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CROUT VERSIONS OF ILU FACTORIZATION WITH PIVOTING FOR SPARSE
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Abstract. The Crout variant of ILU preconditioner (ILUC) developed recently has been shown to be generally

advantageous over ILU with Threshold (ILUT), a conventional row-based ILU preconditioner. This paper explores
pivoting strategies for sparse symmetric matrices to improve the robustness of ILUC. We integrate two symmetry-
preserving pivoting strategies, the diagonal pivoting and the Bunch-Kaufman pivoting, into ILUC without significant
overheads. The performances of the pivoting methods are compared with ILUC and ILUTP ([20]) on a set of
problems, including a few arising from saddle-point (KKT) problems.
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1. Introduction. Incomplete LU (ILU) factorization based preconditioners combined
with Krylov subspace projection processes are often considered the best “general purpose”
iterative solvers available. Such ILU factorizations normally perform a Gaussian elimination
algorithm while dropping some fill-ins. However, some variants of the Gaussian elimination
algorithm may be more suitable than others for solving a given problem. For example, when
dealing with sparse matrices, the traditional KIJ version [12, p 99] is impractical since all re-
maining rows are modified at each step � . In this case, another variant of Gaussian elimination
namely the IKJ version, which implements a delayed-update version for the matrix elements,
is preferred. Although the IKJ version of Gaussian elimination is widely used for implement-
ing ILU factorizations (see, e.g., ILUT in SPARSKIT [20]), it has an inherent disadvantage:
its requirement to access to the entries of a row of a matrix in a topological order during
the factorization. Due to the fill-ins introduced during the factorization of a sparse matrix, a
search is needed at each step in order to locate a pivot with the smallest index [21]. These
searches often result in high computational costs, especially when the number of nonzero
entries in � and/or the factors is large. A strategy to reduce the cost of these searches is to
construct a binary tree for the current row and utilize binary searches [22]. Recently, a more
efficient alternative, termed ILUC and based on the Crout version of Gaussian elimination,
has been developed [17].

In the Crout version of Gaussian elimination, the � -th column of � ( ����� 	�
 � ) and the � -
th row of � ( ���
 ��� 	 ) are calculated at the � -th step. Unlike the IKJ version, all elements
that will be used to update ����� 	�
 � and ���
 ��� 	 at the � -th step in the Crout version have al-
ready been calculated, i.e., the fill-ins will not interfere with the row updates at the � -th step.
Therefore, searching for the next pivot in the Crout version is avoided. A special (“bi-index”)
data structure was developed for ILUC to address two implementation difficulties in sparse
matrix operations (see Section 3 for details), following earlier work by Eisenstat et al. [11]
in the context of the Yale Sparse Matrix Package (YSMP), and Jones and Plassmann [16].
Besides efficiency, another advantage of ILUC is that it also enables some more rigorous
dropping strategies (e.g. [3, 2]) which result in improved robustness. However, there are still�
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many situations where sparse linear systems are difficult to solve by iterative methods with
the ILUC preconditioning, especially when the coefficient matrices are very ill-conditioned
and/or highly indefinite. In such situations, pivoting techniques can be used to further im-
prove robustness. Nevertheless, a pivoting method that is both efficient and effective must
be carefully designed to fit within the data structure used by the incomplete factorization
algorithm, which may not be a trivial task.

In this paper, symmetry-preserving pivoting strategies that are suitable for the data struc-
ture used in ILUC are explored and implemented for symmetric matrices. We begin our
discussion with a review of related pivoting techniques in Section 2. We then discuss in detail
ILUC with pivoting methods in Section 3. Finally, we compare the performances of the piv-
oting methods with ILUC and ILUTP ([20]) on some general symmetric matrices in Section
4 and some KKT matrices in Section 5.

2. Related Pivoting Techniques. For many linear systems that arise from real appli-
cations, the ILU factorization may encounter either a zero or a small pivot. In case a zero
pivot occurs, one strategy to avoid a break-down of the factorization process is to replace the
zero pivot with a very small element, which leads to the second case. However, this remedy
works only in very limited cases. Indeed, small pivots can cause an exponential growth of
the entries in the factors and the resulting ILU process can eventualy break down due to an
overflow or underflow condition. Even when this does not happen, the produced L and U
factors are generally of poor quality and will not lead to convergence in the iteration phase.

