
Electronic Transactions on Numerical Analysis.
Volume 21, pp. 66-80, 2005.
Copyright 2005, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS
VIA DYNAMIC LOOP SCHEDULING

�

IOANA BANICESCU
�

AND RICOLINDO L. CARIÑO �
Dedicated to Alan George on the occasion of his 60th birthday

Abstract. In general, scientific applications are large, computationally intensive, irregular and data-parallel.
One of the main performance degradation factors when running scientific applications in parallel and distributed
environments is load imbalance that may rise from a wide range of characteristics, due to problem, algorithmic,
and systemic factors. Moreover, due to the stochastic behavior of many scientific applications, the load imbalance
can unexpectedly occur at runtime, leading to difficulties in making decision about optimal partitioning, allocation
and scheduling. In recent years, since parallel loops are prevalent and a major source of parallelism in scientific
computations, many dynamic loop scheduling algorithms have been developed to improve performance via load
balancing. These algorithms address the unpredictable behavior of computations, and many of these are based on
probabilistic analyses. These have proven to be effective in improving performance of important applications used in
scientific computing by addressing the entire spectrum of factors that lead to load imbalance. This paper proposes the
use of a dynamic loop scheduling approach for repartitioning in scientific applications that contain computationally
intensive parallel loops. A new partition is computed and data is redistributed during the execution of a parallel
loop. This approach addresses load imbalance factors as they arise during a computational step, in contrast to the
traditional load balancing approach of determining a new partition and migrating data after a computational step.
Preliminary performance tests of an application that implements the proposed approach validate the feasibility and
the effectiveness of the approach.

Key words. dynamic load balancing, data repartitioning, loop scheduling

AMS subject classifications. 68W10

1. Introduction. Scientific applications are, in general, large, computationally intensive
and data parallel. The efficient utilization of computing resources assigned to such applica-
tions requires two objectives to be achieved: the processors should be busy doing useful
work, and the overhead of interprocessor communications should be kept small. For some
applications, these objectives can be achieved by a simple, static partitioning of the work com-
ponents among processors if the components have the same or predictable execution times,
and the relative speeds of the processors are known. For many other applications, a dynamic
partitioning of the work is necessary because the execution times of the work components
inherently change as the application progresses, or the effective speeds of the processors vary
due to unpredictable system induced effects. A number of algorithms have been proposed for
this dynamic load balancing problem. See [20] for a review. Several implementations have
been developed and incorporated in software libraries, such as PLUM [27], DRAMA [10]
and Zoltan [9]. For example, the Zoltan library includes the following load balancing and
parallel repartitioning methods: Recursive Coordinate Bisection [8], Recursive Inertial Bi-
section [31], Hilbert Space Filling Curve [35, 28], Refinement Tree Based Partitioning [26],
ParMETIS [24], Jostle [33, 34], and Octree Partitioning [17].

In general, applications that require repartitioning may be described by a high level algo-
rithm such as the one in Figure 1.1. Here, the load balancing approach could be best described

�
Received August 19, 2004. Accepted for publication October 3, 2005. Recommended by S. Oliveira. This

work was partially supported by the following National Science Foundation grants: CAREER #9984465, ITR/ACS
#0081303, ITR/ACS #0085969, #0132618, and #0082979.�

Dept. of Computer Science and Engineering, Mississippi State University, PO Box 9637, Mississippi State MS
39762 (ioana@cse.msstate.edu). Also with the Center for Computational Sciences–ERC, Mississippi State
University.
� Center for Computational Sciences–ERC, Mississippi State University, PO Box 9627, Mississippi State MS

39762 (rlc@erc.msstate.edu).

66

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 67

Establish initial data partitioning;
do

! Computation step
Perform some computations;
if termination condition detected, then exit;
! Load balancing step
Compute new partition;
Perform data migration;

end do

FIG. 1.1. A high level description of dynamic applications.

as iterative static repartitioning. Typically, the load balancing is performed after one or more
computation steps of the application are completed, or after an a priori established threshold
of imbalance has been detected. Since load balancing is a separate step from the compu-
tations, processor work load differences during the computations are not addressed as they
occur, contributing to application performance degradation.

A major source of parallelism in scientific applications is the parallel loop, a loop with-
out dependencies among its iterations. A loop with certain kinds of dependencies among
its iterations can also be converted into a parallel loop by eliminating the dependencies us-
ing methods such as loop unrolling. The iterations can be executed in any order, or even
simultaneously, without affecting the correctness of the application. Typically, in Figure 1.1,
the computations will involve a parallel loop over all application data items, like mesh
points or elements, or particles. An application can have several parallel loops, each loop
having unique characteristics. A partitioning of the application data which results in good
load balancing for one loop may lead to severe load imbalance for other loops. Or, the appli-
cation can have a single computationally intensive parallel loop whose characteristics change
as the application progresses. Therefore, the partitioning has to be adapted during loop execu-
tion in order to achieve balanced processor work loads. This has motivated the development
of dynamic loop scheduling techniques for load balancing parallel loops, such as factoring
[23], fractiling [2], weighted factoring [22], adaptive weighted factoring [4, 5], including its
variants [11], and adaptive factoring [6, 3]. Based on probabilistic analyses, these techniques
schedule the execution of loop iterations in chunks with variable sizes. The chunk sizes are
determined during the loop execution such that chunks have a high probability of being com-
pleted before the optimal time. Some of the applications in which the techniques have been
successfully incorporated include Monte Carlo simulations [23], radar signal processing [22],
N-body simulations [2, 4, 5, 3], computational fluid dynamics on unstructured grid [4, 5, 3],
profiling of a quadrature routine [12], and wave packet simulations [15, 16]. Fractiling has
also been incorporated into a parallel runtime system that combines data parallel load balanc-
ing with task parallel load balancing [30]. The techniques have been implemented in a load
balancing tool for executing distributed parallel loops in MPI applications [13]. The tech-
niques have also been incorporated in a load balancing library for executing parallel loops in
applications using the DMCS/MOL system [1].

