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ON THE REDUCTION OF A HAMILTONIAN MATRIX TO HAMILTONIAN
SCHUR FORM*

DAVID S. WATKINST

Abstract. Recently Chu, Liu, and Mehrmann developed an O(n?3) structure preserving method for computing
the Hamiltonian real Schur form of a Hamiltonian matrix. This paper outlines an alternative derivation of the method
and an alternative explanation of why the method works. Our approach places emphasis eigenvalue swapping and
relies less on matrix manipulations.
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1. Introduction. In [4] Chu, Liu, and Mehrmann presented an O(n3) structure-preserv-
ing method for computing the real Hamiltonian Schur form of a Hamiltonian matrix. The
current paper is the fruit of this author’s attempt to understand [4]. The method sketched
here differs hardly at all from the one presented in [4]; the objective of this paper is not to
present a new algorithm but rather to provide an alternative explanation of the method and
why it works. There are two main differences between our presentation and that of [4]. 1)
We use the idea of swapping eigenvalues or blocks of eigenvalues in the real Schur form and
rely less on matrix manipulations. 2) The presentation in [4] expends a great deal of effort
on nongeneric cases. We focus on the generic case and dwell much less on special situations.
However, we do show that the method developed for the generic case actually works in all
of the nongeneric cases as well. This is true in exact arithmetic. It may turn out that in the
presence of roundoff errors one cannot avoid paying special attention to nongeneric cases as
in [4].

2. Definitions and Preliminary Results. Throughout this paper we restrict our atten-
tion to matrices with real entries. Define J € R*"*2" by

0 I,
=[5 5
A matrix H € R>**>" is Hamiltonian if JH = (JH)T. H is skew-Hamiltonian if JH =
—(JH)T. U € R*™ 2" i symplectic it UT JU = J.

A number of elementary relationships are easily proved. Every symplectic matrix is non-
singular. The product of two symplectic matrices is symplectic. The inverse of a symplectic
matrix is symplectic. Thus the set of symplectic matrices is a group under the operation of
matrix multiplication. An important subgroup is the set of orthogonal symplectic matrices.
We use two types of orthogonal symplectic transformations in this paper: If Q@ € R™*"™ is
orthogonal, then

Q 0
0 @
is orthogonal and symplectic. If C, S € R™*" are diagonal and satisfy C? + S? = I, then
c -S
S c
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is orthogonal and symplectic. In particular, for any k, a rotator acting in the (k,n + k) plane
is symplectic.

If U is symplectic and H is Hamiltonian (resp. skew-Hamiltonian), then I/~ HU/ is
Hamiltonian (resp. skew-Hamiltonian).

If # is Hamiltonian and v is a right eigenvector of H with eigenvalue ), then vT.J is a
left eigenvector with eigenvalue —\. It follows that if X is an eigenvalue of 7, then so are X,
—X, and —\. Thus the spectrum of a Hamiltonian matrix is symmetric with respect to both
the real and the imaginary axes.

A subspace S C R?" is called isotropic if zTJy = 0 forall z, y € S. If X € R*"*J
is a matrix such that S = R(X), then S is isotropic if and only if X7 JX = 0. Given
a symplectic matrix S € RZX27 let Sy and Sy denote the first n and last n columns of
S, respectively. Then the relationship ST JS = J implies that R(S;) and R(S2) are both
isotropic. The following well-known fact is crucial to our development.

PROPOSITION 2.1. Let S C R?™ be a subspace that is invariant under the Hamiltonian
matrix H. Suppose that all of the eigenvalues of H associated with S satisfy $(\) < 0. Then
S is isotropic.

Proof. Let X be a matrix with linearly independent columns such that § = R(X).
We need to show that X7 .JX = 0. Invariance of S implies that XX = X C for some C
whose eigenvalues all satisfy $(\) < 0. Multiplying on the left by X7'J, we get X7 JXC =
XT(JH)X. Since JH is symmetric, we deduce that X7 JXC is symmetric, so that
XTJXC+CTXTJX =0. LettingY = XTJX,wehave YC+CTY = 0. The Lyapunov
operator Y — Y'C + CTY has eigenvalues \; + uy,, where \; and py, are eigenvalues of C
and CT, respectively. Since the eigenvalues Ay + i all lie in the open left halfplane, they
are all nonzero. Thus the Lyapunov operator is nonsingular, and the homogeneous Lyapunov
equation Y'C 4+ CTY = 0 has only the solution Y = 0. Therefore X7JX = 0.0

If H is Hamiltonian, then H2 is skew-Hamiltonian. K is skew-Hamiltonian if and only
if it has the block form

K= {K AT]’ N =-N, K" =—-K.