A common solution to ensure a moderate growth in the factors is to use pivoting tech-
niques. However, pivoting techniques are often in conflict with the underlying data structures
of the factorizations. For example, for a symmetric matrix, a column partial pivoting method
such as the ILUTP algorithm of SPARSKIT [20], will destroy symmetry. Pivoting methods
that preserve symmetry are desirable. The elimination in ILUC is symmetric, i.e., at step � ,
the � th row of � and the � th column of � are computed. Moreover, the bi-index data structure
used to implement ILUC is also symmetric. Thus, the symmetric elimination process and the
symmetric data structure are ideal to incorporate symmetry-preserving pivoting methods into
ILUC.

In this paper, we explore symmetry-preserving pivoting methods that can be integrated
into the existing ILUC process without significant overheads. Our goal is to improve the
robustness of ILUC for symmetric systems while preserving symmetry. For this reason, we
use a revised version of ILUC (termed ILDUC) to compute the factorization ��������
instead of ������� . In ILDUC, � and ��� are unit lower triangular matrices, and � is
diagonal.

One simple pivoting method that preserves symmetry is to select the largest diagonal
entry as the next pivot and interchange the corresponding row and column simultaneously.
This method, referred to as ����� diagonal pivoting in the rest of the paper, works well for
many symmetric matrices according to our tests. However, it fails for a matrix as simple as� � !�" �� "�#%$
In 1971, Bunch and Parlett proposed a pivoting method based on Kahan’s generalized pivot
to include &'�(& principal submatrices [4]. They also proved that the bound of this method,
in terms of the growth of elements in the reduced matrices, is almost as good as that of the
Gaussian elimination with complete pivoting. However, this method requires searching the
entire reduced matrix at each step during the factorization, which makes it impractical for
large sparse matrices. In 1977, Bunch and Kaufman proposed a partial pivoting method,
now known as the Bunch-Kaufman pivoting method, where a �)�*� or &��+& pivot can be
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determined by searching at most two columns of the reduced matrix at each step [6]. In 1998,
Ashcraft et al. proposed two alternatives of the Bunch-Kaufman algorithm, providing better
accuracy by bounding the triangular factors [1]. In 2000, Higham proved the stability of
the Bunch-Kaufman pivoting method [15]. Because of the efficiency and effectiveness of the
Bunch-Kaufman pivoting method, it has been used in LINPACK and LAPACK to solve dense
symmetric indefinite linear systems. In contrast to these methods, which dynamically select
pivots, strategies such as weighted matching have been introduced to approximate a static
pivoting order in direct solvers [9, 10], and have been recently also explored for iterative
methods [13].

In this paper, we show that the Bunch-Kaufman pivoting method can be integrated into
ILDUC to solve sparse symmetric indefinite linear systems. For the sake of completeness, we
provide some details of the Bunch-Kaufman pivoting algorithm. Let �-, �/. denote the matrix
at step � . To decide the next pivot,

1. Determine 0 � 1'243�6587:9<;=9<	?> � , �/.;@� >BA
which is the largest off-diagonal element in absolute value in the � -th column. If
0 � " , then go to step ��C � . Otherwise let D ( D�EF� ) be the smallest integer such
that > � , �/.G � > � 0 .

2. If > � , �/.�6� >�H*I 0 where I �KJL�MC*N �PO4QSR4T , then use � , �/.�6� as a �U�V� pivot. Otherwise,
3. Determine W � 1'243XZY�[\Y�][�^_�` > � , �6.a 
 G > $
4. If I 0cb�d > � , �/.�6� > W , then use � , �/.�6� as a ���e� pivot.
5. Else if > � , �/.GfG >MHgI W , then interchange the � -th and the D -th rows and columns of��, �6. , use � , �/.GfG as a ���V� pivot.
6. Else interchange the Jh�iCj�PQ -th and the D -th rows and columns of �-, �/. so that> � , �/.�/587/
 � > � > � , �/.��
 �/587 > � 0 , use k � , �/.�6� 00 � , �6.�/5l7:
 �/5l7nm as a &��o& pivot.

