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Abstract. This article describes an extension of projection or “row action” methods proposed first by Kaczmarz

and by Cimmino. The method of this article constructs a line through two centroids computed by a modified Cim-
mino procedure and uses the actual or approximate intersection of this line with one of the hyperplanes associated
with rows of the system matrix as an approximation to the solution. Comparisons are made with similar methods
described by Pierra and Dax.
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1. Introduction. This article describes an iterative method, which will be called the
“linear acceleration” (LA) method, to project a vector � in ��� onto the affine subspace of
solutions to ���
	�� where � is 
���� and, typically, 
���� . This method builds upon al-
gorithms first described by S. Kaczmarz [27] and by G. Cimmino [18], in which approximate
solutions are successively projected onto a set of hyperplanes. Although terminology varies,
such algorithms are often called row projection (cf. [9]) or row-action (cf. [10]) methods.

The LA method of this paper extends the algorithms of Kazmarcz and Cimmino (sum-
marized in section 3 below) in this way: First, a vector � is projected independently onto each
one of a finite set of hyperplanes. Next, these projected points are averaged to obtain a cen-
troid � intermed. � with which the projection step is repeated and a new centroid � intermed. �
computed. (We will make use of the term centroid rather than barycentre used by other
authors, but we will consider the two terms equivalent in our context.) Then, unlike the orig-
inal Kaczmarz and Cimmino algorithms, the LA method determines the line through the two
centroids � intermed. � and � intermed. � , and, then, by moving along this line, obtains a new
approximate solution point � new.

A saddle point system �����	�� is one in which, in its most general form, � , �� , and �
have block structures as follows:

(1.1)
� � �"!#� �%$�%& !'� (*) & ! &,+ � � - + 	 � � �.+

(cf. [5, 8, 21]). A saddle point system can be seen as one way of formulating the problem
solved by the LA method, namely, projecting a vector onto a constraint space. In our studies,
we let

�
be the identity matrix and ) be the zero matrix. With these specifications, equation

(1.1) yields the following two systems of equations,

(1.2) �0/1� $ - 	��
and

(1.3) ���2	��
and the second system can be interpreted as a constraint space onto which � is projected.
Thus, � (the upper part of the solution vector �� ) is the projection of � (the upper part of the3
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constant vector � ) onto the constraint space determined by ���4	,� . In a situation such as this,
what is desired is the value of � alone; the value of

-
may be ignored, although it is necessary

to compute it in some algorithms (cf. [5, p. 3].
Row projection methods may, in fact, be also used to solve a linear system and this is

the context for the Kaczmarz and Cimmino algorithms. For such applications, row projection
methods are usually not competitive in comparison to other methods. Nevertheless, projection
methods are still of active interest in specialized areas, such as computed tomography where
all the data may not be available at the start of a solution algorithm (cf. [4, 23, 25, 26, 28, 29,
32], and the various works of Censor [10, 11, 12, 13, 14, 15, 16, 17]). Since the Cimmino
method is inherently parallelizable, variants of this method have also been of special interest
(cf. [12, 17]).

Section 2 provides some background and a simple example of how projectors are used in
this paper, and section 3 reviews the history of projection methods and describes the general
approach to accelerating such methods. Section 4 describes the LA method and provides
a proof of the convergence of one version of the LA method along with other details, and
section 5 describes implementation issues. Section 6 shows the exact convergence of the LA
method in one iteration for orthonormal spaces. Section 7 reports on numerical test results
including those comparing the LA method with similar methods by G. Pierra [33] and A. Dax
[19, 20], and section 8 briefly comments on the use of such projection methods with problems
in computed tomography. The final sections include references to other approaches, a brief
evaluation, and appendices describing alternative versions of the LA method.

2. Background and Example. Saddle point problems arise in a variety of applications
(see [5, pp. 5–14] for some examples). In such problems, the solution of one linear system
of � equations,

� �2/,�"$ - 	5� (where � is in �6� ), is constrained by a set of conditions
forming a second, underdetermined system of 
 equations, ��� (�) - 	7� (where � is in � & ).
When

� 	98 �"!'� and ) 	;:<& ! & , these two linear systems reduce to the form given above
in eqs. (1.2) and (1.3).

Let the =?>A@ row of � , BDC'EDFHGIC'EKJLGNMNMOMNGPCQE �SR , be indicated by the vector T#$E . If �*	�BU�OFVGW�XJHGOMNMOMNG�X& R $ , then the vector T<E is orthogonal to the hyperplane T#$E �Y	Z�NE . Thus, a point (or vector)� �4[ �6� is in the =?>A@ hyperplane if and only if T#$E � � 	]\^TLEPG_� �O` 	5�XE . (When there is no
possibility of confusion from context, we will simplify notation by referring to row Ta$E of �
as a hyperplane.) Let b be the subspace obtained as the intersection of the 
 hyperplanes in�6� associated with the rows of the matrix � . Thus, � [ b if and only if ���c	7� .

Computing the projection of some point (or vector) � [ � � onto b is equivalent to
writing � as �d/�e where � [ b and e [ b6f . The latter condition amounts to e [
Span gNT F GNMOMNMNGPT &ah , and so it suffices to write ei	7�"$ - for some appropriate vector

- [ � & .
Thus, the problem of finding the projection of some � [ ��� onto b may be formulated

as that of solving the saddle point system ����j	Z� , when � , �� , and � can be written in block
form as

(2.1)
� 8 �"!#� �%$� :L& ! & + � � - + 	 � � � + G

and then extracting the upper block, � , of �� as the desired projected point in b . We assume
that � is 
d�c� with 

��� and, thus, � is B^�k/�
 R �dB^�l/�
 R .

Assuming the solution to ����m	n� is ��m	oB^�pG - R $ , it follows (cf. equation (1.3)) that���c	��qG thus confirming that � does, in fact, lie in the constraint subspace b associated with� . Similarly, equation (1.2) yields �r/��%$ - 	s� indicating that � can be written as �t/�e
where � satisfies ���c	�� and e0	,�"$ - , which is in b6f . Consequently, � is the projection of� onto b .
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If �u	vBw�aG_� R $ for � non-zero, it can be shown that, when � is of full rank, the desired
solution �Z	yx 8 ( �"$zBU�%�%$ R|{ F �S}^�j/ �%$~BA�%�%$ R�{ F � . If �Y	�: , the solution reduces to�s	�x 8 ( �%$~BA�%�%$ R�{ F �S}^� . We can therefore write � as �"� where the projector ��	8 ( �%$�BA�%�%$ R�{ F ��	�8 ( �"��� and ��� is the Moore-Penrose pseudo-inverse of � . If �
consists of a single row, T $E (corresponding to a single hyperplane), �%� $ 	,T $E TLE�	;�|TLE_� J is
a scalar, and the projector �6E (corresponding to row T<E ) can be written as

(2.2) ��Ep	�8 �7( TLE^TQ$E��T E � J
(cf. [22, p. 75], [37, pp. 41–46]).

The following simple example may help demonstrate the geometrical interpretation of
this formulation of the problem. This system�������� :�: � �: � : � �:�: � :�:� � : :�:� ��: :�:

�N����� � � - + 	
����������::
�N�����

yields a value for � of BA:#GW:#G � R $ . Note that the rows of � , contained in the last two rows of � ,
are the coefficients of the planes �q��/��r	m: and ��/��H��	m: whose intersection is the � -axis
(in a ���Q� coordinate system). Thus, �2	;BA:�G_:#G � R $ is, in fact, the projection of �4	;B � G��'G � R $onto the � -axis. Also note that the value of

-
is BA:�G � R $ , a value not particularly useful but

which, in many algorithms, must be computed with some accuracy to obtain � .
If, however, the constant vector � equals B � GW�'G � G � G � R $ , then � would equal B �q� � G �V� � G � Rand
-

would equal B ( �V�H� G_� �q� R $ . The value of � here is consistent with the earlier value,
since the earlier value was based on ���Y	 : resulting in an intersection of the two planes atBA:�G_: R $ , whereas the current value is based on ����	�B � G � R $ resulting in an intersection of
the two planes at B �q� � G �V� � R $ .We shall consider the general problem of computing projections of vectors onto the in-
tersection of hyperplanes. Many of our methods could be naturally extended to the more
general problem of computing projections onto the intersections of convex sets. Note that,
in our formulation of the problem, it will not be necessary to assume that the rows of � are
independent.