A matrix B € R™*" is called quasitriangular if it is block upper triangular with 1 x 1 and
2 x 2 blocks along the main diagonal, each 2 x 2 block housing a conjugate pair of complex
eigenvalues. Quasitriangular form is also called real Schur form or Wintner-Murnaghan form.
A skew-Hamiltonian matrix A” € R*"*2" is said to be in skew-Hamiltonian real Schur form

if

where B is quasitriangular.

THEOREM 2.2. [9] Every skew-Hamiltonian matrix is similar, via an orthogonal sym-
plectic similarity transformation, to a matrix in skew-Hamiltonian Schur form. That is, if
K € R*™*2" i skew Hamiltonian, then there is an orthogonal symplectic U € R*™**" and
a skew-Hamiltonian N' € R*™ ™ such that

N:{B N]’

0 BT
where B is quasitriangular, and K = UNUT .

The eigenvalues of K and N are the eigenvalues of B repeated twice. We deduce that
the eigenspaces of a skew-Hamiltonian matrix all have even dimension.



ETNA

Kent State University
etna@mcs.kent.edu

HAMILTONIAN SCHUR FORM 143

M is Hamiltonian if and only if it has the block form

F G

M:[H ~FT

], GT=@G, HT = H.

A Hamiltonian matrix H € R>"*2" that has no purely imaginary eigenvalues must have
exactly n eigenvalues in the left halfplane and n in the right halfplane. Such a matrix is said
to be in Hamiltonian real Schur form if

n=|o x|

0o -T77
where T is quasitriangular, and the eigenvalues of T all have negative real part.

THEOREM 2.3. [8] Let M € R*™*2™ be a Hamiltonian matrix that has no purely imagi-
nary eigenvalues. Then M is similar, via an orthogonal symplectic similarity transformation,

to a matrix in Hamiltonian real Schur form. That is, there exists an orthogonal symplectic
U € R*™ " and a Hamiltonian

e[t 5]

0o -17

in Hamiltonian real Schur form, such that M = UHUT.

The linear-quadratic Gaussian problem of control theory, also known as the quadratic
regulator problem, can be solved by solving an algebraic Riccati equation. This is equivalent
to finding the n-dimensional invariant subspace of a Hamiltonian matrix associated with the
eigenvalues in the left halfplane [7]. If one can compute a Hamiltonian real Schur form as in
Theorem 2.3, then the first n columns of ¢/ span the desired invariant subspace, leading to the
solution of the linear-quadratic Gaussian problem.

The proof of Theorem 2.3 in [8] is nonconstructive. Since the publication of [8], it has
been an open problem to find a backward stable O(n?) method to compute the orthogonal
symplectic similarity transformation to Hamiltonian real Schur form.

We will use the following version of the symplectic U RV decomposition theorem [2].

THEOREM 2.4. Let H € R*™*?™ be a Hamiltonian matrix. Then there exist orthogonal,
symplecticU, V € R**" an upper-triangular T € R™ ™, quasitriangular S € R™ ", and
C € R™ ™ such that

H=URVT and H=VR.UT,

where

S C

0 77

RF[ 0 —s7

| wa ma= | 0 G ]

There is a backward stable O(n?) algorithm, implemented in HAPACK [1], to compute
this decomposition. The decompositions H = UR VT and # = VRUT together show that
the skew-Hamiltonian matrix H? satisfies %2 = L{RlRQUT. Since

-ST -SCcT -(CsT
RiR2 = [ 0 —(sT)* ] ’
this is the skew-Hamiltonian real Schur form of %2, computed without ever forming H?
explicitly. The eigenvalues of H are the square roots of the eigenvalues of the quasitriangular
matrix —S7T. Thus the symplectic URV decomposition is a backward stable method of
computing the eigenvalues of .
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3. The Method. Let M € R?"*?" be a Hamiltonian matrix that has no eigenvalues
on the imaginary axis. Our objective is to compute the Hamiltonian Schur form of M. We
begin by computing the symplectic U RV decomposition of M, as described in Theorem 2.4.
Taking the orthogonal symplectic matrix { from that decomposition, let % = U M. Then
# is a Hamiltonian matrix with the property that 74 is in skew-Hamiltonian Schur form.

