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PRECONDITIONERS FOR SADDLE POINT LINEAR SYSTEMS WITH HIGHLY
SINGULAR (1,1) BLOCKS

�
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�
Abstract. We introduce a new preconditioning technique for the iterative solution of saddle point linear systems

with (1,1) blocks that have a high nullity. The preconditioners are block diagonal and are based on augmentation,
using symmetric positive definite weight matrices. If the nullity is equal to the number of constraints, the precon-
ditioned matrices have precisely two distinct eigenvalues, giving rise to immediate convergence of preconditioned
MINRES. Numerical examples illustrate our analytical findings.
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1. Introduction. Consider the following saddle point linear system�����	��
 ��
� ��� ���� ��� ���� � �����(1.1)

with 
�� �"!$#%! and �&�'�"()#*! , where +-,�. . The matrix 
 is assumed to be symmetric
and have a high nullity. We further assume that

�
is nonsingular, from which it follows that

(1.2) /1032%465 ��7 � + 03298 2;:9<=<>5 
)7@? 2A:%<B<C5 ��7 ��D �%EGF
From (1.2) it also follows that 
 has rank at least .IH + , and hence its nullity can be at

most + . Saddle point linear systems of the form (1.1) appear in many applications; see [1]
for a comprehensive survey. Frequently they are large and sparse, and iterative solvers must
be applied. In recent years, a lot of research has focused on seeking effective precondition-
ers. For example, JLK J block diagonal preconditioners have been successfully used in the
simulation of incompressible flow problems; see [2] and references therein. Those precon-
ditioners typically have a (1,1) block that approximates the (1,1) block of the original saddle
point matrix, and a (2,2) block that approximates the Schur complement.

However, when 
 is singular, it cannot be inverted and the Schur complement does not
exist. In this case, one possible way of dealing with the system is by augmentation, for
example by replacing 
 with 
NMO�P
RQTSVUW� , where QX�Y�"()#*( is a symmetric positive
definite weight matrix; see [3] and references therein.

In this paper we consider the case of a (1,1) block with a high nullity, and introduce a
Schur complement-free preconditioner based on augmentation that leads to an effective itera-
tive solution procedure. We show that if the nullity of 
 is + , then preconditioned MINRES
[8] converges within two iterations. The approach presented in this paper is motivated in part
by the recent work [4], where a block diagonal preconditioner is proposed for solving the
time-harmonic Maxwell equations in mixed form.

The remainder of this paper is structured as follows. In Section 2 we present the precon-
ditioners and analyze their spectral properties. In Section 3 numerical examples that validate
our analytical findings are given. We conclude with brief remarks in Section 4.Z
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2. The proposed preconditioners. We start with a general form of our preconditioners,
and then discuss a specific choice that is particularly suitable for matrices with a semidefinite
(1,1) block with high nullity. We end the section with a brief discussion of computational
costs.

2.1. The preconditioner []\*^ _ . Consider the following block diagonal matrix as a
preconditioner: [ \%^ _ � �N
YM`�a
"b�SVUW� �� Q � �
where b � Qc�I�"()#*( are symmetric positive definite.

PROPOSITION 2.1. Suppose [ \%^ _ is symmetric positive definite. Let D�dfe E !ASg(e=h U be
a basis of the null space of � . Then the vectors 5 die � �;7 are .jH�+ linearly independent
eigenvectors of [ SVU\%^ _ � with eigenvalue k .

Proof. The eigenvalue problem for [ S@U\%^ _ � is��
 �a
� �l� ��mn �o�qp �N
YM`�a
"b�SVUW� �� Q � �Om n � F
From the nonsingularity of

�
it follows that p�r� � . Substituting

n � Us QTS@Ut�am , we obtain
for the first block row

(2.1) p 
�m�Mj� 
 Q SVU �am �Op@u 5 
OM`� 
 b SVU ��7vmgF
Suppose that m �qd e r� � is a null vector of � . Then (2.1) simplifies into5 p@u H p 7w
 d e � � �
and since by (1.2) a nonzero null vector of � cannot be a null vector of 
 , it follows that
 d�exr� � and hence we must have py� k . Since � diez� � , it follows that

n � � and thereforep{� k is an eigenvalue of [ S@U\%^ _ � of algebraic multiplicity (at least) .|H}+ , whose associated
eigenvectors are 5 dfe � �;7 , ~ � k � F�F�F � .LH'+ .