3. History of Projection Methods. Row projection or row-action methods have been
widely studied (cf. [10, 36]). Kaczmarz [27] was the first to show that iterated projections of
a point onto intersecting hyperplanes will converge to the subspace of intersection (cf. [7, pp.
186–88], [10, p. 450], [14], [36]). This approach was rediscovered by Gordon et al. [23] and
was called ART (algebraic reconstruction technique) (cf. [10, p. 451]). The basic approach
of Kaczmarz can be modified by using a relaxation parameter   resulting in a point between
the hyperplane and the point being projected (if :4�  ,� � ) or between the hyperplane and
the reflection of the point about the hyperplane (if � �. ��,� ).Cimmino [18] proposed a method conceptually similar to Kaczmarz’s approach, with
this major difference: Instead of successive projections, Cimmino’s algorithm projects the
same point toward all the hyperplanes and then computes the centroid derived from these
projected points. In actuality, Cimmino’s original method determines the reflection of a point
relative to each hyperplane, using a relaxation parameter of  ,	s� . If one envisions the set
of hyperplanes as all cutting a hypersphere through its center (which is the solution point,
i.e., the point of intersection of all the hyperplanes), then reflecting a point on the surface
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of the hypersphere about a hyperplane (by means of an orthogonal projection through the
hyperplane), results in another point also on the surface of the hypersphere. It is obvious that
the centroid of a set of points on the surface of a hypersphere is interior to the hypersphere.
Considering the centroid to be a point on the surface of a new hypersphere, concentric with
the original hypersphere and smaller, the location of this point also determines the diameter
of the new hypersphere. We can thus iterate these steps, slowly converging to the common
center of all the hyperspheres, which is the desired solution point (cf. [18], [7, p. 187]).

We note in passing that the Cimmino and Kaczmarz methods are examples of linear
stationary iterative methods that are related to other well known methods, such as Richardson
iteration or the Jacobi method (cf. [6], [19, p. 612], [35, pp. 8–10]).

3.1. General Approach of Acceleration Methods. Pierra proposed an acceleration
technique for algorithms based on projections and centroids (termed “barycentres” in [33]).
Pierra notes that the “method of barycentres . . . is not very fast” and thus proposes the “extrap-
olated parallel projection method” (E.P.P.M.) [33, p. 99]. This method uses the line through
the original point and a centroid (barycentre) and computes the average of the intersections of
this line with all the hyperplanes to determine the next point [33, p. 101]. At regular intervals,
the approximate solution point is centered using a relaxation factor.

Dax provided an alternative acceleration technique also based on projections and cen-
troids [20]. This method also uses a line through the original point and a centroid and deter-
mines a distance to accelerate along this line. This distance is computed via the gradient of
the residual �X��� new ( �L� , where � new is on the acceleration line, resulting in a point on the
line closest to the actual solution point � .

The LA, Pierra, and Dax algorithms all follow a similar approach. Unlike the original
Kaczmarz algorithm, in which each projected point is used as the base point for the next
projection, all three of these methods, similar to the Cimmino algorithm, compute all the
projections first and then determine the centroid.

All three methods determine a line along which the acceleration takes place and deter-
mine a distance to move along this acceleration line. In general, these methods proceed in this
way: Given point � old, one or more Cimmino-like steps are executed in which projections of� old are computed and an intermediate point, the centroid � intermed. � , is obtained. A second
intermediate centroid, � intermed. � , can also be computed. One then accelerates converging to
the desired solution by moving a specific distance ¡ along the line through � intermed. � with
direction � intermed. � ( � old or � intermed. � ( � intermed. � . The three algorithms differ as to
(1) whether one uses � old or � intermed. � as the base point from which one determines � new,
(2) how the distance ¡ is computed, and (3) how the direction of the line is computed.

Thus, for LA, � new 	,� intermed. � /¢¡¤£<B^� intermed. � ( � intermed. � R
for Pierra, � new 	,� old /¢¡¤£<B^� intermed. � ( � old R
and for Dax, � new 	.� intermed. ¥ /¢¡S£LB^� intermed. � ( � old R M

The LA method described below incorporates the basic projection techniques developed
by Kaczmarz and Cimmino and attempts to find an approximate solution point by determining
a point on the line that passes close to the actual solution point, similar to the approaches
proposed by Pierra or Dax.
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3.2. Cimmino-projection Methods and Parallel Programming. The
Cimmino-like projections used by the various algorithms are order independent and thus their
computations can be coded to occur in parallel whenever possible (cf. [2, p. 49], [9, p. 174],
[12]; also see the recent work of Censor and Zenios [17]). This inherent parallelization prop-
erty is one of the reasons that makes these methods worthy of further study.

4. The Linear Acceleration (LA) Method. The LA method was motivated by an ex-
perimental study of the convergence of centroids computed by using the Cimmino algorithm
on a constrained system. A sequence of centroids computed according to Cimmino’s algo-
rithm will converge to the solution � contained in the intersection subspace b . Experimental
data have shown that these centroids converge toward a line in 
 -space that intersects the
desired solution. The LA method attempts to approximate the curve on which these centroids
lie by a straight line, and then moves along this line in the direction of the solution point � to
obtain an approximate solution, � new. The use of an acceleration line through two centroids
is the primary difference between the LA method and other algorithms

Figure 4.1 contains a 2-dimensional depiction that attempts to illustrate the rationale
motivating the proposed LA method. The line through centroids � intermed. � and � intermed. �
intersects one of the hyperplanes near the common intersection � [ b . Moving along this
line a specific distance results in the new approximation, � new.

hyperplane assoc. with ¦<§

hyperplane assoc. with ¦V¨© © © © © ©
© © © © © ©

© © ©
ª original point «­¬c® old

¯
°° ±
²²²²
²² ªW³­´ first computed centroid ® intermed. �¯
°°° ± µµµµ
µµ ªcentroid ® intermed. �4¶second

computed ·········· ·
ª¸ new

¹ §ª
ª®

FIG. 4.1.

Thus, the LA method consists of the following steps (details below in section 5):

ALGORITHM 1 (LINEAR ACCELERATION): Input: T#$E (rows of the matrix � ), � (the
initial point to be projected onto b ). Output: � new, the approximate projection of � onto b .

1. A starting point � old (initially equal to � ) is projected onto each hy-
perplane associated with the rows T#$E of � .

2. The points of projection are averaged to produce a centroid � intermed. � .
3. The projection step is repeated, this time projecting the computed cen-

troid � intermed. � onto all the hyperplanes.
4. The new points of projection are averaged to produce a new centroid� intermed. �
5. (The LA step.) The line through centroids � intermed. � and � intermed. �

is computed and a point � new on this line near the desired solution �
is determined by some method.