In the next section, we present the methods that integrate the ����� diagonal pivoting and
the Bunch-Kaufman pivoting algorithms into the existing ILDUC process without significant
overhead.

3. ILDUC with Pivoting for Sparse Symmetric Matrices. Algorithm 3.1 shows the
ILDUC process to calculate the factorization �p�q�M�r� , modified from the ILUC algorithm
proposed in [17].

ALGORITHM 3.1. ILDUC - Crout version of Incomplete LDU factorization
1. s � �ut ��� A �'�v��wyx
2. For �'�F��wzx Do :
3. Initialize row { : {z7f� �%� " A {4�/5l7f� 	\�|t}��
 �/5l7f� 	
4. For ~�� > � d � d ������t�xZsU�=�6;��� "�� Do :
5. {4�/587S� 	)�u{4�/587S� 	����=�/;c��s�;��M�<;=
 �6587f� 	
6. EndDo
7. Initialize column � : ��7f� ��� " A ���/587S� 	��qt}�/587S� 	}
 �
8. For ~�� > � d � d ������t�xZs��<;@�\�� "}� Do :
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9. � �/587S� 	 �|� �/587S� 	 �V� ;@� ��s ; ��� �/5l7f� 	�
 ;
10. EndDo
11. Apply a dropping rule to row {
12. Apply a dropping rule to column �
13. ����
 ���u{�Rys�� A ���6���F�
14. ���B
 �U�q�URys�� A �=���%�K�
15. For ~�� > �%Cq� d � d x A ��;@���� " t�xZs?���/;��� "}� Do:
16. s�;8�us�;�����;@����s����M���/;
17. EndDo
18. EndDo

One property of the Crout version of LU is that only previously calculated elements are
used to update the � -th column of � and the � -th row of � at step � . For sparse matrices, this
means new fill-ins will not interfere with the updates of the � -th column of � and the � -th
row of � . Therefore, the updates to the � -th row of � (resp., the � -th column of � ) can be
made in any order, i.e., the variable � can be chosen in any order in Line 4 (resp., in Line 8).
This avoids the expensive searches in the standard ILUT. However, as pointed out in [17], two
implementation difficulties regarding sparse matrix operations have to be addressed. The first
difficulty lies in Lines 5 and 9 in Algorithm 3.1. At step � , only the section Jh�?C��%wyx�Q of the� -th row of � is needed to calculate the � -th row of � . Similarly, only the section Jh�?C*��wyx�Q
of the � -th column of � is needed to calculate the � -th column of � . Accessing entire rows
of � or columns of � and then extracting the desired part is an expensive option. The second
difficulty lies in lines 4 and 8 in Algorithm 3.1. � is stored column-wise, but the nonzeros in
the � -th row of � must be accessed. Similarly, � is stored row-wise, but the nonzeros in the� -th column of � must be accessed.

A carefully designed bi-index data structure was used in [17] to address these difficulties,
inspired from early work by Eisenstat et al. [11] and Jones and Plassmann [16]. The bi-index
data structure consists of four arrays of size x : �����hDy��� , �M�=�L��� , ������Dy��� , and �%�=�L��� . At step� , �M����Dy���6J=�LQ , � d � d ���u� , points to the first entry with the row index greater than � in
the � -th column of � . In this way, the section � �/5l7f� 	�
 ; can be efficiently accessed, which
addresses the first difficulty. It is worth pointing out that the elements in a column of � needs
to be sorted by their indices to achieve this. However, in contrast with the searches needed
in the standard ILUT, this sorting is much more efficient for two reasons. First, the sort is
performed only after a large number of elements in a column are dropped, unlike in ILUT,
where searching is performed on all of the elements. Second, a fast sorting algorithm such
as Quick Sort can be easily applied, unlike in ILUT where some overhead in performing the
search (e.g., when building the binary search trees). To address the second difficulty, the
array �������� is used to maintain linked lists of elements in the � -th row of � , where � H � . The
linked lists are updated in such a way that the linked list of the elements in the � -th row of �
is guaranteed to be ready at step � . This linked list will be used to update the � -th row of � .������Dy��� and �%�=�L��� are formed in a similarly way.