2.2. The preconditioner []_ . From Proposition 2.1 it follows that regardless of b
and Q , we have at least .�H�+ eigenvalues equal to k . Stronger clustering can be obtained
for specific choices of those two weight matrices. For the case of a (1,1) block with high
nullity it is possible to obtain a preconditioner with improved spectral properties by making
the choice b � Q . Let us define[	_ � ��
qM`�a
zQTSVUW� �� Q � F(2.2)

If in addition 
 is semidefinite, it follows from (1.2) that the augmented (1,1) block is
positive definite, making it possible to use the preconditioned conjugate gradient.

The next theorem provides details on the spectrum of the preconditioned matrix [ SVU_ � .
THEOREM 2.2. Suppose that 
 is symmetric positive semidefinite with nullity � . Thenp{� k is an eigenvalue of [ SVU_ � of algebraic multiplicity . and p�� H�k is an eigenvalue of

multiplicity � . The remaining +�H�� eigenvalues of [ SVU_ � are all strictly between H�k and �
and satisfy the relation

(2.3) p�� H �� M k �
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where � are the +�Hy� positive generalized eigenvalues of

(2.4) � 
�m � � 
 Q SVU �)mgF
A set of linearly independent eigenvectors for p���� k can be found as follows. Let D�d3e E !ASg(e=h Ube a basis of the null space of � , D � e E��e=h U a basis of the null space of 
 , and D��;e E (}Sg�e=h U a set
of linearly independent vectors that complete 2A:%<B<C5 
)7R� 2;:9<=<>5 �P7 to a basis of ��! . Then the.�H�+ vectors 5 d e � �G7 , the � vectors 5 � e � QTSVUW� � e 7 and the +�H�� vectors 5 � e � QTS@U�� � e 7 are
linearly independent eigenvectors associated with p�� k , and the � vectors 5 � e � H Q S@U � � e 7
are eigenvectors associated with p�� H�k .

Proof. Let p be an eigenvalue of [ S@U_ � with eigenvector 5 m � n 7 . Then� 
 �a
� �l� � m n ���Yp � 
qM`�a
RQTS@UW� �� Q � � m n � F
Since

�
is nonsingular, we have p�r� � . Substituting

n � Us QTS@Ut�)m we obtain

(2.5) 5 p u H p 7w
�m�M 5 p u HYk 7w� 
 Q SVU �)m � �%F
If p�� k , then (2.5) is satisfied for any arbitrary nonzero vector mL����! , and hence 5 m � QTS@Ut�amA7
is an eigenvector of [ SVU_ � .

If
� � 2A:%<B<C5 
)7 then from (2.5) we obtain5 p@u H�k 7w� 
 Q SVU � � � � �

from which it follows that 5 ��� Q�S@UW� � 7 and 5 ��� H QTSVU�� � 7 are eigenvectors associated withp�� k and p{� H�k respectively.
Next, suppose � p � r� k . We divide (2.5) by p u H�k , which yields (2.3), with m defined

in (2.4). Since 
 and ��
"QTSVUW� are positive semidefinite, the remaining generalized eigen-
values � must be positive and hence p must be strictly between H�k and � , as stated in the
theorem.

A specific set of linearly independent eigenvectors for p���� k can be readily found.
The vectors D�d e E !ASg(e=h U and D � e E��e=h U defined above are linearly independent by (1.2) and span
a subspace of ��! of dimension .{H�+ M � . Let D�� e E (}Sg�eBh U complete this set to a basis of ��!
as stated above. It follows that 5 � e � QTS@Ut� � e 7 , 5 d e � �G7 , and 5 � e � QTS@Ut� � e 7 are eigenvectors of[ SVU_ � associated with p�� k . The � vectors 5 � e � H QTSVU�� � e 7 are eigenvectors associated
with p�� H�k .