This paper proposes an approach to repartitioning in scientific applications with compu-
tationally intensive parallel loops characterized by stochastic and irregular behavior. Based
on dynamic loop scheduling, this approach aims to address the entire spectrum of factors
arising from application-specific, algorithmic, and systemic characteristics that induce load
imbalance, leading to performance degradation. One previous indicator for the feasibility of
this approach is the successful implementation of fractiling in N-body simulations [2]. Here,

ETNA
Kent State University
etna@mcs.kent.edu

68 I. BANICESCU AND R. L. CARIÑO

the factoring technique determines how much work should be migrated between processors
in order to achieve load balance while they cooperatively execute the computationally inten-
sive loop over the leaves of a tree of particle data. The tiling technique identifies which work
pieces will be migrated. Subsequent experiments have shown that adaptive techniques based
on factoring further improved the performance of the simulation [4, 5, 3, 1]. This example
highlights the feasibility of repartitioning during the computations phase in Figure 1.1.

The rest of the paper is organized as follows. Section 2 reviews non-adaptive and adap-
tive techniques that have been developed to dynamically execute parallel loop iterations. The
adaptive techniques originally assume a centralized work queue of iterations from which idle
processors obtain chunks to execute, an assumption that ideally maps to a shared memory
architecture. Section 3 gives a high level description of a dynamic loop scheduling algorithm
with a distributed work queue of iterations on a message passing environment. This algorithm
is the basis of the proposed approach to dynamic repartitioning in applications with compu-
tationally intensive parallel loops. Section 4 describes the preliminary implementation of the
proposed approach in the context of a real application — a framework for the simultaneous
analysis of multiple datasets on general-purpose Linux clusters. Specifically for this paper,
the framework is configured for datasets of gamma-ray burst (GRB) time profiles, to be fitted
with nonlinear multivariate time series models. The framework can be configured for other
datasets and their corresponding analysis routines as well. Section 5 presents performance
results of the framework in the analysis of GRB datasets, highlighting the effectiveness of the
repartitioning strategy. Section 6 summarizes previous efforts that have influenced the devel-
opment of the loop scheduling approach to repartitioning and the design of the framework
for simultaneous analysis of multiple datasets. Section 7 concludes with remarks on ongoing
related efforts.

2. Overview of Dynamic Loop Scheduling. Assume that in a parallel application, a
loop with � independent iterations is to be executed by � processors. The iterations are
stored in a work queue from which idle processors obtain chunks. The sizes of the chunks
are determined according to a scheduling technique that attempts to minimize the overall
loop execution time. The technique is classified as non-adaptive when the chunk sizes are
predictable from information that is available or assumed before loop execution, or adaptive
when the chunk sizes depend on information available only during loop execution.

Non-adaptive loop scheduling techniques generate equal size chunks of iterates or pre-
dictable decreasing size chunks. Equal size chunks are generated by static chunking (STAT)
where all the chunks are of size �����
	 self scheduling (SS) where all the chunks are unit size,
and fixed size chunking [25] (FSC) which requires the following parameters to be known a
priori: ��	� - the mean and the standard deviation of the iteration execution times, and � - the
overhead of scheduling. Methods that generate predictably decreasing size chunks have also
been implemented. The idea underlying these techniques is to initially allocate large chunks
and later use the smaller chunks to smoothen the unevenness of the execution times of the
initial larger chunks. The chunk sizes decrease geometrically in Guided Self Scheduling [29]
(GSS), and linearly in Trapezoid Self Scheduling [32] (TSS). In Factoring [23] (FAC), itera-
tions are scheduled in batches, where the size of a batch is a fixed ratio of the unscheduled
iterations, and the batch is divided into � equal size chunks. The ratio is determined from
a probabilistic analysis such that the resulting chunks have a high probability of finishing
before the optimal time. For N-body simulations, the combination of factoring and tiling,
a technique for organizing data to maintain locality and cache reuse, is known as fractiling
[2] (FRAC). Weighted factoring [22] (WF) incorporates information on relative processor
speeds in computing chunk sizes, where these speeds are assumed to be fixed throughout the
execution of the loop.

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 69

A number of techniques that generate adaptive size chunks have evolved from factoring
and weighted factoring. The requirement for the processor speeds in weighted factoring is
relaxed in adaptive weighted factoring (AWF), a method developed to be utilized in time
stepping applications [4, 5]. The processor weights are initially set to unity for the first time
step. The execution times of chunks during a time step are recorded, and the data is used to
adapt the processor weights at the end of the time step. The AWF, however, does not adapt
to any load imbalance that occurs during the current step. A variant of the AWF [11] to
address this shortcoming is to utilize the rates of execution of iterations in earlier chunks to
adapt the processor weights for the succeeding chunks within the time step. The requirement
in factoring that the mean and standard deviation of the iteration execution times are known
a priori and are the same on all processors, is relaxed in adaptive factoring (AF) [6, 3].
These quantities are dynamically estimated during runtime from earlier chunks. The sizes of
succeeding chunks are then computed using these estimates, and these estimates are refined
by using more information from recently executed chunks. Although based on FAC, AF
does not need to schedule iterations in batches; the size of an AF chunk depends only on the
remaining iterations, and on the mean and standard deviation of the iteration execution times
of the most recent chunk executed by each processor. AF incurs higher overhead due to the
necessity of timing each iteration in order to estimate the mean and standard deviation of the
execution times of iterates belonging to the new chunks.

Assuming that the scheduling operation has the same cost regardless of the size of the
chunk, analytical expressions for the scheduling overhead can be derived for most of the
techniques. The overhead depends on the number of chunks generated by the technique.
Each chunk triggers some arithmetic operations to compute the chunk size, and bookkeeping
operations for information about the chunk. The fixed sized techniques (STAT, SS, FSC) gen-
erate ����� , � , and � /(FSC size) chunks, respectively, while GSS, FAC and AWF generate��� ������� � ��������� chunks. For the adaptive factoring (AF), the number chunks is unknown
since it depends on measurements taken during runtime; however, experience indicates that
it is no more than twice that of FAC. Since the number of chunks does not asymptotically
exceed the problem size ��	 loop scheduling is theoretically considered scalable.