6. Repeat steps 1–5 as desired, after first resetting � old to � new.

We note below in section 7.3 that the Cimmino-type projections used to compute the
centroids of steps 2 and 4 is typically repeated several times before designating points as
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4.1. Determining � new on the Acceleration Line. To determine a point � new on the
line through � intermed. � and � intermed. � near the desired solution � , various options are pos-
sible, any one of which can be used in step 5 of Algorithm 1. Three distinct methods were
studied; two of them are based on the intersection of the acceleration line with a hyperplane,
and the third is based on travelling a specified distance along the line. We report on the
procedure in which � new is the point of intersection of the acceleration line with the near-
est hyperplane and label the algorithm when using this distance procedure as LA º . Other
distance procedures will be commented on briefly in the appendix.

4.1.1. Algorithm LA º : Intersecting with the Nearest Hyperplane. If the two cen-
troids � intermed. � and � intermed. � are well-centered between enclosing hyperplanes, a line
through � intermed. � and � intermed. � would be expected to intersect the hyperplanes near the
common set of intersection as depicted in Figure 4.1. Determining the hyperplane that pro-
duces a point closest to the desired solution point � is non-trivial, however. One could choose
a specific hyperplane to use in determining the intersection point (an approach described in
the appendix). It is possible that the new point of intersection in this case will be further from
the desired solution point than a point of intersection with some other hyperplane (cf. Figure
4.2), and might, in some cases, lead to a cyclic non-convergence.

ªsolution
point®

hyperplane assoc. with ¦ §

hyperplane assoc. with ¦ ¨© © © © © ©
© © © © © ©

© © ©

©©
ª original point «*¬c® old

¯
°° ±
²²²²
²² ª�³*´ first computed centroid ® intermed. �¯
°°° ± µµµµ
µµ ªcentroid ® intermed. �4¶second

computed »»»»»»»»»»»»
»

ª
intersection ¸ new

ª
FIG. 4.2.

To avoid any possibility of obtaining a distant point of intersection, an alternative ap-
proach is to compute the intersection of the projection line with the nearest hyperplane and
use this intersection point as the next approximate solution. In practice (as will be noted
in section 5.3), one computes the intersection point � new by first computing the distance¡ to the nearest hyperplane and then moving from centroid � intermed. � in the direction¼ 	o� intermed. � ( � intermed. � by using the formula � new 	½� intermed. � /Z¡ ¼ . Find-
ing the nearest hyperplane consists only in computing the distance values ¡ E along ¼ from� intermed. � to the hyperplane associated with each row T $E of � , and then using the ¡ E mini-
mum in magnitude as ¡ to determine the intersection point � new.

We claim that, when multiple iterations in the LA algorithm occur, distance procedure
LA º always converges. This is the case even when the centroid � intermed. � and � intermed. �
are obtained via multiple Cimmino-type iterations. The proof is given as Theorem 4.1 and
Corollary 4.4.

THEOREM 4.1. Let ¾ be a finite set of hyperplanes in �¿� with non-empty intersection,b
	mÀp¾ . Let �a¥ be a point in �6� , and let �ÁJ be the centroid obtained from �Â¥ by averaging
the projections of �a¥ onto all the hyperplanes T [ ¾ . Let �ÂÃ be the centroid obtained by
averaging projections of �ÂJ onto the hyperplanes T [ ¾ , etc., and finally set �ÅÄ 	;�aÆ , the
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A LINEAR ACCELERATION ROW ACTION METHOD 259Ç >A@ centroid obtained from from � ¥ . Define � � to be the intersection of the ray (V(#(XÈ� ¥ � Ä with
the hyperplane T �j[ ¾ chosen so that � � lies nearest to � ¥ among all other hyperplanesT [ ¾ . If � [ b is an arbitrary point in the intersection of the hyperplanes in ¾ , then�|� � ( �����o�X�Á¥ ( ��� . If �aÄ is on the same side of the hyperplane T � that �a¥ is, then�|� � ( �6�S�Z�X�ÁÄ ( ��� .

Before proceeding with the proof, we present two preliminary lemmas.

LEMMA 4.2. Let É be a hyperplane in �Ê� , and let Ë be a plane (two-dimensional
subspace) in �Ê� , and let Ì [ �6� . Let Í^Î�	�É]ÀÏË , a line in É . Let ��ÎiB^� R denote the
orthogonal projection of a vector � onto É , and similarly let �ÊÐÑB^� R denote the orthogonal
projection of � onto Ë . Finally, let �ÒÎ denote the orthogonal projection of �6ÐÓBAÌ R on ÍDÎ . Then��ÐÓBA��Î0B^Ì R_R lies between �LÎ and �pÐÓBAÌ R . (cf. Figure 4.3)

Í Î
Ô Ì
Ô � Ð B^Ì RÔ� Î Ë

Ô��ÎuBAÌ R

Ô � Ð BA� Î BAÌ RPR

É

FIG. 4.3. Depiction of projection of Õ onto plane Ö and hyperplane × .

Proof. Let ( ÈÍ Î denote a vector that is parallel to the line Í Î . Then ÌH� Î B^Ì RzØ ( ÈÍ Î by virtue
of orthogonal projection, since Í Î lies in É . Similarly, ÌH� Ð BAÌ R*Ø ( ÈÍ Î since Í Î lies in Ë . So
the plane (two dimensional subspace) containing Ì , �ÊÎ0B^Ì R , and �pÐÓB^Ì R is orthogonal to ( ÈÍDÎ .
Since ÌH�pÐÑB^Ì R is parallel to ��ÎiB^Ì R ��ÐÑBA��Î0B^Ì R_R , then �pÐÓBA��Î0B^Ì RPR is in this plane, too, so that� Î B^Ì R � Ð BU� Î B^Ì R_R is also orthogonal to ( ÈÍ Î , and so must lie on the line containing � Ð B^Ì R and� Î . The point � Ð BU� Î B^Ì R_R lies between � Ð B^Ì R and � @ since � Î BAÌ R must lie closer to Í Î (the
intersection of Ë and É ) than does Ì , but then projecting both points onto Ë must preserve
this, and so � Ð BU� Î BAÌ RPR must lie closer to � Î than does � Î BAÌ R .

LEMMA 4.3. Let ¾ be a set of 
 hyperplanes with a non-empty intersection, and let� [ Àp¾ . Let ÍÚÙNÛ be a line through � , contained in some T �S[ ¾ . Let �LÙXÛ [ ÍÚÙXÛ , �HÙNÛ�Ü	.� , and
let T � f be the hyperplane through �<ÙNÛ that is orthogonal to ÍDÙNÛ . Suppose Ì [ �6� is either
on T � f , or on the same side of T � f that � is, with the further property that if Ë is the plane
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(two-dimensional subspace) containing Ì and Í Ù Û , and Íwf,	;Ë�ÀcT � f , then not only is Ì on
the same side of Íwf as is � , but the orthogonal projection of Ì onto the line Í Ù 	�T*À0Ë is also
on the same side of Íwf that � is, for all T [ ¾ . Then, the centroid Ìi	 F&"Ý ÙßÞHà �pÙQBAÌ R is on
the same side of T � f that � is, too. Further, each projection � Ð BA�pÙ'B Ì R_R , for each T [ ¾ , is
also on the same side of Í?f that � is.

Proof. By hypothesis, for each T [ ¾ , the line segment with endpoints Ì and � Ù (where�ßÙ is the orthogonal projection of Ì onto the line Í^Ù in Ë ) is contained in the same half-plane
(relative to Íwf ) that � is. By the first lemma, these segments must contain � Ð BA�pÙQBAÌ RPR . But
this implies, for each T [ ¾ , that ��Ù'B^Ì R is in the same half-space (relative to the hyperplaneT � f ) as is � , so clearly the centroid Ìj	 F& Ý ÙßÞHà �pÙ'B^Ì R is also on this half-space. It only
remains to show that each projection of the centroid, �6Ù'B Ì R , for T [ ¾ , projects onto Ë to a
point that lies in this same half-plane (relative to Í�f ) as � .