A convenient choice for the weight matrix is Q SVU �T�V� , where �q� � is a parameter
that takes into account the scales of the matrices 
 and � [3]. In this case, notice that from
Theorem 2.2 it follows that the +�H�� eigenvalues p of [ S@U_ � that are not equal to � k are
given by p{� H � �� � M k �
where � are the generalized eigenvalues defined by� 
�m � � 
 �)mgF
Thus, as � increases these eigenvalues tend to H�k , and further clustering is obtained. We
note, however, that choosing � too large may result in ill-conditioning of [�_ .
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By (1.2) the nullity of 
 must be + at most. From Theorem 2.2 we conclude that the
higher it is, the more strongly the eigenvalues are clustered. In fact, for nullity + we have the
following result.

COROLLARY 2.3. Suppose that 
 is positive semidefinite with nullity + . Then the
preconditioned matrix [ SVU_ � has precisely two eigenvalues: p�� k , of multiplicity . , andp{� H�k , of multiplicity + .

Corollary 2.3 implies that a preconditioned minimal residual Krylov subspace solver is
expected to converge within two iterations, in the absence of roundoff errors. Each precon-
ditioned MINRES iteration with []_ includes a matrix-vector product with

�
, a solve forQ , and a solve for 
 _ � 
 MY�a
"QTSVUW� . If 
 _ is formed explicitly, then solving for it

includes . solves for Q , one for each column of � . However, typically 
 _ is not formed
explicitly since Q�SVU is dense. In this case one can apply the (preconditioned) conjugate
gradient method, and then the number of solves for Q is equal to the number of iterations.
Hence, since the number of MINRES iterations is guaranteed to be small by the analysis of
this section, the key for an effective numerical solution procedure overall is the ability to
efficiently solve for 
 _ .

3. Numerical examples. In this section we illustrate the performance of our precondi-
tioning approach on two applications in which the (1,1) blocks of the associated matrices are
highly singular.

3.1. Maxwell equations in mixed form. We first consider a finite element discretiza-
tion of the time-harmonic Maxwell equations with small wave numbers [9, Section 2]. The
following two-dimensional model problem is considered: find � and � that satisfy¡ K ¡ K � H�¢ u �PM ¡ � ��£ in ¤ �¡ ¥ � � � in ¤ �� ¥W¦ � � on §V¤ �� � � on §V¤ F
Here � is the electric field and � is a Lagrange multiplier, ¤©¨ � u is a simply connected
polygonal domain, and

¦
denotes the tangential unit vector on §V¤ . The datum £ is a given

generic source. We assume that the wave number ¢ u is small and is not a Maxwell eigenvalue.
We employ a standard finite element discretization on uniformly refined triangular meshes

of size ª . The lowest order two-dimensional Nédélec elements of the first kind [6, 7] are used
for the approximation of the electric field, along with standard nodal elements for the multi-
plier. This yields a saddle point linear system of the form�%« H�¢ u�¬ �a
� �j� �*�� � � �A­ �i� �
where now � �'��! and � �y�"( are finite arrays representing the finite element approxima-
tions, and ­�� �"! is the load vector associated with the datum £ . The matrix «�����!$#%! is
symmetric positive semidefinite with rank .�Hj+ , and corresponds to the discrete curl-curl
operator; �	���"()#*! is a discrete divergence operator. Due to the zero Dirichlet boundary
conditions, � has full row rank: /1032%465 ��7 � + . Indeed, the discretization that we use is
inf-sup stable [6, p. 179]. The matrix 
 � « H`¢ u ¬ is positive semidefinite for ¢ � � and
indefinite for ¢ � � . When the mesh size is sufficiently small, the saddle point matrix

�
is

nonsingular [6, Chapter 7].
For the purpose of illustrating the merits of our approach, we will deliberately avoid ex-

ploiting specific discrete differential operator-related properties, and focus instead on purely
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algebraic considerations. To that end, we pick a scaled identity matrix, Q�SVU �®�6� . Based
on scaling considerations, we set �I��¯>°�¯w±¯>²³¯>´± .We consider five meshes; the number of elements and dimension of the resulting systems
are given in Table 3.1.