Loop scheduling techniques were originally developed assuming a centralized work queue
of iterations where idle processors obtain chunks to execute. This assumption ideally maps to
a shared memory architecture, requiring the processors to synchronize on a small set of vari-
ables. On a message passing environment, loop scheduling is typically implemented using a
scheduler/worker algorithm. The work queue may be centralized in the scheduler, replicated
in all processors, or distributed among the processors. Workers trigger scheduling events by
sending requests to the scheduler. If the work queue is centralized, the scheduler responds
with the data for a chunk of iterates. If the work queue is replicated, the scheduler sends
only the chunk size. In the case of a distributed work queue, if the requesting worker is done
with its local queue, the scheduler initiates the transfer of work queue elements from a “slow”
worker to the requesting worker. The scheduling function may not require a dedicated pro-
cessor; hence, the scheduler can also participate in executing iterations as another worker.
The communication of control information and the migration of data in the message-passing
implementation of loop scheduling contribute to the overall loop execution cost, which hope-
fully is offset by the performance gains due to load balancing.

Early implementations of FAC, WF, AWF and AF on a message passing architecture
utilize a replicated work queue of iterations. This setup has the advantage of using only very
short control messages to and from the scheduler. Data movement during loop computation
is not necessary, since each processor has a local copy of the work queue; however, additional
communications are needed in order to make the results of the computations by one processor

ETNA
Kent State University
etna@mcs.kent.edu

70 I. BANICESCU AND R. L. CARIÑO

FIG. 3.1. Dynamic loop scheduling approach to repartitioning.

available on other processors. The disadvantages of this setup include the possibility of the
scheduler becoming a bottleneck when the number of processors becomes large, and more
significantly, the problem size must be limited such that the work queue will fit into the
memory available on any of the processors. In contrast, a distributed work queue is utilized
in the implementations of FRAC for the N-body simulations [2], where only a subset of the
application data is stored in a processor. This setup accommodates larger problem sizes;
however, it incurs higher communication overhead due to the need to redistribute data for
load balancing.

3. Loop Scheduling Driven Repartitioning. For scientific applications that adhere to
the abstraction provided by Figure 1.1, the computations and the load balancing can be per-
formed in a single step if the computations involve one or more CPU intensive parallel loops.
This is typical in many data parallel applications. Employing dynamic scheduling to exe-
cute a parallel loop causes data to be redistributed in order to balance processor loads. The
repartitioning is active since it addresses load imbalance detected during the computations.
In contrast, the repartitioning in Figure 1.1 is reactive, occurring only after computations
that are imbalanced have already contributed to performance degradation. In terms of over-
heads, the dynamic approach incurs scheduling and data migration costs, while the reactive
approach incurs penalty for load imbalance, the cost of computing a new partition, and cost
of data migration.

Figures 3.1(a)–(b) illustrate the proposed dynamic loop scheduling approach to reparti-
tioning in applications that contain computationally intensive parallel loops. The application
objects are assumed to be distributed among the workers before loop execution. The schedul-
ing function is the responsibility of the scheduler, which may or may not participate in the
computations as another worker. As a simplification, the scheduler is assumed to be dedi-
cated. The scheduler maintains a chunk table to keep track of which objects are stored
by each worker.

Figure 3.1(a) illustrates the phase during loop scheduling when workers perform com-
putations on local objects. A worker sends a Request message to the scheduler to request
a chunk size. When received, this message triggers a scheduling event; the scheduler de-
termines a chunk size according to the loop scheduling technique and responds with a Size
message containing this size to the worker. The Requestmessage contains the performance
data of the worker based on the computation times of objects from previous chunks. These
timings provide the scheduler with a continuously updated global view of worker perfor-
mance during loop execution. These timings are used by the scheduler to determine subse-
quent chunk sizes according to the loop scheduling technique. During this phase, very small
control messages are communicated, and the computations on objects may be interleaved with

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 71

the Request message to reduce waiting time by workers for chunk sizes. With interleav-
ing, a worker sends the request before executing the last few iterations of the current chunk;
hopefully, the next chunk size would have arrived from the scheduler before the computation
for the last object of the current chunk is finished. To establish the number of iterations left
in the current chunk before sending the request for a new chunk size, precise measurements
of send/receive message latencies would have to be conducted.

Figure 3.1(b) describes the phase during loop scheduling when actual repartitioning takes
place. This phase commences when a worker, say Worker I, has finished the computations on
its local objects and sends a Request message. The scheduler recognizes the situation from
the chunk table; it determines the next chunk size and the slowest worker, say Worker J, and
sends these information to Worker I through a Get message. Upon receipt of this message,
Worker I prepares a receive buffer and sends a Givemessage containing the size to Worker J.
Worker J then sends a chunk of objects to Worker I. In computing the size, the scheduler may
consider many factors such as the availability of space for the objects in Worker I, estimates of
the cost of moving the objects from Worker J to Worker I, and the penalty of load imbalance if
the objects were to remain in Worker J. On a message passing system that supports one sided
communications, an alternative strategy is for Worker I to perform a one sided get operation
for a chunk of objects from Worker J.

4. Sample Application. As a preliminary investigation of its effectiveness, the pro-
posed dynamic loop scheduling approach to repartitioning was implemented in a framework
for the simultaneous statistical analysis of multiple datasets on a general-purpose cluster. A
parameterized statistical model is to be fitted on multiple datasets. A “one processor per
dataset” parallel strategy is not suitable due to wide differences in dataset analysis times,
ranging from a few seconds to several hours, depending on the number of observations con-
tained in a dataset. A processor assigned to a large dataset will finish long after those assigned
to smaller datasets. An “all processors working on one dataset at a time” strategy precludes
the exploitation of the large number of processors available on typical clusters because of the
limited degree of concurrency in the analysis procedure. Thus, the framework is based on
a “processor groups” strategy, where a large number of processors is organized into groups,
each group responsible for a number of datasets. The load imbalance factors to be addressed
by the framework arise from the differences in the sizes of datasets, differences in the compu-
tational powers of the processor groups, and the unpredictable network latencies or operating
system interferences inherent in a cluster environment.