In the following, we discuss how we integrate pivoting methods to the bi-index data
structure used in ILDUC for sparse symmetric matrices. One critical issue is that the new
methods with pivoting should have a similar cost and complexity as that of ILDUC.

3.1. The ����� Diagonal Pivoting. For the ����� diagonal pivoting, we need to locate the
largest diagonal element in absolute value at each step. For sparse matrices, a straightforward
linear search would lead to a computational cost of �)J=x b Q , which is not acceptable especially
when x is large. Alternatively, we build a binary heap for the diagonal elements in order to
locate the largest diagonal entry efficiently. The binary heap is formed and maintained so that
each node is greater than or equal to its children in absolute value. Therefore, the root node
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is always the largest diagonal entry in absolute value. Algorithm 3.2 summarizes ILDUC
with �)��� diagonal pivoting (termed ILDUC-DP). Note that for a symmetric matrix � the
factorization is �������( q��\�M� , so only � needs to be calculated in the algorithm.

ALGORITHM 3.2. ILDUC-DP - Incomplete �M�\��� with ���V� diagonal pivoting
1. s����ut���� A �'�v��wyx
2. Initialize a binary heap for s}� A �'�K� A�¡�¡�¡6A x
3. For �'�F��wzx Do :
4. Locate the largest diagonal s G in absolute value from the root node of the heap
5. Interchange column D and column � if Dr��u�
6. Remove the root node from the heap and reorder the heap
7. Initialize column � : � 7f� � � " A � �/587S� 	 �qt �/587S� 	}
 �
8. For ~�� > � d � d ������t�xZsU� �6; �� "�� Do :
9. ���/587S� 	'�q���/587S� 	)�e�=�/;���s�;c���=�6587f� 	�
 ;
10. EndDo
11. Apply a dropping rule to column �
12. ���B
 �U�q�UR4s�� A �=�6���K�
13. For ~�� > ��Cq� d � d x A ��;@���� "}� Do:
14. s�;8�qs�;�����;¢����s�������;¢�
15. Reorder the heap for s�;
16. EndDo
17. EndDo

In the above algorithm, the cost of initializing the binary heap is �)J�x�Q (a bottom-up
approach). The total cost of removing the root node and reordering the heap is �)J=x%£¥¤�¦x�Q .
The total cost of maintaining the heap is at most �)J�§rx%£¢¤z¦¨x�Q (where §ª©�©�x is the dropping
parameter defining the maximum number of fill-ins allowed in each column) since whenever
a diagonal element is modified (line 15) the heap has to be reordered. Therefore, the total
cost is bounded by �)J=§�x%£¥¤�¦x�Q .

3.2. The Bunch-Kaufman Diagonal Pivoting. In the Bunch-Kaufman pivoting method,
to determine the next pivot at each step only requires searching for at most two columns in the
reduced matrix. This is feasible for a sparse symmetric matrix as the number of nonzero en-
tries in each column is very small. Algorithm 3.3 describes ILDUC with the Bunch-Kaufman
pivoting (termed ILDUC-BKP). Since ILDUC uses a delayed-update strategy, notice that the
two columns must be updated before proceeding with the search in the algorithm.

ALGORITHM 3.3. ILDUC-BKP - Incomplete ������ with the Bunch-Kaufman pivoting
method

1. For �'�F��wzx Do :
2. Load and update t��6587f� 	�
 � . Let

0 � >¥> t}�/587S� 	�
 � >¢> « and > t G � > � 0 .
3. If > t ��� >�H�I 0 Then
4. Let ���K� .
5. Else
6. Load and update t �/587S� 	}
 G . Let

W �q1)2y3 a�¬ G > t a�G > .
7. If > t �6� > W H®I 0¯b Then
8. ���K�
9. Else If t GfG H®I W Then
10. ���K� ; interchange the � -th and the D -th rows and columns.
11. Else
12. ��� & ; interchange the Jh��C|�PQ -th and the D -th rows and columns.
13. End If
14. End If
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15. Perform ILDUC elimination process using the ���i� pivot
16. EndDo

3.3. Implementation. Similarly to ILUTP in SPARSKIT [20], ILDUC-DP and ILDUC-
BKP use a permutation array along with a reverse permutation array to hold the new ordering
of the variables. This strategy ensures that during the elimination the matrix elements are
kept in their original labeling.