TABLE 3.1
Example 3.1: number of elements and sizes of the linear systems for five meshes.

Mesh Nel . M +
G1 64 113
G2 256 481
G3 1024 1985
G4 4096 8065
G5 16384 32513

Experiments were done with several right hand side functions, and the iteration counts
were practically identical in all experiments. In the tables below we report the results that
were obtained by setting £L� k . (Note that in this case the datum is divergence free.)

Table 3.2 validates the analysis of Section 2. It shows the iteration counts for precondi-
tioned MINRES, applying exact inner solves, for various values of ¢ and meshes G1–G5. The
(outer) iteration was stopped using a threshold of k �$Sgµ for the relative residual. We observe
that for ¢ � � convergence is always reached within a single iteration, which is better than
two iterations guaranteed by Theorem 2.2. (This behavior might be related to special prop-
erties of the underlying differential operators, that allow for decoupling the problem using
the discrete Helmholtz decomposition [4].) As ¢ grows larger, and/or as the mesh is refined,
Theorem 2.2 does not apply anymore and convergence is slower. However, Proposition 2.1
holds and the solver is still remarkably robust, at least for small values of ¢ . Preconditioning
the same problem with high wave numbers introduces additional computational challenges
and is not considered here.

TABLE 3.2
Example 3.1: iteration counts for various values of ¶ and meshes G1–G5 using exact inner solves. The

iteration was stopped using a threshold of ·¹¸�º*» for the relative residual.

Mesh ¢ � � ¢ � �%F J3¼ ¢ � �%F ¼ ¢ � �9F¾½ ¼ ¢ � k
G1 1 1 1 1 1
G2 1 2 2 3 3
G3 1 2 2 3 3
G4 1 2 2 3 3
G5 1 2 2 3 3

Figure 3.1 depicts the negative eigenvalues of the preconditioned matrix [ SVU_ � for the
mesh G2 and ¢ � �%F ¼ . They are extremely close to H�k . This shows the potential of the
preconditioner even for cases of an indefinite (1,1) block, in which case Theorem 2.2 does
not hold.

In practice the preconditioner solves need to be done iteratively. Efficient multigrid
solvers that exploit the properties of the differential operators are available and can be used
(see [6, Chapter 13] and references therein). Here we simply consider the conjugate gradient
iteration, preconditioned using the incomplete Cholesky decomposition, IC(0). It should be
noted that the use of a non-stationary iteration (like PCG) in the inner solves means that a
non-constant, nonlinear preconditioning operator is introduced for the outer solver. In such
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FIG. 3.1. Example 3.1: the negative eigenvalues of the preconditioned matrix ¿ º$ÀÁjÂ for ¶}Ã'¸�Ä Å and grid
G2. All the positive eigenvalues of ¿ º$ÀÁ�Â are identically equal to 1.

settings flexible Krylov methods for the outer iteration are commonly used. However, we
have used MINRES and experimented with a fixed loose inner tolerance, and our conclusion
is that this inner solve strategy works well.

Table 3.3 shows the performance of MINRES, preconditioned with our preconditioner,
with a fixed inner tolerance of k �9S u and an outer tolerance of k �%S6µ . Naturally, there is an
increase of iterations as the inner tolerance is loosened, as is evident when Tables 3.2 and
3.3 are compared to each other. Nevertheless, the speed of convergence of the inner solves,
resulting from loosening the stopping criterion, more than compensates for the increase in the
number of outer iterations, and results in significant savings.