4.1. Processor Groups Strategy. Figure 4.1 illustrates the strategy for the analysis
framework. The analysis job is submitted to a cluster, and the cluster scheduler commits
the number of processors requested by the job. The framework designates one of the pro-
cessors as a dedicated scheduler S, which is responsible for: (1) organizing the rest of the
processors into groups of crew members C and appointing a foreman F in each group; (2)
retrieving the datasets from disk and distributing these to the groups; and (3) scheduling the
analysis of the datasets by the groups. The scheduling proceeds as outlined in Figure 3.1,
where a group is considered collectively as a single worker, and a dataset corresponds to an
object.

The cluster is usually organized into racks that are connected by a cluster switch, each
rack consisting of a number of nodes connected by a rack switch, and each node containing
one or more processors. Obviously, the communications between processors assigned to a job
will be more efficient if the processors reside in a single rack instead of being spread across
several racks. A message between two processors p1 and p2 located in the same rack requires
at most two hops (p1 � rack switch � p2), as opposed to four hops for a message between
two processors p3 and p4 located on different racks (p3 � rack switch � cluster switch � rack

ETNA
Kent State University
etna@mcs.kent.edu

72 I. BANICESCU AND R. L. CARIÑO

FIG. 4.1. A processor groups strategy for the simultaneous analysis of multiple datasets on a cluster: C=crew,
F=group foreman (also a crew), S=Scheduler.

switch � p4). Typically, the job scheduler for the cluster attempts to assign nodes from a sin-
gle rack to a job for efficient communications. Even with excellent job scheduling algorithms,
fragmentation of processors across a number of racks occurs with a high probability, espe-
cially for jobs that request large numbers of processors. This fragmentation is conveniently
exploited by the framework to match the degree of concurrency in the analysis procedure
with the appropriate number of processors. The scheduler S forms the processors residing in
a rack into a processor group acting as single worker, to carry out the analysis procedure on
one dataset at a time. A very large number of processors in a rack (relative to the degree of
concurrency in the analysis procedure) can formed into two or more workers. However, if
there are racks that contribute tiny numbers of processors, then the processors are combined
together to form a single more powerful worker in order to avoid the possibility of “tiny”
workers being assigned very large datasets. This manner of organizing processors by racks
enables two levels of concurrency: 1) the simultaneous processing of datasets, and 2) the par-
allel execution of the analysis procedure for a single dataset. The organization also exploits
the efficiency of communications among processors residing in a single rack. Load balancing
can be employed on both concurrency levels, that is, among the processor groups and within
a group.

The typical naming convention for the nodes in Linux clusters make it easy to determine
which processors belong to the same physical rack. The processors of a cluster are usually
named <name>-<rn>-<nn>, where <name> is the cluster name, <rn> is the rack number
and <nn> is the node number. Thus, nodes with the same <rn> belong to the same rack.
In MPI, the routine MPI GETHOSTNAME() may be invoked with appropriate arguments to
determine the full name of the node containing the processor executing the routine.

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 73

4.2. Initial Distribution of Datasets. After the processors assigned to the analysis job
are identified and the processor groupings are established, the datasets are retrieved from
disk for distribution to the processor groups. Keeping the datasets in memory offers some
advantages over “on demand” retrieval of datasets from disk. If the datasets are not massive,
moving a dataset from one processor to another within the cluster is at least an order of
magnitude faster than retrieving the dataset from a filesystem outside the cluster.

Given only the number of observations in each dataset and the sizes of the processor
groups, the framework uses the following heuristic to initially distribute the datasets among
the groups. Let denote the number of datasets, ! the number of processor groups, "$# the
number of observations in dataset %&	 and ')(the size of group *�+ Therefore, the total number
of observations is ,.-0/21#�354 " # and the number of processors in the groups is �0-�/76(�354 ' (+
Then, the datasets are distributed such that group * has a total of approximately ' (98 ,:���
observations. Thus, the number of observations in a group is proportional to the number of
processors in the group. These observations would come from a number of datasets selected
to avoid the situation where all the big datasets are lumped together into one processor group.
The distribution procedure is as follows. The datasets are first sorted according to decreasing
" # + Then, for each dataset in sorted order, the group which is farthest from its quota of ob-
servations is identified and the processor with the minimum number of observations in that
group will store the dataset. This ensures that the big datasets are effectively scattered among
the groups, and that the processors in a group store comparable numbers of observations.

4.3. Redistribution of Datasets. The proportionality of the total number of observa-
tions stored by a group to the number of processors of the group is not a guarantee for good
load balance among groups. This is because the number of observations in a group may not
be an appropriate measure of the computational load of the datasets of that group. The dy-
namic nature of a cluster environment also induces other types of load imbalance that must
be addressed during the actual analysis of the datasets, necessitating their redistribution, as
outlined in Figure 3.1(b).

In conventional loop scheduling, a parallel loop with � iterations is to be executed on �
processors. Chunks of iterations are assigned to processors with the objective of minimizing
the loop completion time. The sizes of chunks are determined according to a loop scheduling
technique. Mapped to the present context of simultaneous analysis of multiple datasets, the
� loop iterations correspond to the , observations, and the � processors correspond to the
! groups, a group being a single worker. A chunk of iterations is essentially a fraction ; of
the total � iterations; this chunk corresponds to a collection of datasets whose cumulative
size is approximately ; 8 , observations. Using these correspondences, the dynamic loop
scheduling techniques are applicable in the present context, with the possible exception of
techniques like adaptive factoring (AF) which require measurement of individual iterate ex-
ecution times. The correspondence between a single iteration and a single observation point
may not be valid because the execution of an iteration can timed, while observations are not
analyzed individually, but only collectively in a dataset.