For ILDUC with pivoting, new strategies are needed to address the two implementation
difficulties mentioned earlier in this section due to pivoting. First, we need to efficiently
access � �/587S� 	�
 ; for any ��©°� to calculate the � -th column of � . In the implementation of
ILUC, recall that an x -size array �M����Dy��� is maintained so that �����hDy���6J=�LQ always points to
the first element with a row index greater than � in column � . This also requires that the
elements in a column of � be stored in the order of increasing row indices. However, with
pivoting enabled, at the time when the � -th column is calculated, the order of the elements is
unknown as they may be repositioned later due to pivoting. Thus, this method will not work
with pivoting. Our new strategy to handle this issue is as follows. Observe that the positions
of elements in section �M;�� ��±�7/
 ; , �M©�� , will not be changed after step ���n� . We use �M����Dy���6J��LQ
to record the number of nonzero elements in section ��;�� �P±�7/
 ; . Since the nonzero elements in� ;�� 	�
 ; are stored compactly in a linear buffer, we always store the nonzero elements in section� ;�� ��±�7/
 ; in the first �M����Dy���6J=�LQ positions in the buffer. In this way, the nonzero elements in� ��� 	}
 ; are continuously stored (although they may be in any order) starting from position�M����Dy���6J=�LQ¨C²� in the linear buffer, which can be efficiently accessed. After � ��� 	�
 ; is used
to calculate the � -th column of � , we need to ensure the above property for the next step.
Specifically, we need to scan the linear buffer starting from position �M����Dy���6J=�LQ�Cq� to access
the nonzero elements in ����� 	�
 ; . If ����
 ; is zero, we do nothing. Otherwise, it can be located
during the scan. We then swap ����
 ; with the elements stored at position �M����Dy���6J=�LQ and let�M����Dy���6J=�LQUwB�K�����hDy���6J=�LQlC � . Thus, at step �-C � , the nonzero elements in section ���/587S� 	}
 ;
are guaranteed to be stored continuously starting at position �M����Dy���6J=�LQ as well.

Second, we need to access some rows of � but it is stored column-wise. In ILUC, recall
that a x -size array �M�=�L��� is carefully designed and maintained such that all elements in the� -th row of � are guaranteed to form a linked list when needed at the � -th step. This linked
list is embedded in �M�=�L��� . However, when pivoting is allowed, the availability of only the � -th
row of � is not enough. For any ³�E � , the ³ -th row may be interchanged with the � -th row
at step � due to pivoting. Therefore, we need to maintain a linked list for each row of � with
a row index greater than or equal to � .

We can also use strategies such as preordering and equilibration to further improve the
stability of our methods. We apply the Reverse Cuthill-McKee (RCM) algorithm to preorder
the matrices [7] in our implementation. A matrix is equilibrated if all its rows and columns
have the same length in some norm. We use the method proposed by Bunch in [5] to equili-
brate a symmetric matrix so that its rows/columns are normalized under the max-norm. It is
worth pointing out that for sparse symmetric matrices the two difficulties in ILDUC exist in
the equilibration method as well. We address them by using the same bi-index data structure
in our implementation.

4. Experiments. In this section, we compare the performances of ILDUC, ILDUC with���e� pivoting (ILDUC-DP), and ILDUC with the Bunch-Kaufman pivoting (ILDUC-BKP).
The computational codes were written in C, and the experiments were conducted on a 1.7GHz
Pentium 4 PC with 1GB of main memory. All codes were compiled with the -O3 optimization
option.