Fix one hyperplane � T [ ¾ . Since �páÙ B Ì R 	 F&%Ý ÙßÞHà ��áÙ BU��Ù'B^Ì R_R , it will be enough to
show that for each T [ ¾ that � Ð BA��áÙ BA�pÙ#B^Ì RPR_R lies in the same side of Í?f that � does. BothÌ and �ßÙ are on the same side of Í f (i.e., on the same half-plane) as is � . So, by the first
lemma, � Ð BU��Ù'BAÌ RPR lies on the line between Ì and �VÙ , and hence is on the same half-plane
as � . Similarly, � Ð BA� á Ù B^Ì R_R also lies on the segment between Ì and � á Ù . Indeed, � Ð BA�pÙ'B^Ì RPR
and � Ð BU� á Ù B^Ì R_R lie on a quadrilateral in Ë with vertices Ì , �VÙ , � á Ù and � . Again using the
first lemma, � Ð BA� á Ù BA�pÙ'B^Ì RPR_R must lie on the line segment in Ë with endpoints � Ð BA�pÙ'B^Ì R_R and
the orthogonal projection of ��Ù'B^Ì R onto the line Í á Ù . But this segment is contained within the
quadrilateral, which is contained in the same half-plane as � , so we are done.

Now we are ready to prove the theorem.

Proof. Let Ë denote the plane (two-dimensional subspace) containing � ¥ , � Ä and � .
Denote by T � the “nearest” hyperplane, that is, the hyperplane whose intersection with the
ray (V(#(XÈ� ¥ � Ä lies closest to � ¥ . For each T [ ¾ , let Í Ù 	�Ë�À�T , and let � Ù denote the orthogonal
projection of �a¥ onto ÍÚÙ . Let T � f denote the hyperplane through �qÙNÛ that is orthogonal to�Á�ßÙNÛ , and let ÍwfÏ	�Ë�À�T � f . Identifying �LÙXÛ with �ßÙNÛ and Ì with �a¥ in the second lemma, we
see that all the hypotheses are satisfied (cf. Figure 4.4). Hence, the centroid �aJ obtained from�Á¥ has the property that � Ð B^�aJ R lies in the same half-plane (relative to Í?f ) that � does. In
particular, �aJ is contained in the same half-space (relative to T � f ) as � . Since � Ð B^�aJ R again
satisfies the hypotheses of the second lemma, then the projections �Ââ JWãÙ of � Ð B^�aJ R onto eachÍÚÙ , for all T [ ¾ , must lie in the same half-plane (relative to Í�f ) as Ì by the first lemma,
since the segments with endpoints � Ð BA�ÁJ R and � â J_ãÙ contain � Ð BU��Ù#BA�ÁJ RPR . But then �ÁÃ , the
centroid obtained by averaging the projections of �ÅJ onto the hyperplanes T [ ¾ , has the
property that �pÐÓB^� Ã R satisfies the hypotheses of the second lemma, etc. We proceed until
reaching � Æ 	n� Ä , and conclude inductively that � Ä (which satisfies � Ä 	½�pÐ~BA� Ä R by
hypothesis) lies in the same half-plane (relative to Í?f ) as � . This means the intersection of the
ray (V(#(XÈ� ¥ � Ä with the hyperplane T � (which occurs along the line Í Ù Û by construction) lies on
the leg opposite � ¥ of the right triangle with vertices � ¥ , � Ù Û , and � . From this we conclude
that �X� � ( ���i�l�|�a¥ ( �6� . If �ÁÄ is on the same side of the hyperplane T � that �a¥ is, then�ÁÄ lies in the interior of this right triangle, from which we conclude �|� � ( �6���Z�X�ÁÄ ( ��� .

COROLLARY 4.4. Given any initial point �Âä [ � & , the nearest hyperplane algorithm
LA º converges to a point � [ b .

Proof. We first observe not only that the method of computing successive centroids, as
in the Cimmino algorithm, will converge to a point � [ b , but also that the convergence is
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FIG. 4.4. Depiction of plane Ö containing ® � , ® � , and ® .

uniformly linear, since the rate of convergence is bounded below by the largest eigenvalue of
a linear map (which must still be of absolute value less than one, since the method is con-
vergent) (cf. [18]). For a given initial point � ä , there is a unique affine subset è of maximal
dimension, orthogonal to b , and containing �aä . The method of successive centroids yields a
sequence of iterates all lying in è , and converging to the single point � [ èYÀ¤b . Inserting the
LA step of computing the intersection to the nearest hyperplane keeps a point in the sequence
within è because the line containing the two centroids lies in è since the centroids do. By
Theorem 4.1, the projected point lies even closer to � [ èdÀ%b than before, and since the con-
vergence of the method of successive centroids is uniformly linear, the rate of convergence
using the LA step cannot be any worse than the method of successive centroids alone.

Procedure LA º demands that one compute the distance value ¡VE for each hyperplane and
find the minimum. If done in parallel, the computation of the ¡VE values may not take signif-
icantly longer than computing a single distance value, but there may be a slight bottleneck
in determining the minimum magnitude of all the ¡VE . This may, in fact, be an acceptable
overhead.

5. Implementation of the Linear Acceleration (LA) Algorithm and its Associated
Formulas. The complete algorithm presented in section 4 consists of several steps. The pro-
jection steps 1 and 3 make use of the projector matrices �ÊE (cf. equation (2.2)) corresponding
to each of the hyperplanes associated with row T $E of � . After computing the projections
of a point onto each hyperplane, we next compute the centroids � intermed. � and � intermed. �
(steps 2 and 4) and then determine the line through � intermed. � and � intermed. � (step 5). Fi-
nally, we need to determine a point � new closer to the actual solution than � old was (step 5)
using the LA º distance procedure of section 4.1.1 (or some alternative, cf. appendix).

To simplify the discussion that follows, we will assume that the lower block � of the
constant vector � is the zero vector, resulting in the constraint space ����	�: . Geometrically,
this amounts to shifting the space to the origin and simplifies some of the formulas (cf. sec.
2).

5.1. The Projections onto the Hyperplanes. To compute the projection of a point � �
onto the hyperplane associated with TÒE for each of the 
 rows of � , we make use of the
corresponding projector matrices, �6Ep	�8 �,( TLEDT'$E � BDT'$E TLE R 	�8 �,( TLEDT'$E � ��TLE_� J , where � is
the number of columns of � (cf. equation (2.2)). To avoid computing and storing 
 different
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The product T'$E � � is a scalar, and, since T'$E would often be sparse, computing T#$E � � is

inexpensive if coded properly. Thus we have

(5.1) ��EU� � 	.� � ( T'$E � ��|T E � J TLE
where T'$E � � and ��TLEW� J are scalars. (Rather than computing the square of the norms of the
row vectors ��T<E_� J at each iteration, one could compute them once prior to the iterative loop
and store them for repeated use during the iteration process.)

If the constraint space includes a non-zero right hand side, ��	vBA�qFqG_�XJ<GNMOMNMXGW�X& R $ , then
the projector equation is ��EU� � 	7� � ( T'$E � � ( �XE�|T E � J TLEPM

5.2. Optional Relaxation Parameters in the Projection Formula. One can interpret
the projection formula given by equation (5.1) in this way: � E � Æ (the projection of point � Æ
onto the hyperplane associated with projector � E ) is determined by starting at the original
point �aÆ and moving in a direction normal to hyperplane associated with T'E by the distance( TQ$E � ���TLE_� J . As noted above in section 3, it is also possible to include a relaxation parameter  
in this formula to vary the distance. The projection formula then becomes

(5.2) � E � � 	,� � (   T'$E � ��|TLE_� J T E M
If  Ï	 � , the new point is on the hyperplane (as is the Kaczmarz algorithm) and if  Ï	�� ,

the new point is the reflection of the original point with respect to the hyperplane (as in the
Cimmino method). (Cf. [14] for studies involving various relaxation factors.)