As was explained in [4], the new method produces (at O(n?) cost) an orthogonal sym-
plectic @ such that the Hamiltonian matrix OTHO can partitioned as

Fl *‘ * *

0 F * é
3.1 Tyo = ,
3.1) QMO = |5

0 H| s —FT

where F} is either 1 x 1 with a negative real eigenvalue or 2 x 2 with a complex conjugate
pair of eigenvalues in the left halfplane, and the remaining Hamiltonian matrix
. F G
32 H=] = p
62) 5]
has the property that its square is in skew-Hamiltonian Schur form. Now we can apply the
same procedure to H to deflate out another eigenvalue or two, and repeating the procedure as
many times as necessary, we get the Hamiltonian Schur form of , hence of M, in O(n?)
work.

4. The Method in the simplest case. To keep the discussion simple let us assume at

first that all of the eigenvalues of M are real. Then
B N
2 _
= e ]

where B is upper triangular and has positive entries on the main diagonal. It follows that
ey is an eigenvector of H? with associated eigenvalue by;. Generically e; will not be an
eigenvector of 1, and we will assume this for now. Thus the vectors e; and He; are linearly

independent.' Since e; is an eigenvector of 2, the two-dimensional space span{ey, Hey } is
invariant under . In fact

Hlen He |=[e ’Hel][(l) b(l)l].

The associated eigenvalues are A = —+/b;; and —\ = /by, and the eigenvectors are
(H + A)eq, and (H — A)ey, respectively.

Our objective is to build an orthogonal symplectic Q that causes a deflation as explained
in the previous section. Let

4.1 z=(H+ M)ei,

the eigenvector of H associated with eigenvalue \. We will build an orthogonal symplectic
Q that has its first column proportional to z. This will guarantee that

A % * *
T 10 F| % G
4.2) Q HO = 00 =x 0 )
0 H| « —FT

LAl nongeneric cases,including the trivial case He1 = Aei, will be resolved eventually.
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thereby deflating out eigenvalues =\. We have to be careful how we construct Q, as we
must also guarantee that the deflated matrix H of (3.2) has the property that its square is
in skew-Hamiltonian Schur form. For this it is necessary and sufficient that QTHQQ be in
skew-Hamiltonian Schur form. We will outline the algorithm first; then we will demonstrate
that it has the desired properties.

Outline of the algorithm, real case. Partition the eigenvector x from (4.1) as

=[]

where v, w € R™. We begin by introducing zeros into the vector w
Let Uy ,2 be a rotator in the (1, 2) plane such that U 1T »w has a zero in position 1.> Then

let Uy 3 be a rotator in the (2,3) plane such that UQT"3U1T,2w has zeros in positions 1 and 2.
Continuing in this manner, produce n — 1 rotators such that

Ug—l,n"'U27:3U17:2w = Yén,
where v = £||w||,. Let
U=U12Uz3"--Up_1,n.
Then UTw = ve,,. Let

and let
(1) UT
(1 _ v _oT v _ v
v [u}(l)] Ql[w] [’yen '
Let Q5 be an orthogonal symplectic rotator acting in the (n,2n) plane that annihilates
the . In other words,
0,21 = [ @ ] _

0

Next let Yy,—1,, be a rotator in the (n — 1,n) plane such that Y, ; (3 has a zero
in the nth position. Then let Y,,_» ,_1 be a rotator in the (n — 2,n — 1) plane such that
Yanz,nlean 1’nv(2) has zeros in positions n — 1 and n. Continuing in this manner, produce

rotators Yy, _3 ,—2, ..., Y7 9 such that YEZ---YHTA,HU(Q) = fBey, where § = ﬂ:||v(2) []
Letting Y = Y,y - -+ Y1 2, we have YT0(!) = Be;. Let
Y
Q3 — |: Y :| )
and
Q=0,9-03.

This is the desired orthogonal symplectic transformation matrix.

Each of U and Y is a product of n — 1 rotators. Thus Q is a product of 2(n — 1) sym-
plectic double rotators and one symplectic single rotator. The transformation # — QTHQ
is effected by applying the rotators in the correct order.