The analysis of a chunk of datasets by a processor group proceeds as follows. The group
foreman F receives information about the chunk from the scheduler S and broadcasts this
to the crew members C. If the scheduler S sent a Size message, then the processors in the
group examine the list of datasets that came with the information in lock step, the owner of
the dataset under examination broadcasts it to the rest of the group, and the group collectively
invokes the analysis routine on the dataset. Otherwise, if the scheduler S sent a Get message,
then the foreman will send Givemessages to the owners of the datasets, the crew members C
will post receives for the incoming datasets, the group waits until all the datasets have been
received, and then the group proceeds as if the scheduler had sent a Size message. The

ETNA
Kent State University
etna@mcs.kent.edu

74 I. BANICESCU AND R. L. CARIÑO

broadcast of datasets within a group will be very efficient if the group resides in the same
physical rack.

4.4. Performance Analysis. The high level control flow for the framework is given by
the following pseudocode:

L1. Organize processors into groups;
L2. Retrieve datasets and distribute to processor groups;
L3. For parameter in {pval_1, pval_2, ..., pval_N} do
L4. For all datasets in parallel do
L5. Analyze dataset using current value of parameter;
L6. end parallel do
L7. end do.

The execution time of the procedure to analyze a dataset typically changes with the value
of parameter, which can be a simple value or a vector of values. Due to load imbalance
factors, redistribution of datasets among groups is expected to occur during the execution of
the parallel loop.

Of particular interest is the performance of the framework in executing the parallel loop
in lines L4–L6. To aid in performance analysis, the framework records the following infor-
mation for each value of parameter:

I1 - the number of groups, their sizes, and names of processors;
I2 - the initial and final distribution of datasets;
I3 - the total time spent by each processor in the analysis routine only; and
I4 - the completion time of each processor for the parallel loop, i.e., the elapsed time

for lines L4–L6.
Note that I1 does not change across parameter values, and that in I2, the final distribution
of datasets for one parameter value will be the same as the initial distribution of datasets
for the next parameter value.

For a given parameter value, a basic performance metric for the parallel loop is the
parallel time <>= , which is the maximum of the I4 values. The cost metric is � 8 <?=
+ If
the processors are homogeneous and equally loaded, then an estimate of the sequential loop
time < 4 is given by the sum of the I3 values, i.e., the total time in the analysis routine only.
If this estimate for < 4 is accurate, then the speedup and efficiency metrics are < 4 ��<@= and
< 4 � � � 8 <>=9�A	 respectively.

It is expected that the bulk of the cost of dataset redistribution will be incurred by the
first iterate of loop L3 (i.e., for the first parameter value). The reason for this is that no
work load information is available to guide the initial distribution of datasets. Therefore, the
initial distribution is very likely to induce load imbalance, which will be corrected at some
cost during the analysis with the first parameter value. If a change in the parameter
value affects the analysis of all datasets in the same manner (for example, the analysis time is
increased or decreased by the same percentage), then the first redistribution cost is amortized
during the analysis with the remaining parameter values, when relatively fewer datasets
have to be moved to balance group work loads, because the bulk of the transfers happened
with the first parameter value.

5. Experimental Results. For this paper, the framework described above was config-
ured for the analysis of gamma-ray burst (GRB) datasets using vector functional coefficient
autoregressive (VFCAR) time series models. GRBs are cosmic explosions that occurred in
distant galaxies and are thought to be excellent “beacons” for tracing the structure of the
early universe. Scientific satellites have been recording GRB time profiles for a number of
years [21, 7], and the analysis of the collected datasets is currently an “open” problem in

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 75

FIG. 5.1. Maverick cluster diagram. Each rack contains 32 nodes, and each node contains dual 3.06GHz
Xeon processors and 2.5GB RAM. Each node is connected via 10Gb/s InfiniBand to one of three switches, and
a switch is directly connected to the other two. There is a supplementary 100Mb/s Ethernet network used for
PXE, NFS, NIS, etc. Installed software include RedHat Linux and PBS/Pro. According to the Top 500 Super-
computer Sites list published in June 2004, Maverick was the 158th fastest computer in the world. (Source:
http://www.erc.msstate.edu/computing/maverick/)

the astrophysics community. The small-scale analysis mentioned by this paper is a prelim-
inary investigation of the usefulness of VFCAR models [18, 19] in describing features of
GRBs. More thorough investigations are planned for the near future, and the astrophysics
and statistics findings will be reported elsewhere. The parallel performance of the framework
configured for a small-scale analysis on a general-purpose cluster is presented in the remain-
der of this section as initial verification of the effectiveness of the proposed data redistribution
approach.

An experiment was conducted involving the analysis of 555 GRB datasets the sizes of
which ranged from 46 to 9037 observations. The Maverick cluster of the Mississippi State
University Engineering Research Center (see Figure 5.1 for a diagram) was used as the com-
putational platform. The analysis called for fitting the datasets under four scenarios, specified
by the parameter values 400, 600, 800, 1000 (see B 4.4). Briefly, for this analysis, the pa-
rameter represents the number of replications in the statistical test for model misspecification.
The general effect of an increase in the parameter value is to lengthen the analysis time
for a dataset by a factor depending on the square of the number of observations in the dataset.
The experiment was submitted as a single 64-processor job so that the same set of processors
is used for the four analysis scenarios. The 64 processors were spread across racks 2, 4 and 5
of the cluster, with 4, 32 and 28 processors, respectively. The maximum group size was hard
coded in the framework to be 16 processors, so the scheduler S formed four groups: two 16-
processor groups in rack 4, one 15-processor group in rack 5 (the scheduler S resided here),
and one 16-processor group split between racks 2 and 5. Load imbalance was expected to be
induced by the high variability of dataset analysis times, the differences in processor group
sizes and communication latencies, and the contention for network resources since other jobs
were executing on the cluster side by side with the experiment.