We tested ILDUC, ILDUC-DP, and ILDUC-BKP on 11 symmetric indefinite matrices
selected from the Davis collection [8]. Some generic information on these matrices is given
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in Table 4.1, where x is the matrix size and x�xZ{ is the total number of nonzeros in a full
matrix. In the tests, artificial right-hand sides were generated, and GMRES(60) was used to
solve the systems using a zero initial guess. The iterations were stopped when the residual
norm was reduced by 8 orders of magnitude or when the maximum iteration count of 300
was reached. The dual criterion dropping strategy was used for all preconditioners, i.e., any
element of column � whose magnitude was less than a tolerance ´<� >¢> ���/587S� 	�
 � >¢> 7 was dropped;
and only “Lfil” largest elements were kept. The parameter “Lfil” was selected as a multiple of
the ratio 	y	zµ	 , the average number of nonzero elements per column in the original matrix. We
used a parameter ´ to determine the dropping tolerance and a parameter ¶ to set the value of
“Lfil”: �M�������®¶�� 	y	yµ	 . Nevertheless, even under the same control parameters, the number of
fill-ins may be very different from method to method. To better compare the preconditioners,
we used an indicator called a fill-factor, i.e., the value of x�xZ{cJ·��C �gCu���8QfR4x�xZ{cJ·��Q , to
represent the sparsity of the ILU factors. A good method should yield convergence for a
small fill-factor.

TABLE 4.1
Symmetric Indefinite Matrices from the Davis Collection

Matrix x x�xZ{ Source
aug3dcqp 35543 128115 3D PDE
bloweya 30004 150009 Cahn-Hilliard problem
bratu3d 27792 173796 3D Bratu problem
dixmaanl 60000 299998 Dixon-Maany optimization example
mario001 38434 206156 Discretization
mario002 389874 2101242 Discretization
olesnik0 88263 744216 Straz pod Ralskem mine model
sit100 10262 61046 Straz pod Ralskem mine model
stokes64 12546 140034 Stokes equation
tuma1 22967 87760 Mine model
tuma2 12992 49365 Mine model

Table 4.2 shows the results of the three preconditioners on the 11 matrices, where the
RCM ordering and equilibration were applied. To ensure the preconditioners were compara-
ble, we fixed the dropping tolerance to ´o� " $ "z" � and artificially selected a fill-in parameter¶ for each preconditioner such that the resulting fill-factors were similar for each matrix. For
references, we also tested the linear systems with ILUTP under similar fill-in parameters.
Since ILUTP does not take advantage of symmetry and the ILUTP code we used was written
in FORTRAN, we only compared the convergence and ignore the execution time for ILUTP.
In the table, the values in the “fill” field are the fill-factors. The symbol “-” in the “fill” field
indicates that the preconditioner failed due to a zero pivot encountered during ILU. “its” de-
notes the number of iterations for GMRES(60) to convergence. A symbol “-” in the “its” field
indicates that convergence was not obtained in 300 iterations. “sec.” denotes the total time in
seconds used for each method (Preconditioning time +GMRES(60) time).

From the table, it is clear that ILUTP was not robust and ILDUC failed in most cases due
to zero pivots encountered. ILDUC with the Bunch-Kaufman is better than ILDUC with di-
agonal pivoting in general. Next we offer a few additional comments on these performances.

1. aug3dcqp, stokes64: For these two matrices, with a similar amount of fill-ins al-
lowed (e.g. � $ ¸ ��x�xZ{ , � $ ¹ Tyx�xZ{ , and � $º¸ " x�xZ{ for aug3dcqp respectively), all three
ILDUC-based methods converged. The number of iterations required for conver-
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TABLE 4.2
Performances on Symmetric Indefinite Matrices: »�¼o½�¾ ½/½�¿