5.3. Computing the Centroids � intermed. � and � intermed. � and the Points of Inter-
section. After projecting an arbitrary point, � Æ , onto the 
 hyperplanes T'$E by computing� E � Æ using equations (5.1) or (5.2), the 
 projection points é E are averaged to determine the
centroid, �ÂÆ|ê�F . That is, one computes� Æ|ê�F 	 �
Yë � E � Æ	 �
 ë BA�aÆ (   T $E � Æ�|TLE_� J TLE R	 �
 ë BA�aÆ R6( �
 ë BA  T'$E �ÂÆ��T E � J TLE R	,� Æ (   

ë B TQ$E �aÆ�|TLE_� J T E R(5.3)

As described above in section 4, this projection step is performed several times (as de-
sired), with � as the initial value � ä , and results in two centroids, � intermed. � and � intermed. �
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where � intermed. � 	½� ÆXì and � intermed. � 	í� Æ�î for some
Ç F and

Ç J�ï Ç F . It is these
two centroids that are used to determine the line used in the LA step of Algorithm 1. As
noted above in section 3.1, � new 	�� intermed. � /�¡ ¼ where the direction vector ¼ 	� intermed. � ( � intermed. � .

We compute ¡ to correspond to the intersection point on the nearest hyperplane. First,
the values of ¡OE corresponding to the hyperplanes associated with each TQE are computed by
substituting the equation of the line ð�ñH� new 	7� intermed. � /j¡OE ¼ in the equation for the hy-
perplane associated with T<E giving T $E B^� intermed. � /j¡OE ¼ R 	,: and then solving for a specific
scalar value of ¡ E yielding ¡ E 	 ( BDT'$E � intermed. � R � B^TQ$E ¼ R . (The case of a nonhomogeneous
hyperplane T'$E �9	n� E (for some � E Ü	�: ) yields ¡ E 	yBU� E ( T'$E � intermed. � R � B^TQ$E ¼ R .) Let¡Y	óòiôöõÅg'÷ ¡ E ÷ h and � new 	�� intermed. � /7¡ ¼ is the desired point of intersection with the
nearest hyperplane.

6. Orthonormal Constraint Spaces. Before reporting the results of numerical tests,
we first note an analytic result when the rows of � are orthonormal.

THEOREM 6.1. Assume that the 
 hyperplanes associated with the rows of the constraint
matrix � are orthonormal and that the dimension of � (i.e., the number of columns of � ) is� (with 
7ø;� ). Without loss of generality, we can assume that the rows T�$E of � are the
identity vectors ù E 	9BA:�GNMOMNMNG � GOMNMNMNG_: R $ where 1 is in the =?>A@ location and =¿ø�
Ïø�� .

Under these assumptions, the projection of ��	vBXúû FVGHúû JHGOMNMOMNGVúû &ÂGVúû &HêpFVGOMNMOMNGVúû �SR $ onto
the subspace determined by � is the point BA:�G_:�GNMNMOMXG_:�G úû &HêpFVGOMNMOMXG úû �SR $ .

Moreover, this point is determined by a single iteration of the LA algorithm.

Proof. The projection of point �
	kB úû FqG úû JLGNMOMNMNG úû ��R $ onto the hyperplane correspond-
ing to vector ùqÆ produces B úû FVG úû JLGNMNMOMNGW:#GNMOMNMXG úû ��R $ where 0 appears in the

Ç >A@ location. Pro-
jecting � onto each of the 
 hyperplanes will produce points that have a zero among the first
 components and whose last � ( 
 components are all identical to those of � .

It thus follows that the projection of � onto the intersection of all the hyperplanes yields
a point that has zeros in all of the first 
 components and whose last � ( 
 components are
all identical to those of � .

To show that the LA algorithm yields this same point, if the 
 projection points are
summed together and then divided by 
 , one obtains the first centroid,� F 	9B 
 ( �
 úû F G 
 ( �
 úû J GNMNMOMNG 
 ( �
 úû & G úû &LêpF GOMNMNMNG úû � R $ M

Repeating the projection process on centroid ��F yields the second centroid�aJ¤	9B_B 
 ( �
 R J úû FHGOB 
 ( �
 R J úû JLGNMOMNMNGßB 
 ( �
 R J úû &ÂGqúû &HêpFqGNMNMOMNGHúû ��R $ M
Subtracting � F from � J yields the direction vector¼ 	 ( B 
 ( �
 J úû FVG 
 ( �
 J úû JLGOMNMNMNG 
 ( �
 J úû &ÂG_:�GNMOMNMXGW: R $ M
The general formula for ¡ in the equation for � new 	�� F /�¡ ¼ (the intersection point)

is ¡¢	 ( BDT'$E � F R � BDT'$E ¼ R (cf. section 5.3). For any hyperplane T E 	íù E , this simplifies to¡�	;B 
 ( �
 úû E R � B 
 ( �
 J úû E R 	,
 .
Substituting the values for ¡ , ¼ and ��F into the formula for � new yields a value ofBA:�GNMNMOMXG_:�GVúû &HêpFVGOMNMOMXGqúû �SR $ .
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One consequence is that, given an orthonormal constraint matrix � , the solution vector �
can be found rather inexpensively and quickly using a single iteration of LA º , a phenomenon
also exhibited by standard row-action methods.

7. Numerical Tests.

7.1. Similar Algorithms. Tests were conducted comparing LA º with comparable al-
gorithms by Cimmino, Pierra, and Dax. First, we briefly explain these other methods.

7.1.1. The Cimmino Algorithm. The Cimmino algorithm (cf. [18]) consists of re-
peated use of the following formula (cf. equation (5.3)) where ��ä is � , the upper block of
the constant vector � . In the original Cimmino algorithm, the relaxation parameter   equals
2 (to obtain a point reflected about a given hyperplane), but other values may also be used.

� new 	 Cim ü�B^� old R 	,� old (   
 ë B TQ$E � old�|TLE_� J T E R
When used as part of another algorithm, it is often advantageous to repeat a Cimmino

iteration multiple times. If the Cimmino iteration is repeated Í times starting with � old and
using the intermediate centroid values to obtain new points, we will denote this as � new 	
Cim ý ü B^� old R .

7.1.2. The Pierra E.P.P.M. Algorithm. The Pierra E.P.P.M. algorithm (cf. [33]) con-
sists of these steps: � intermed. 	 Cim ý F BA� old R¼ 	,� intermed. ( � old� new 	,� old / -
 Ý �N� E � old ( � old � J� ¼ � J ¼(7.1)

where
-

is 1 except every
Ç

iterations. (In [33, p. 112], for one experiment,
Ç

was 3 and
-

was 1/2.) Here the initial � old is � , the upper block of the constant vector � .
7.1.3. The Dax Algorithm. The Dax algorithm (cf. [20]) consists of these steps:� intermed. 	 Cim ý ü B^� old R(7.2) ¼ 	7� intermed. ( � oldþ 	���� old��	���� intermed.ÿ 	 þ ( �

� 	 ÿ $��� ÿ � J� new 	7� intermed. / � ¼(7.3)

where (7.2), the Cimmino iteration, may be repeated several times,  7	s� , and � ä is � , the
upper block of the constant vector � .

7.2. Comparison of Algorithms. Any distance procedure based on intersection with
a hyperplane will obtain the exact answer in one step if the rows of � are orthonormal,
as was shown above in section 6. If, however, the hyperplanes in � are nearly parallel,
the computed intersection point of the line obtained through the centroids � intermed. � and
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point. It may also happen that the line through � intermed. � and � intermed. � is parallel to
one of the hyperplanes, thus making it impossible to compute an intersection. Given the
approximate nature of the direction determined by the line through the centroids, the choice
of a point that is the intersection with the nearest hyperplane is a “conservative” estimate, but
one that does, in fact, guarantee eventual convergence.