The analysis was executed without data redistribution (STAT) and with data redistribu-
tion using the following loop scheduling techniques: modified fixed size chunking (mFSC),
guided loop scheduling (GSS), and a variant of adaptive weighted factoring (AWFC). Re-
call that these techniques generate fixed size chunks, predictable decreasing size chunks, and
adaptive size chunks of iterations, respectively. In mFSC, the chunk size is chosen such that
the number of chunks generated is the same as the number generated by factoring (FAC); that

http://www.erc.msstate.edu/computing/maverick/

ETNA
Kent State University
etna@mcs.kent.edu

76 I. BANICESCU AND R. L. CARIÑO

FIG. 5.2. Number of datasets owned and cumulative analysis time for each processor for parameter=400:
(a) without dataset redistribution (STAT), and (b)–(d) with dataset redistribution using mFSC, GSS and AWFC loop
scheduling techniques.

TABLE 5.1
Number of datasets transferred (Xfer) and estimated efficiency (Eff).

Dataset Parameter value
redistribution 400 600 800 1000
scheme Xfer Eff Xfer Eff Xfer Eff Xfer Eff
STAT 0 0.88 0 0.87 0 0.86 0 0.87
mFSC 184 0.94 127 0.96 40 0.97 19 0.95
GSS 277 0.96 8 0.95 0 0.95 111 0.95
AWFC 186 0.95 112 0.96 20 0.98 82 0.98

is, mFSC and FAC both generate the same number of scheduling events.
Figures 5.2(a)–(d) summarize the number of datasets owned and the cumulative time

spent in the analysis routine by each processor using the STAT, mFSC, GSS and AWFC
dataset redistribution schemes for parameter=400. Note that in each chart, the processor
groupings are ranks 1–33, ranks 14–29, ranks 30–63 and ranks 46–61, and that the analysis
time plotted for processor rank 0 is the parallel time < = .

Table 5.1 summarizes the number of datasets transferred during the analysis for each
parameter value, as well as the estimated efficiency (see B 4.4).

The results summarized by Figure 5.2 and Table 5.1 support the following preliminary
conclusions regarding the framework. The total number of observations stored in a processor
group is not a good measure of the work load for the datasets owned by the group. Thus,
the heuristic utilized in the initial distribution of datasets among the processor groups induces
load imbalance; however, this imbalance is not severe since 86-88% estimated efficiency
is achieved without dataset redistribution. This imbalance is effectively corrected, and the
performance of the framework is improved when data redistribution is employed, using any
of loop scheduling techniques tested. If the framework is used to carry out a sequence of

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 77

related analyses such as a parametric study, then the majority of the dataset transfers will
likely occur early in the sequence, barring drastic changes in dataset execution times due to
the parameters or due to irregularities in the execution environment. In general, the high cost
of the initial dataset transfers is compensated by the higher performance levels achieved by
the analyses with the later parameters in the sequence.

6. Related work. In the last years, performance gains of scientific applications using
the factoring-based dynamic loop scheduling algorithms over other techniques for load bal-
ancing have been obtained, and reported in the literature. Experimental testing of running
applications using these algorithms involved a wide range of problem and environmental
characteristics, and a wide mixture of problems sizes and number of processors. The re-
sults of this extensive testing revealed the benefits of using the factoring-based dynamic loop
scheduling algorithms for improving performance of scientific applications via load balanc-
ing. In general, performance gains of applications using these algorithms over using straight-
forward parallelization were often up to 50% and sometimes even 74% cost improvements,
while over other competitive load balancing techniques reported in the literature were often in
the range of 15% to 35% [1, 11, 12, 13, 14]. Earlier experience with factoring-based dynamic
loop scheduling algorithms proved they are extremely robust and effective for a wide range
of scientific applications, and that their use is essential in applications whose computations
exhibit a stochastic and irregular behavior.

The successful integration of fractiling and adaptive weighted factoring in N-body simu-
lations [2, 4], and similarly for adaptive weighted factoring and adaptive factoring in compu-
tational field simulation on unstructured grids [4, 3], highlight the competitiveness of the loop
scheduling approach to load balancing in large, irregular and data parallel scientific applica-
tions. However, the tight coupling of these loop scheduling techniques into the application
codes precluded the ease of reuse of the implementation of the techniques in other applica-
tions.

Loose coupling between the loop scheduling implementation and the application code is
illustrated in the simulation of wave packets using the quantum trajectory method [15, 16].
The simulation has three separate computationally intensive parallel loops, with the data
stored in simple arrays. A load balancing routine based on loop scheduling techniques is
invoked to dynamically schedule the three loops, each invocation having a different compu-
tational routine as one of the arguments. The load balancing routine assumes a replicated
work queue, implemented as an array in each processor. This setup is sufficient for the given
application due to its small memory requirements. Results of computations are sent to the
scheduler during load balancing, for broadcast to the rest of the processors after loop com-
pletion.

A loop scheduling routine for MPI applications has been proposed [13]. The routine
is designed for parallel loops like y(i) = f(x(i)), i=1,2,...,N, where x() and
y() are arrays of possibly complex types, and are partitioned among the processors. The
loop scheduling routine takes as arguments the routine that encapsulates f() for a chunk
of iterations, a pair of complementary routines for sending and receiving chunks of x(), a
similar pair of routines for chunks of y(), and the partitioning of the N data items among the
processors. The routine performs load balancing only: a chunk of x() is sent, for example,
from Worker J to Worker I, and Worker I returns a chunk of y(), hence no repartitioning
takes place. This loop scheduling routine was used as the base code for the development of
the framework described in Section 4.