2Generically it will be the case that w1 # 0, and the rotator Ut 2 is nontrivial. However, it could happen that
wy = 0. If wa = 0 as well, then U1,2 could be an arbitrary rotator in principle. However, we will insist on the
following rule: In any situation where the entry that is to be made zero is already zero to begin with, then the trivial
rotator (the identity matrix) must be used.
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5. Why the algorithm works (real-eigenvalue case). The transforming matrix Q was
designed so that oz = Qg’Qg’Qf:c = Be;. Thus Qe; = B~ 1z; the first column of Q is
proportional to x. Therefore we get the deflation shown in (4.2).

The more challenging task is to show that QTH2 Q is in skew-Hamiltonian Schur form.
To this end, let

Hy = OTHO), Hy=0FH1Qs, and  Hz = QI H,0s.
Then
Hs = QTHOQ,

so our objective is to show that ”H% is in skew-Hamiltonian Schur form. We will do this by
showing that the skew-Hamiltonian Schur form is preserved at every step of the algorithm.
We start with the transformation from H to H. Since

T T
Wi - Qe - [ UTBU UTNU
it suffices to study the transformation B — U7 BU. Since U is a product of rotators, the
transformation from B to UZ BU can be effected by applying the rotators one after another.
We will show that each of these rotators preserves the upper-triangular structure of B, effect-
ing a swap of two eigenvalues.

We will find it convenient to use computer programming notation here. We will treat
B as an array whose entries can be changed. As we apply the rotators, B will gradually be
transformed to UT BU, but we will continue to refer to the matrix as B rather than giving it
a new name each time we change it.

Our argument uses the fact that w is an eigenvector of BT: The equation Hz = zA
implies H*x = 2\?, which implies BTw = wA?. (It can happen that w = 0. Our argument
covers that case.) The transformations in B correspond to transformations in w. For example,
when we change B to Uf:zBUl,z to get a new “B”, we also change w to UEQw, and this is
our new “w”. Thus we are also treating w as an array. It will start out as the true w and be
transformed gradually to the final “w”, which is ye,,.

Let us start with the original B and w. It can happen that w; = 0, in which case
Ui = I. Thus the new B, after the (trivial) transformation is still upper triangular. Now
assume w; # 0. Then the rotator Uy » is non trivial, and the operation w < U 17: LW gives a
new w that satisfies w; = 0 and we # 0. The transformation B <+ Uf: 9 BU, 2 recombines
the first two rows of B and the first two columns, resulting in a matrix that is upper triangular,
except that its (2, 1) entry could be nonzero. The new B and w still satisfy the relationship
BTw = w)2. Looking at the first component of this equation, remembering that w; = 0, we
have by ;w2 = 0. Thus by ; = 0, and B is upper triangular. Moreover, the second component
of the equation implies bz 2wy = waA?, 0 by o = A%. Since we originally had by ; = A?, the
similarity transformation has reversed the positions of the first two eigenvalues in B.

Now consider the second step: B <+ U,}: 3BU> 3. Immediately before this step, we
may have we = 0, in which case Us 3 = I, the step is trivial, and triangular form is pre-
served. If, on the other hand, wa # 0, then Uy 3 is a nontrivial rotator, and the transformation
w U27:3w gives a new w that satisfies w; = wy = 0 and wg # 0. The corresponding
transformation B <+ UQT, 3BUsy, 3 operates on rows and columns 2 and 3, and gives a new
B that is upper triangular, except that the (3,2) entry could be nonzero. The new B and w
continue to satisfy the relationship BTw = w\2. Looking at the second component of this
equation, we see that b3 ows 7# 0. Therefore b3 » = 0, and B is upper triangular. Looking at
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the third component of the equation, we find that b3 3 = A%. Thus another eigenvalue swap
has occurred.

Clearly this same argument works for all stages of the transformation. We conclude that
the final B, which is really U7 BU, is upper triangular. We have b,,,, = A2. In the generic
case, in which the original w satisfies w1 # 0, each of the transforming rotators is nontrivial
and moves the eigenvalue A2 downward. In the end, A2 is at the bottom of the matrix, and
each of the other eigenvalues has been moved up one position.