All three methods compared make use of centroids and an acceleration line to obtain
a new approximate solution point. The differences between the algorithms, however, are
not insignificant (cf. sec. 3.1). The linear acceleration in LA is along a line determined by
two centroids, whereas the line used by the Pierra and Dax algorithms uses a predetermined
point and one newly-computed centroid. The LA º algorithm uses the intersection with the
nearest hyperplane as the starting point for the next iteration. In contrast, the Pierra algorithm
averages the intersections with all the hyperplanes, some of which may be quite distant from
the solution, to compute a distance and the Dax algorithm determines the point closest to the
solution along the acceleration line as the basis for its distance. These differences give rise to
the different convergence behaviors exhibited in our tests.

7.3. Modifications of the Basic Algorithm. In our tests, the basic LA º algorithm was
slightly modified to improve its accuracy. First, the rows of the constraint matrix � (cf.
equation (2.1)) were scaled by the norm of the row. Second, as mentioned above, the compu-
tation of each centroid was, in fact, repeated several times before designating specific points
as � intermed. � and � intermed. � , used to determine the line of projection. For comparison
purposes, tests were conducted using different repetition values.

Repeating the computation of the centroids � intermed. � and � intermed. � has two benefi-
cial results: (1) the first centroid � intermed. � , derived from the initial vector � or a previous� new (which is an intersection point on a hyperplane) becomes better centered between all
the hyperplanes than it would be after merely one computation; and (2) the second centroid� intermed. � is further separated from � intermed. � than it would be if only a single computa-
tion were performed (resulting in a more accurate direction line toward the desired solution).
The disadvantage is that each repeated computation of either centroid costs as much as the
initial computation, but this computational cost may be offset improved by significantly faster
convergence.

To indicate the number of repetitions of centroid computations, we will use a subscript
with the LA method, e.g., LA º�� to indicate a 5-fold repetition of the centroid computations.

7.4. Experiments. Experiments were conducted with two different sets of matrices.
The first set included constraint submatrices � with similar patterns but of different sizes.
The second set used constraint submatrices derived from classical test matrices.

7.4.1. Description of Matrix Set I. Matrices 1–4 were matrices � in which the 8 sub-
matrix was ���Å����� . In each case the � vector was the same, namely the vector B � GW�'G � GOMNMNM|G���� R $and the initial approximation � ä was � , the point being projected onto the constraint subspace����	ó: . Matrix 5 was larger with a similar � vector. Tests were performed using Matlab
6.5.1 implementations of the various LA methods.

The structure of the � constraint submatrix of matrices 1–5 was based of this pattern:
the first 
 rows and columns consisted of a square block with 2’s on the diagonal and ones
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elsewhere, such as ����� � � MOMNM �� � MOMNM �...
...

. . . ���� MNMOM �
� ����

and the remaining elements of each row were all zeros or all ones, depending on the ma-
trix. Table 7.1 summarizes the details and includes the condition numbers of each matrix
(determined via the intrinsic Matlab cond command).

TABLE 7.1
Summary of sizes, structure, and condition numbers for Matrix Set I.

Matrix Size Rows Value in the Cond.
of � in � remainder of � Numb.

1 �<:0�c�<: 5 1 219.59
2 �<:0�c�<: 5 0 23.84
3 � :L:i� � :L: 25 1 433.98
4 � :L:i� � :L: 25 0 157.55
5 	Ò:L:i�
	Ò:L: 100 1 3190.80

7.4.2. Numerical Results for Matrix Set I. Table 7.2 summarizes the results from us-
ing the LA º algorithm with different repetition values on the matrices of Set I. The stopping
criterion was when the norm of the error between the computed value and the exact value of� became less than � : { � , i.e., when �|��� ¸�
�� >a( � new �S� � : { � . (The exact value of � , ��� ¸�
�� > ,
was determined by using Matlab to solve ����2	m� directly and then extracting the upper block
of �� as ��� ¸�
�� > .) It also includes results from the basic Cimmino, Pierra, and Dax algorithms
applied to the five test matrices. For the LA º method, the number in parentheses indicates the
total number of centroid computations performed. (This is the number of iterations times two
[since two centroids are computed] times the number of repetitions to determine each cen-
troid.) In the LA º and Dax algorithms, tests were run using different number of repetitions
in the Cimmino step to compute the centroid and those values are indicated in the subscript.
The relaxation value   for the Cimmino and Dax algorithms was 2. In the Pierra algorithm,
every tenth iteration made use of a

-
value of 0.90.

TABLE 7.2
Comparative results for different Cimmino-like algorithms. The error tolerance was ������� . The additional

numbers in parentheses associated with the LA � and Dax algorithm indicate the total number of iterations used to
compute the centroids.

Matrix LA ºÓJ LA º�� LA º*F ä Cimmino Pierra Dax � Dax F ä
1 4 (16) 4 (40) 1 (20) 2464 4 3(15) 3(30)
2 15 (60) 3 (30) 2 (40) 247 20 6(30) 5(50)
3 2 (8) 2 (20) 1 (20) 14,713 8 4(20) 4(40)
4 18 (72) 4 (40) 2 (40) 5,277 34 5(25) 5(50)
5 6,391 2 (20) 1 (20) 260,241 9 4(20) 4(40)

(25,564)

The results indicate that the LA º algorithm performed significantly better than the Cim-
mino algorithm and that using a greater number of repetitions in determining the centroids
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usually resulted in fewer iterations.
We include the following sample plots to illustrate the convergence of the LA º algo-

rithm on matrix 2 (Figure 7.1) and matrix 3 (Figure 7.2) in comparison with the Pierra and
Dax algorithms. The plots include a count of iterations and of the number of Cimmino-type
projections used.
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FIG. 7.1. Iteration counts and Cimmino projection counts for Matrix 2.
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FIG. 7.2. Iteration counts and Cimmino projection counts for Matrix 3.

The plots suggest that, as a rule, the Pierra and Dax algorithms make small gains on
each iteration, with Pierra making better progress than Dax on these test matrices. LA º ,
however, demonstrates a slow convergence for a while and then exhibits a dramatic improve-
ment. This behavior suggests that, even with the somewhat conservative distance algorithm
of choosing the nearest hyperplane, once the two centroids determining the acceleration line
align properly, convergence can be quite rapid. This motivates additional analysis of various
modifications of the basic LA algorithm.

7.4.3. Description of Matrix Set II. This section reports on tests comparing the LA º
algorithm with the Pierra and Dax algorithms for several test matrices with constraint spaces
significantly different than those of Sections 7.4.1 and 7.4.2.
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These additional matrices incorporated constraint spaces derived from test matrices cho-
sen from the collections available from Matrix Market at the National Institute of Standards
and Technology web site. In each case the test matrix � consists of an upper left hand block
which was a square identity matrix matching the column dimension of the constraint matrix� derived from the chosen matrix.

Two test matrices derived from matrix FIDAP001, a real unsymmetric � � � �%� � � matrix
were created. For each matrix a specific number of the upper rows of the matrix was extracted
and used as the constraint matrix � . For matrix 6 (FIDAP1 F ä�� ), the � matrix consisted of
the upper 108 rows (i.e., upper half) of FIDAP001. Matrix 7 (FIDAP1 FPJ ) was similar except
that the � matrix was the upper 12 rows of FIDAP001. A KAHAN matrix of size �H:i� � :L:with

� 	 � M � and perturbation = 25 was created and used as the � matrix for Matrix 8
(KAHAN J ä ! F ä_ä ). The upper 20 rows of matrix CAN 1054 (from the Cannes set of the
Harwell-Boeing collection) were used as the � matrix for Matrix 9 (CAN1054 J ä ).