Matrix ILDUC ILDUC-DP ILDUC-BKP ILUTP
Name fill its sec. fill its sec. fill its sec. fill its
aug3dcqp 1.51 57 2.10 1.48 51 3.41 1.50 52 3.10 2.22 -
bloweya - - - 1.16 20 0.95 1.00 4 0.15 1.13 7
bratu3d - - - 1.55 152 8.57 1.57 75 4.10 1.62 41
dixmaanl 1.44 20 1.02 1.59 - - 1.43 7 0.47 1.79 -
mario001 - - - 2.00 82 6.27 2.02 60 5.64 2.17 -
mario002 - - - 2.01 266 208.78 2.02 205 157.84 2.18 -
olesnik0 - - - 2.02 156 30.65 2.02 165 31.83 2.07 -
sit100 - - - 1.47 71 0.72 1.42 70 0.71 1.46 -
stokes64 2.08 144 1.52 2.08 124 2.22 2.08 143 3.12 2.17 -
tuma1 - - - 1.79 230 9.98 1.82 71 2.68 1.99 -
tuma2 - - - 1.45 - - 1.42 254 3.49 1.44 -

gence was similar for all methods (ILDUC-DP required slightly fewer iterations to
converge for matrix stokes64). As expected, the cost of ILDUC with pivoting is of
the same order as that of ILDUC. Even with larger fill-in factors, ILUTP did not
converge.

2. bloweya, bratu3d: For these two matrices, ILDUC-DP, ILDUC-BKP and ILUTP
converged, but ILDUC failed due to zero pivots encountered. Nevertheless, ILDUC-
BKP and ILUTP had better performances than ILDUC-DP.

3. mario001, mario002, tuma1: For these matrices, ILDUC-DP and ILDUC-BKP both
converged, but ILDUC and ILUTP failed. ILDUC-BKP had better performances
than ILDUC-DP. With a similar or even less amount of fill-ins, ILDUC-BKP re-
quired much fewer iterations to converge. For example, for matrix tuma1, ILDUC-
DP required 230 iterations to converge with a fill-factor of � $ OyÀ , while ILDUC-BKP
only required 71 iterations with a fill-factor of � $ T�& . Table 4.3 compares ILDUC-
DP and ILDUC-BKP with various fill-in factors on matrix tuma1. From the table,
we see that ILDUC-BKP is more efficient than ILDUC-DP. Figure 4.1 (a) and (b)
compare the preconditioning cost and the total cost of the two methods respectively.
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FIG. 4.1. Comparison on the preconditioning time and the total time for matrix tuma1
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TABLE 4.3
Matrix tuma1. »�¼o½�¾ ½/½�¿ .

Preconditioner GMRES(60) Total
Method fill sec. its sec. sec.
ILDUC-DP 1.79 0.27 230 10.18 10.45
ILDUC-BKP 1.82 0.14 71 2.84 2.98
ILDUC-DP 2.10 0.31 118 5.37 5.68
ILDUC-BKP 2.11 0.16 56 2.38 2.54
ILDUC-DP 2.39 0.36 69 2.98 3.34
ILDUC-BKP 2.40 0.20 41 1.44 1.64
ILDUC-DP 2.67 0.40 52 2.26 2.66
ILDUC-BKP 2.68 0.23 36 1.19 1.42
ILDUC-DP 2.96 0.45 45 1.80 2.25
ILDUC-BKP 2.94 0.26 31 0.97 1.23

4. olesnik0, sit100: ILDUC and ILUTP failed on these two matrices, but ILDUC-DP
and ILDUC-BKP converged and had similar performances.

5. dixmaanl: ILDUC-DP and ILUTP failed on this matrix. ILDUC-BKP had a slightly
better performance than ILDUC.

6. tuma2: ILDUC-BKP was the only preconditioning method that converged for matrix
tuma2.

5. Experiments with KKT Matrices. In this section, we test the preconditioners on
14 KKT matrices (in reference to the Karush-Kuhn-Tucker first-order necessary optimality
conditions for the solution of general nonlinear programming problems [14]) as shown in
Table 5.1. KKT matrices have the form:�u� !�Á Â�ÃÂ "Ä#
and are often generated from equality and inequality constrained nonlinear programming,
sparse optimal control, and mixed finite-element discretizations of partial differential equa-
tions [14]. The 14 KKT matrices were provided by Little [18] and Haws [14]. Matrices
P2088 and P14480 were permuted from their original form [19] in order to obtain a more
narrow bandwidth for the

