¸ d�`_>: G , ¸ ��jc	S� ��ÁÒ��� � K t ¸ KnL6� ¦ ÍÚÙ 	S� ��ÁÒ� ¦ Í�Ù 	 ¦ Í�Ù � ¦ ÍÚÙ � � K t ¸ KnLAlÄ: G , ¸ dAC
Let �0�s'�´ � R . By Lemma 2.1, : G , ¸ ÅäÁ Í�Ù , from which it follows that � � : G , ¸ ÅäÁ ÍÚÙ ,
and therefore I G , t ¸ ° L �ø_f: G , ¸ ��j Á�� ¦ ÍÚÙ Á ¦ Í�Ù l�: G , ¸ d
from which it follows that ± I�G , t ¸ ° L ± ² '
Ü�ÁZÍ Ù Ü�Ü<�6Í Ù Ü t ¸ C
In general, we haveI G , ���ø_f: G , ¸ ��j � � K t ¸ �2	 ¦ Í�Ù � ¦ ÍÚÙ � � K t ¸ lÄ: G , ¸ d�ø_f: G , ¸ ��j � � K t ¸ �2	 ¦ Í�Ù � ¦ ÍÚÙ � � K t ¸ l�: G , ¸ d7�_f: G , ¸ ��j I]� K t ¸ �sI ÍÚÙ , � K t ¸ lÄ: G , ¸ d�ø_f: G , ¸ ��j I]� K t ¸ �sI ÍÚÙ , � K t ¸ lÄ: G , ¸ d
where I � K t ¸ �@� � K t ¸ �s� � K t ¸ �
and I ÍÚÙ , � K t ¸ ��	 ¦ Í�Ù � ¦ ÍÚÙ � � K t ¸ �&	 ¦ ÍÚÙ � ¦ Í�Ù � � K t ¸ C
It follows that, for fixed éÒ5 , I G 	>éÒ5?��ÿµ� linearly with Ü�Á Í�Ù Ü . By Lemma 2.1, the terms in
(A.1) that are of order / ')´ in é}5 vanish, which completes the proof.
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