Various other test matrices were also examined, but the behavior, as noted later, generally
duplicated the results presented below.

Table 7.3 provides summary information about these four additional test matrices.

TABLE 7.3
Statistics for Matrices of Set II.

Matrix Constraint Sp. � Size of � / � Cond. Numb. �
6 FIDAP001 � :<�u��� � � /

� ��	u� � ��	 � M � � � � � : F ä7 FIDAP001 � �u��� � � / �L�H�u���L�H� 	ÁM :���	i� � :! 8 KAHAN �L:u� � :<: / � �L:�� � �L: � M : ��� � � : J9 CAN 1054 �H:i� � :!��	 / � :���	�� � :"��	 �#M 	#�"� � : F
TABLE 7.4

Condition numbers for Original Matrices used for Constraint Spaces

Constraint Sp. Cond. Numb. of Full Matrix
FIDAP001

� M � � �i� � :�$CAN 1054 �#M �<:u� � : Ã $
7.4.4. Numerical Results for Matrix Set II. In each of the following four plots in

which the horizontal axis represents the number of iterations, the solid line represents the
LA º�� algorithm, the dashed line the Pierra algorithm, and the dash-dotted line the Dax al-
gorithm (with 5 repetitions of the Cimmino step to obtain the centroid). The vertical axis
represents the norm of the error �|��� ¸�
�� ><( � new � where �%� ¸�
�� > was determined by using Mat-
lab to solve �����	l� directly and then extracting the upper block of �� as �&� ¸�
�� > . Similar to
what was used in the previous experiments, � was the vector B � GW�#G � GNMNMOMXGP� R $ , where � is
the number of columns of � .

Each algorithm ran for the number of iterations indicated on the plot. (This number was
chosen to show the convergence behavior without having to be identical for each matrix.)

In the Pierra algorithm, every tenth iteration made use of a
-

value of 0.90.
The high condition numbers of matrix 7 and of the CAN 1054 matrix used for the con-

straint space of matrix 9 indicate that certain hyperplanes might be nearly parallel to others.
Such a phenomenon does not affect the theory underlying the LA º algorithm, however.

Figures 7.4, 7.5, and 7.6 show the show the superiority of the LA º algorithm over the
Pierra and Dax algorithm for these test matrices when counting iterations. We acknowledge,
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FIG. 7.4. Matrix 7: The constraint space + is the upper 12 rows of the FIDAP001 matrix. Condition number
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however, the different number of Cimmino-like projections involved per iteration for each
algorithm: Pierra uses 1, Dax & uses 
 , and LA º~& uses �q
 . When counting Cimmino projec-
tions as in Figure 7.7, therefore, the plot for matrix 7 (with the FIDAP1 FPJ constraint space)
indicates that Pierra converges more rapidly than the other two, but that there is essentially
no difference between LA º�� and Dax � .

We note that Fig. 7.3 (Matrix 6 — FIDAP1 F ä�� ) and 7.5 (Matrix 8 — KAHAN) demon-
strate test matrices in which both the Pierra and LA º algorithms show a definite superiority
over Dax, which seems to stagnate early in the process.

Moreover, one should realize that altering some of the parameters of the algorithms (e.g.,
the number of iterations in the Pierra algorithm before the

-
correction value is applied or

the number of Cimmino-like projections in the Dax and LA º algorithms) may also affect the
convergence behavior.

Other matrices were constructed and tested. For example, a test matrix derived from
the PLAT362 (

��� �i� �!� � ) matrix (from the PLATZ set of the Harwell-Boeing collection) in
which � consisted of the upper half of the PLAT362 exhibited behavior similar to that of
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Matrix 6. A matrix (with condition number of � M;��� � : F�� ) derived from SAYLR1 and one
(with condition number of �QM � � � : FPJ ) derived from BCSSTK04 (from the BCSSTRUC1 set
of the Harwell-Boeing collection) were such that both test matrices caused all three methods
to exhibit essentially identical non-converging stagnation behavior.

The plots of this section confirm that the basic insight used in the LA algorithm is good;
namely, that determining an acceleration line via two centroids may be preferable to other
approaches, and that, even when using a somewhat conservative measure in determining the
distance accelerated along that line (such as intersecting with the nearest hyperplane), con-
vergence is assured.

We note that the Pierra algorithm involves using a corrective step (i.e., the
-

value) for
the distance along the line every

Ç
iterations. These tests suggest further study as to whether

using the nearest hyperplane to determine the acceleration distance along the projection line
is too conservative a value especially in cases where the hyperplanes are nearly parallel and
whether a hybrid scheme similar to what is used by Pierra would lead to better results. We
note that results indicated for an alternative distance procedure given in the appendix suggest
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that certain hybrid schemes may be quite promising.
As a result of these tests, we believe that the use of an LA-like algorithm shows promise

with a variety of matrices, when comparing with similar row action methods.

8. Applications to Computed Tomography. Although variants of the Kaczmarz and
Cimmino methods have been studied in relation to saddle-point matrices and to the projec-
tion of a point in � -space onto the subspace determined by 
 hyperplanes (where 
,øZ� ),
the Kaczmarz approach has also been used to obtain an estimate when given an overdeter-
mined system, as typically happens in problems related to computed tomography (cf. [28, pp.
277ff]). In fact, variants of the classical Kaczmarz algorithm were used in processing data
in early CAT scanners, although other algorithms are now regularly used instead. Neverthe-
less, the Kaczmarz and Cimmino algorithms still enjoy favor among some researchers for
specialized image reconstruction projects (cf. [25, 26, 31]).

In a typical computed tomography problem, the rows of � in the system �����	ó� cor-
respond to the different scans (or rays) through an object and the columns correspond to the
discretized blocks (or pixels) into which the object has been subdivided. The system matrix �
is not a saddle point matrix and the number of rows it contains is usually significantly greater
than the number of columns, thereby providing a redundancy of information and enabling
the reconstruction of the image of the scanned object with greater accuracy. The right hand
side, � , consists of the detected values associated with each scan. The origin of such a system
means that the equations are, in general, not linearly independent (cf. [28, p. 281]), and that
the equations are consistent, except for noise interfering with obtaining accurate values for
the constant vector.

One could make use of a Cimmino-like projection algorithm, such as the LA algorithm
of this paper, to solve a tomography problem. In such an application, every row of the system
matrix � would be used to determine the centroid. Unlike the set of constraints associated
with equation (2.1), ��� 	o: , in which the right hand side is a zero vector, in this case,
the right hand side, � , is non-zero. For that reason, the projector equation (corresponding to
equation (5.1)) is ��EA�ÂÆ%	,�ÂÆ ( < $E �ÂÆ ( �XE� < E � J < E
where �XE is the =?>A@ component of the right hand side vector � and < E is the =?>A@ row of � .
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9. Other Approaches. Other approaches to projection algorithms used in constrained
systems often require the projector explicitly. For a detailed explanation see work by Bramley
([8], [9]). Such algorithms include the Uzawa algorithm studied by Elman and Golub ([21]).

In Bramley’s approach (cf. [8, pp. 4, 6–7]), the projector �s	v8 ( ��$zBU�%�%$ R|{ F �s	8 ( �"��� and the pseudo-inverse �u� are computed explicitly and used repeated within the
iteration loop. This means that the algorithm must explicitly compute the inverse of �%�i$ ,
a square matrix whose dimensions equal the number of rows of the constraint space � . In a
large system with a significantly sized constraint space, it can be prohibitive to attempt such
an explicit computation of BU�%� $ R { F .