Á
part. The experiments were conducted on a 866MHz Pentium

III PC with 1GB of main memory.
Table 5.2 summaries the results of ILDUC, ILDUC-DP, ILDUC-BKP, and ILUTP on

these matrices. Equilibration was applied. From the table, we make the following observa-
tions. First, ILDUC-BKP has the best overall performance on these matrices. ILUTP solved
6 problems, ILDUC solved 7 problems, ILDUC-DP solved 8 problems, and ILDUC-BKP
solved 12 problems. Second, as expected, the cost of ILDUC-BKP is of the same order as that
of ILDUC. This is evidenced in matrices CHOI-L, LCAV-S1, STIFF5, MASS04, MASS05
and MASS06, where the number of iterations for the two methods were identical or very
close. Third, ILDUC-DP is the best method for matrices P2088 and P14880. Especially for
P14880, ILDUC-DP is the only preconditioner that converged. However, for matrices such
as CHOI-L, LCAV-S1, STIFF4 and MASS05, ILDUC-DP did not converge or required sig-
nificantly more iterations to converge. Finally, although ILUTP had the worst performance
on these matrices and it did not take advantage of symmetry, it was the only method that
converged for matrix TRAJ33.
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TABLE 5.1
KKT Matrices

Matrix x x�xZ{ Source
P2088 2088 15480 Magnetostatic problem (2D coarse discretization)
P14880 14880 113880 Magnetostatic problem (2D fine discretization)
CHOI 9225 168094 Particles in fluid simulator (5 descending particles)
CHOI-L 22128 417156 Particles in fluid simulator (5 descending particles)
LCAV-S1 14531 169972 Full Navier-Stokes equations in L shaped cavity
OPT 9800 72660 Optimization problem
STIFF4 8496 41318 Stiffness problem
STIFF5 33410 177256 Stiffness problem
MASS04 8496 56818 Mass problem
MASS05 33410 241012 Mass problem
MASS06 33794 257220 Mass problem
TRAJ27 17148 235141 Sparse optimal control problem
TRAJ33 20006 496945 Sparse optimal control problem
LNTS09 17990 95295 Sparse optimal control problem

TABLE 5.2
Performances on KKT Matrices: Å�¼oÆ�¾ Ç , »�¼�½�¾ ½�¿

Matrix ILDUC ILDUC-DP ILDUC-BKP ILUTP
Name fill its sec. fill its sec. fill its sec. fill its
P2088 2.66 - - 2.63 33 0.17 2.66 201 1.06 2.66 -
P14880 2.63 - - 2.62 97 4.38 2.63 - - 2.64 -
CHOI - - - 2.51 41 1.84 2.40 20 1.12 2.33 20
CHOI-L 2.28 20 2.16 2.50 40 5.12 2.28 20 2.88 1.76 20
LCAV-S1 1.78 23 0.95 2.27 41 2.24 1.78 23 1.18 2.08 -
OPT 2.68 - - 2.69 - - 2.68 - - 2.89 -
STIFF4 2.29 41 0.67 2.28 79 1.32 2.28 58 1.14 2.32 68
STIFF5 2.22 75 7.60 2.16 - - 2.22 76 8.10 2.22 -
MASS04 2.20 5 0.12 2.19 13 0.26 2.19 5 0.15 2.18 10
MASS05 2.33 7 0.74 2.27 180 20.79 2.33 7 0.91 2.41 -
MASS06 2.29 11 1.11 2.25 - - 2.29 11 1.31 2.41 -
TRAJ27 0.89 - - 1.29 - - 0.90 120 7.10 0.90 -
TRAJ33 0.88 - - 1.08 - - 0.89 - - 0.84 96
LNTS09 - - - - - - 0.85 15 0.48 0.97 55

6. Conclusion. We have explored two symmetry-preserving pivoting methods and shown
how to integrate them into a Crout version of the ILU factorization. As expected, this imple-
mentation results in better quality symmetric incomplete factorization for symmetric matri-
ces. The overhead associated with this implementation is not significant. In addition, the
pivoting methods have been demonstrated to fit the underlying data structure used in ILUC.
Our experiments show that the Bunch-Kaufman pivoting method can be efficiently and effec-
tively integrated with a sparse symmetric iterative solver.
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