A well known disadvantage of the scheduler/worker parallel programming strategy, es-
pecially in message passing systems, is its limited practical scalability. When the number
of processors is large, the scheduler becomes a communication bottleneck, resulting in in-

ETNA
Kent State University
etna@mcs.kent.edu

78 I. BANICESCU AND R. L. CARIÑO

creased idle times for some workers. To address the bottleneck, a useful modification of the
strategy is to utilize multiple foremen. A setup for dynamic loop scheduling using processor
groups is described in [14]. The work queue of application objects is partitioned among the
processor groups. Initially, each group performs loop scheduling on its own partition. How-
ever, the groups may be reorganized by the transfer of processors between groups in order to
balance the load among groups. An opposite approach to load balancing was implemented
for the framework described in Section 4 — the processor groups are fixed and objects are
redistributed.

7. Summary and ongoing work. This paper proposes a dynamic loop scheduling ap-
proach for data redistribution in large data parallel scientific applications characterized by
irregular and stochastic behavior. The traditional approach to load balancing, where a reparti-
tioning step is made after one or more computational steps, suffers from performance degra-
dation because load imbalance present during a computational step is not immediately ad-
dressed. The traditional approach assumes that the load imbalance will persist in the suc-
ceeding computational steps; hence a repartitioning step and data migration step are taken to
preempt future imbalance. In addition to the the costs of computing a new partition and data
migration, this traditional approach incurs the cost of load imbalance that is not immediately
addressed. In the proposed approach, load balancing occurs within a computational step,
specifically during the execution of a computationally intensive parallel loop via dynamic
loop scheduling. A new partitioning is generated as a byproduct of load balancing, not by an
additional step in the application. The costs include the loop scheduling costs, mostly from
control messages, and data migration costs.

Previous work on the integration of loop scheduling techniques in large scientific applica-
tions such as N-body simulations and field simulations on unstructured grids provide evidence
that substantial performance gains can be obtained by using the proposed approach for data
redistribution. As further validation, this approach was incorporated into a framework for the
simultaneous analysis of multiple datasets on clusters. The framework successfully integrates
this approach with lessons learned from previous efforts to implement general-purpose loop
scheduling routines and to exploit the availability of large numbers of processors on clusters
through processor groups. Preliminary performance tests of the framework configured for a
small-scale analysis of gamma-ray burst datasets indicate that the approach driving the frame-
work is effective for achieving high parallel performance. Extensive analyses of gamma-ray
burst datasets, as well as datasets from other disciplines, have been planned to be conducted
using the framework. Efforts are also under way for the integration of the proposed reparti-
tioning approach into other applications.

Acknowledgments. The authors thank Jane Harvill and John Patrick Lestrade for pro-
viding the test problem – the VFCAR analysis of GRB datasets.

REFERENCES

[1] M. BALASUBRAMANIAM, K. BARKER, I. BANICESCU, N. CHRISOCHOIDES, J. P. PABICO AND R. L.
CARINO, A Novel Dynamic Load Balancing Library for Cluster Computing, in Proceedings of the 3rd
International Symposium on Parallel and Distributed Computing, in association with the International
Workshop on Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks (IS-
PDC/HeteroPar’04), IEEE Computer Society Press, 2004, pp. 346-353.

[2] I. BANICESCU AND S. F. HUMMEL, Balancing processor loads and exploiting data locality in N-body sim-
ulations, in Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, ACM Press, 1995, on
CDROM.

[3] I. BANICESCU AND V. VELUSAMY, Load balancing highly irregular computations with the adaptive fac-
toring, in Proceedings of the 16th IEEE International Parallel and Distributed Processing Symposium
(IPDPS 2002 - HCW), IEEE Computer Society Press, 2002, on CDROM.

ETNA
Kent State University
etna@mcs.kent.edu

ADDRESSING THE STOCHASTIC NATURE OF SCIENTIFIC COMPUTATIONS 79

[4] I. BANICESCU AND V. VELUSAMY, Performance of scheduling scientific applications with adaptive
weighted factoring, in Proceedings of the 15th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2001 - HCW), IEEE Computer Society Press, 2001, on CDROM.

[5] I. BANICESCU, V. VELUSAMY AND J. DEVAPRASAD, On the scalability of dynamic scheduling scientific
applications with adaptive weighted factoring, Cluster Computing: The Journal of Networks, Software
Tools and Applications, 6 (2003), pp. 215–226.

[6] I. BANICESCU AND Z. LIU, Adaptive factoring: A dynamic scheduling method tuned to the rate of weight
changes, in Proceedings of the High Performance Computing Symposium (HPC) 2000, The Society for
Modeling and Simulation International, 2000, pp. 122–129.

[7] Burst And Transient Source Experiment (BATSE), http://www.batse.msfc.nasa.gov/batse.
[8] M. BERGER AND S. BOKHARI, A partitioning strategy for nonuniform problems on multiprocessors, IEEE

Trans. Comput., C-36 (1987), pp. 570–580.
[9] E. BOMAN, K. DEVINE, R. HEAPHY, B. HENDRICKSON, W. F. MITCHELL, M. ST.

JOHN AND C. VAUGHAN, Zoltan: Data-Management Services for Parallel Applications,
http://www.cs.sandia.gov/Zoltan.

[10] C&C RESEARCH LABORATORIES, NEC EUROPE LTD., DRAMA: Dynamic Load Balancing for Parallel
Mesh-based Applications, http://www.ccrl-nece.de/drama/.

[11] R. CARIÑO AND I. BANICESCU, Dynamic scheduling parallel loops with variable iterate execution times,
in Proceedings of the 16th IEEE International Parallel and Distributed Processing Symposium (IPDPS
2002 - PDSECA), IEEE Computer Society Press, 2002, on CDROM.

[12] R. L. CARIÑO AND I. BANICESCU, Load balancing parallel loops on message-passing systems, in Proceed-
ings of the 14th IASTED International Conference on Parallel and Distributed Computing and Systems,
S.G. Akl and T. Gonzales, eds., ACTA Press, 2002, pp. 362–367.