Bramley’s implementation of the Uzawa algorithm (cf. [8, pp. 9–10]) does not explicitly
compute BU�%�%$ R�{ F . Instead, it requires that the system =>=%$ÅT Æ 	 þ Æ be solved where =>=%$
is the full factorization of � )�{ F �%$ where ) is the diagonal of the upper left matrix of � .
For our examples, this upper left matrix was, in fact, 8 , and hence the system was equivalent
to �%�%$�T Æ 	 þ Æ . Such a step also occurs in the algorithm described in this paper.

One characterization of an Uzawa-type algorithm is as an iterative method that improves-
, the lower section of the solution vector, and then uses

-
to determine � , the upper section

of the solution vector, exactly. The updated � is easily computed from �4	7� ( �i$ - derived
from the system equations. The updated

-
is some variation of

-
? ý @ /� zBU��� R , where   may

be chosen according to various schemes. As � improves, ��� approaches 0.

10. Evaluation and Future Work. Any row projection algorithm used to find the pro-
jected point in a constrained system as in (2.1) has the advantage of avoiding the computation
of the orthogonal projector of the complete constraint matrix � , a very time-consuming step
for large matrices. Yet, the computation and storage of the individual projector matrices � E
(cf. section 5.1) for each of the hyperplanes can also be prohibitive for large systems. The LA
algorithm can avoid this difficulty if coded to compute the set of the norms of the row vectors,T'$E T E once for reuse. This set is relatively small and should not cause any space difficulty.

It also attempts to take into account that something is known about the solution, namely,
that it is the projection of � , the upper part of the constant vector � , onto the intersection
subspace determined by the constraint space ���c	m� . With certain constrained systems such
as those used for tests in section 7, the LA step, that is, moving along a computed line that
approximates a line intersecting the intersection subspace, can yield an approximate solution
of desired accuracy in one iteration.

This paper has described the LA algorithm and demonstrated its success and even its dra-
matic convergence in specific cases when compared to similar line acceleration approaches.
Future studies are planned with other types of matrices, both constrained systems and those
arising from problems related to tomography as well as the effects various values for the
number of times each centroid is computed may have on convergence rates. An additional
topic for study is how using different number of repetitions of the Cimmino-projection in
computing the two centroids affects the convergence rates.

Appendix: Alternative Distance Procedures.

Procedure A: Intersecting with a Specified Hyperplane. Procedure A involves com-
puting the intersection of the projection line through � intermed. � and � intermed. � with a des-
ignated hyperplane. This intersection point is considered to be the desired approximate so-
lution � new. For example, in Figure 4.1, one may assume that � new is the intersection of
the line through � intermed. � and � intermed. � with the hyperplane associated with T F . As
depicted, � new is closer to � [ b than are any of � old, � intermed. � , or � intermed. � .

The simplest option for computing the point of intersection is to specify a hyperplane
and compute the intersection point based on this hyperplane. In any subsequent iteration of
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the algorithm, one could repeat the choice of the first hyperplane to obtain a new point of
intersection. Such a choice does not, however, factor in any information latent in the other
hyperplanes. An alternative approach would be to cycle through all the hyperplanes, changing
the hyperplane of intersection with each iteration of this algorithm.

Table 10.1 summarizes the results from a single iteration of the LA algorithm with dis-
tance procedure A and using 5 iterations to determine the centroids, which we label LA ¥�� . In
these experiments, we chose the first hyperplane, i.e., the hyperplane associated with the first
row, TÒF , of � . As can be seen, the accuracy achieved after one iteration was such that further
repetitions of the algorithm were unneeded.

TABLE 10.1
Results after one iteration of the LA � � algorithm.

Matrix Size Cond. Numb. �|�A� ¸�
�� >�( �Áº��
1 �L:i�4�L: 219.59

� M � � � � : { F ä2 �L:i�4�L: 23.84 � M :<�u� � : { �3 � :L:i� � :L: 433.98 � M �L�u� � : { B4 � :L:i� � :L: 157.55 � M � � � � : {  5 	Ò:L:i�C	<:L: 3190.80
� MD�H�i� � : { �

For Matrices 1–5, LA ¥�� performed better than (or, with Matrix 5, the same as) LA º�� .
With other sample matrices tested, however, the LA ¥ algorithm sometimes cycled because of
the selection of the same hyperplane for repeated iterations and a single computation of each
centroid.

Procedure D: Distance. An alternative procedure for obtaining � new is to determine
the direction of the line through � intermed. � and � intermed. � and then compute an appropriate
distance to travel along this line in the direction of the desired solution � not dependent on
intersecting with any hyperplane. This approach is similar to those used in the Pierra and Dax
algorithms.

Procedure D makes use of approximations of similar right triangles to determine an ap-
propriate distance and is based on two assumptions: (1) that many of the hyperplanes as-
sociated with row in � meet at an acute angle, and (2) that the line through � intermed. �
and � intermed. � is nearly orthogonal to a line through � intermed. � joining the projection of� intermed. � on one hyperplane with the projection of � intermed. � on another (as depicted in
Figure 4.1).

To simplify the notation in the rest of this section, assume ��F�	 � intermed. � and �ÁJ0	� intermed. � .
Let éÅF be the projection of centroid �ÅF onto hyperplane TQF . It then follows that angleE �ÂFIéÂF|� new is a right angle. Thus, the two angles

E ��FIéÂF��aJ and
E �ÁJ_éÂF|� new are complemen-

tary. Hence, since angle
E é�F|�ÁJX� new is also assumed to be a right angle, angle

E é�F�� new �ÁJ
must equal angle

E ��F�éÅF��ÁJ and angle
E �aJX�ÂFIéÂF must equal angle

E �aJ_éÂF|� new. One can there-
fore conclude that triangle Fué F � F � J is similar to triangle Fué F � J � new. Thus, corresponding

sides are proportional and
�X� new ( � J ���éÂF ( �ÁJQ� 	 �Ié F ( � J ��|�aJ ( �ÅFL� . Therefore, the appropriate distance

to travel from �aJ toward � new (i.e., the distance �X� new ( �ÁJQ� ) in the direction along the line

determined by �ÅF and �aJ is
��é F ( � J � J�|�aJ ( �ÂF<� .

Procedure D thus yields � new 	,� J /Ï¡ ¼ where ¼ 	,� J ( � F , � J is the second centroid

and ¡�	 ��é F ( � J � J�X�ÁJ ( �ÂFL� .
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In actual problems, centroid � J may be significantly closer to certain hyperplanes than
to others, and some plausible approach is needed to obtain an appropriate value in place of��éÅF ( �aJÒ� that also takes into account the contribution of all the hyperplanes to the system.
One approach is to compute the average of the distances from �ÅJ to each of the hyperplanes,
i.e., to compute the value � 
�G �Ñ	�B Ý &EIHpF �IéÁE ( �aJ<� R � 
 . This particular order of computations,
however, has the disadvantage of requiring a significant amount of work, in computing �Ié�E (�ÁJQ� for each hyperplane T<E and then computing the average, � 
�G � after first determining �aJ .

The values of �Ié E ( � J � , however, could be approximated by using �Ié E ( � J � J 	��Ié E (�ÂF<� J ( �|�ÁJ ( �ÂF<� J assuming that each triangle FuéÂED�ÅF|�aJ is a right triangle (cf. Figure 4.1).
But ��éaE ( �ÂF<� is merely T'$E �ÂF � BW��TLEP� J R in projection formula (5.1) already being computed
in the process of determining �ÂJ .

As a result, the values for �Ié E ( � F � are merely by-products of computing the projections
of � F and can be done at the same time, thus leading to an integrated LA algorithm in which
the distance needed in step 5 of Algorithm 1 is actually computed in the process of steps 3
and 4. (We omit the details.)
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