TABLE 3.3
Example 3.1: iteration counts for various values of ¶ and meshes G1–G5 using inexact inner solves. The

stopping criterion for the inner iterations was a threshold of ·¹¸fº%Æ for the relative residual. For the outer iterations,
the threshold was ·¹¸ º*» .

Mesh ¢ � � ¢ � �%F J3¼ ¢ � �9F ¼ ¢ � �%FÇ½ ¼ ¢ � k
G1 4 4 4 6 6
G2 6 6 6 6 6
G3 6 6 6 6 7
G4 6 6 6 6 7
G5 6 6 6 7 7

3.2. An inverse problem. As a second numerical example we consider a nonlinear min-
imization problem taken from [5], which arises in geophysics, electromagnetics, and other
areas of applications. Suppose the vector

�
represents observations of a field m at some dis-

crete locations and � is the underlying model to be recovered. Suppose further that È projects
the field m onto the measurement locations. The constrained problem formulation in [5] is
based on minimizing É�È m H � É u , subject to a forward problem (typically a discretized second
order PDE) ÊË5Ì� 7wm ��£ that needs to be solved exactly. Upon regularization, the following
minimization problem is obtained:ÍËÎ 2 ÎBÍPÎBÏ�ÐjÑ 5 m � � 7 � kJ É�È m H � É uu M�Ò J É�ÓÔ5Õ�ÖH'��× 7 É uuØ :%Ù%Ú Ð�ÛtÜzÜÞÝ ÊË5Õ� 7wm ��£
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where ��× is a reference model, Ó 
 Ó is a smoothing operator (typically a diffusion operator),
and Ò is a regularization parameter.

The constraints are incorporated using a Lagrange multiplier approach, and a Gauss-
Newton iteration is applied. At each step, an indefinite linear system of the following block
form has to be solved: ßà È 
 È � Ê 
� Ò Ó 
 Ó á 
Ê á � âã

ßà"ä mä �ä �
âã �

ßà�å�æå (å|ç âã F
Here

ä � are the increments of the Lagrange multipliers and á is the Jacobian of Ê with re-
spect to � . The matrix È can be extremely sparse, in particular in situations of undersampling.

A three-dimensional problem on the unit cube is considered, discretized by standard
finite volumes. The regularization parameter Ò is equal to k �$S u . The operator Ó is the
discretized gradient and Ê is a discrete diffusion operator with diffusivity depending on � .
Finally, £ is a vector obtained from sampling a smooth analytical function. A full description
of models of this type is given in [5].

We consider the performance of preconditioned MINRES on three uniformly refined
meshes M1–M3. Since there is no obvious scaling strategy, we set Q ��� . The dimensions
of the associated linear systems, the nullities of the 5¹k � k 7 blocks, and the iteration counts are
given in Table 3.4. As is evident, our solver performs extremely well. Numerical experiments
for other values of the regularization parameter Ò have shown similar iteration counts.

TABLE 3.4
Example 3.2: sizes of the linear systems and iteration counts for meshes M1–M3 using exact inner solves. The

iteration was stopped using a threshold of ·¹¸�º*» for the relative residual.

Mesh . + Nullity Iterations
M1 189 125 72 4
M2 1241 729 530 3
M3 9009 4913 4538 2

Finally, in Figure 3.2 we show the distribution of the eigenvalues of the preconditioned
matrix for mesh M2. As expected, we observe strong clustering of the eigenvalues at � k .

0 200 400 600 800 1000 1200 1400 1600 1800 2000
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FIG. 3.2. Example 3.2: Eigenvalues of the preconditioned matrix for mesh M2.
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4. Conclusions. We have presented a new Schur complement-free preconditioning ap-
proach based on augmenting the (1,1) block and using the weight matrix applied for augmen-
tation as the matrix in the (2,2) block. As we have shown, this approach is very effective, and
specifically, in cases where the (1,1) block has high nullity, convergence is guaranteed to be
almost immediate. We have shown the high potential of our approach for the time-harmonic
Maxwell equations in mixed form and for an inverse problem.
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