[13] R. L. CARIÑO AND I. BANICESCU, A load balancing tool for distributed parallel loops, in Proceedings of
the International Workshop on Challenges of Large Applications in Distributed Environments (CLADE
2003), IEEE Computer Society Press, 2003, pp. 39–46.

[14] R. L. CARIÑO, I. BANICESCU, T. RAUBER AND G. RÜNGER, Dynamic loop scheduling with processor
groups, in Proceedings of the 17th ISCA International Conference on Parallel and Distributed Computing
Systems (PDCS 2004), 2004, pp. 78–84.

[15] R. L. CARIÑO, I. BANICESCU, R. K. VADAPALLI, C. A. WEATHERFORD AND J. ZHU, Parallel adap-
tive quantum trajectory method for wavepacket simulations, in Proceedings of the 17th IEEE Interna-
tional Parallel and Distributed Processing Symposium (IPDPS 2003 - PDSECA), IEEE Computer Soci-
ety Press, 2003, on CDROM.

[16] R. L. CARIÑO, I. BANICESCU, R. K. VADAPALLI, C. A. WEATHERFORD AND J. ZHU, Message-passing
parallel adaptive quantum trajectory method, in High performance Scientific and Engineering Com-
puting: Hardware/Software Support, L. T. Yang and Y. Pan, eds., Kluwer Academic Publishers, 2004,
pp. 127–139.

[17] J. FLAHERTY, R. LOY, M. SHEPHARD, B. SZYMANSKI, J. TERESCO AND L. ZIANTZ, Adaptive local
refinement with octree load-balancing for the parallel solution of three-dimensional conservation laws,
J. Parallel Distrib. Comput., 47 (1998), pp. 139–152.

[18] J. HARVILL AND B. RAY, Functional coefficient autoregressive models for vector time series, Comput.
Statist. Data Anal., 2005, to appear.

[19] J. HARVILL AND B. RAY, A note on multi-step forecasting with functional coefficient autoregressive models,
International Journal of Forecasting, 2005, to appear.

[20] B. HENDRICKSON AND K. DEVINE, Dynamic Load Balancing in Computational Mechanics, Comput. Meth-
ods Appl. Mech. Engrg., 184 (2000), pp. 485–500.

[21] High Energy Transient Explorer (HETE), http://space.mit.edu/HETE.
[22] S. F. HUMMEL, J. SCHMIDT, R. N. UMA AND J. WEIN, Load-sharing in heterogeneous systems via

weighted factoring, in Proceedings of the 8th Annual ACM Symposium on Parallel Algorithms and
Architectures, ACM Press, 1996, pp. 318–328.

[23] S. F. HUMMEL, E. SCHOENBERG AND L. E. FLYNN, Factoring: A method for scheduling parallel loops,
Comm. ACM, 35 (1992), pp. 90–101.

[24] G. KARYPIS AND V. KUMAR, ParMETIS: Parallel graph partitioning and sparse matrix order-
ing library, Tech. Rep. 97-060, Department of Computer Science, Univ. of Minnesota, 1997,
http://www-users.cs.umn.edu/˜karypis/metis/parmetis.

[25] C. P. KRUSKAL AND A. WEISS, Allocating independent subtasks on parallel processors, IEEE Trans. Soft-
ware Engineering, 11 (1985), pp. 1001–1016.

[26] S. MITCHELL AND S. VAVASIS, Quality mesh generation in three dimensions, in Proceedings of the 8th
ACM Symposium on Computational Geometry, ACM Press, New York, NY, 1992, pp. 212–221.

[27] L. OLIKER AND R. BISWAS, PLUM: Parallel Load Balancing for Adaptive Unstructured Meshes, Journal of
Parallel and Distributed Computing, 52 (1998), pp. 150–177.

[28] J. PILKINGTON AND S. BADEN, Partitioning with space-filling curves, Tech. Rep. CS94-349, Dept. of Com-

http://www.batse.msfc.nasa.gov/batse
http://www.cs.sandia.gov/Zoltan
http://www.ccrl-nece.de/drama/
http://space.mit.edu/HETE
http://www-users.cs.umn.edu/~karypis/metis/parmetis

ETNA
Kent State University
etna@mcs.kent.edu

80 I. BANICESCU AND R. L. CARIÑO

puter Science and Engineering, Univ. of California, San Diego, CA, 1994.
[29] C. D. POLYCHRONOPOULOS AND D. J. KUCK, Guided self-scheduling: A practical scheduling scheme for

parallel supercomputers, IEEE Trans. Comput., C-36 (1987), pp. 1425–1439.
[30] S. H. RUSS, I. BANICESCU, S. GHAFOOR, B. JANAPAREDDI, J. ROBINSON AND R. LU, Hectiling: An

Integration of Fine and Coarse-Grained Load-Balancing Strategies, in Proceedings of the 7th IEEE
International Symposium on High Performance Distributed Computing, IEEE Computer Society Press,
1998, pp. 106–113.

[31] V. E. TAYLOR AND B.NOUR-OMID, A Study of the Factorization Fill-in for a Parallel Implementation of the
Finite Element Method, Intl. J. Numer. Methods Engrg., 37 (1994), pp. 3809–3823.

[32] T. H. TZEN AND L. M. NI, Trapezoid self scheduling: A practical scheduling scheme for parallel compilers,
IEEE Trans. Parallel Distr. Sys., 4 (1993), pp. 87–98.

[33] C. WALSHAW, JOSTLE mesh partitioning software, http://www.gre.ac.uk/jostle/.
[34] C. WALSHAW, M. CROSS AND M. EVERETT, Parallel Dynamic Graph Partitioning for Adaptive Unstruc-

tured Meshes, J. Par. Dist. Comp., 47 (1997), pp. 102–108.
[35] M. WARREN AND J. SALMON, A Parallel Hashed Oct Tree N-body Algorithm, Proceedings of the Super-

computing ’93, Portland, USA, 1993, pp. 12–21.

http://www.gre.ac.uk/jostle/