In the nongeneric case, suppose wq = wy = --- = wi = 0, and wgy1 # 0. Then the
(k + 1)st component of the equation BTw = w\? implies that bx1 g1 = A2. Since also
b1 = A2, we see that the nongeneric case (with w # 0) cannot occur unless A is a multiple
eigenvalue of /. In this case the first k£ transformations are trivial, then the subsequent
nontrivial transformations moves the eigenvalue by1,k+1 = A? to the bottom.

In any event, we have

2 B  N@)
Hl - [ 0 BLT |»

where B is upper triangular.

Now consider the transformation from H; to Hs = Qg’Hl Q,, which is effected by a
single symplectic rotator in the (n, 2n) plane. The 2 x 2 submatrix of 13 extracted from rows
and columns n and 2n is

bon 0O
Kt

(Recall that the “/N” matrix is skew symmetric.) This submatrix is a multiple of the identity
matrix, so it remains unchanged under the transformation from H% to ’Hg. An inspection of
the other entries in rows and columns n and 2n of H3 shows that no unwanted new nonzero
entries are produced by the transformation. We have

B® N©) ]

Hy = [ 0 BT

where B(?) is upper triangular.
Now consider the transformation from H2 to Hs3. Since

A YTB@y yITN®@Y
7{§=Q3T7‘(§Q3: [ ]7

0 yTB@Ty

it suffices to study the transformation of B(?) to YTB®)Y’,
At this point the eigenvector equation H?z = xA? has been transformed to

Hix® = P)\2 or
B® N© v® 7 T ® 2
0 B®T 0o | | o ’
) oD = @2

which implies B®v() = y(>) X2, The nth component of this equation is bgnvn
implying that bg)n = M\2if v7(12) # 0. In fact, we already knew this. The entry v7(12) cannot
b(e )zero, unless the original w was zero. We showed above that if w # 0, then we must have
b = A2.

Returning to our computer programming style of notation, we now write B and v in
place of B(® and v(®) and consider the transformation from B to YT BY', where Bv = v 2.
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Since Y is a product of rotators, the transformation from B to Y7 BY can be effected by
applying the rotators one after another. We will show that each of these rotators preserves the
upper-triangular structure of B, effecting a swap of two eigenvalues.

The first transforming rotator is Y;,_1 ,, which acts in the (n — 1,n) plane and is de-
signed to set v, to zero. If v, = 0 already, we have Y,,_1 , = I, and B remains upper
triangular. If v, # 0, then Y;,_; 5, is nontrivial, and the transformation B Yanl,nBYn_l,n
leaves B in upper-triangular form, except that the (n,n — 1) entry could be nonzero. The
transformation v < YnT_an gives a new v with v, = 0 and v,_1 # 0. The new B and
v still satisfy Bv = vA2. The nth component of this equation is by, 1,1 = 0, which
implies by, ,—1 = 0. Thus B is upper triangular. Moreover, the (n — 1)st component of the
equation is by—1,n—1Vn—1 = Vn—1A%, which implies b,,_1,,—1 = A?. Thus the eigenvalue A?
has been swapped upward.

The next rotator, Y,,_5 ,_1, acts in the (n — 2,n — 1) plane and sets v,_1 to zero.
If v,_1 = 0, the rotator is trivial, and B remains upper triangular. If v, ; # 0, then
Y, _2 n—1 is nontrivial, and the transformation B <« YnT72,n71BYn,2,n, 1 leaves B in upper-
triangular form, except that the (n — 1,n — 2) entry could be nonzero. The transformation
v 4= YnT_Q’n_lv gives a new v with v,, = v,_1; = 0 and v,,_» # 0. The equation Bv = v\?
still holds. Its (n — 1)st component is bp_1,,—2vp—2 = 0, which implies b,,_1 ,—2 = 0.
Thus B is still upper triangular. Furthermore the (n — 2)nd component of the equation is
bn—2.n—2Vn—2 = vnp_2A2, which implies b,_2 ,—2 = A2. Thus the eigenvalue A? has been
swapped one more position upward.

Clearly this argument works at every step, and our final B, which is actually B®), is
upper triangular. Thus ’Hg has skew-Hamiltonian Hessenberg form.

In the generic case vg) # 0 (which holds as long as w # 0) each of the transforming
rotators is nontrivial and moves the eigenvalue A? upward. In the end, A? has been moved to
the top of B, and each of the other eigenvalues has been moved down one position.

In the generic case wy # 0, the first part of the algorithm marches A2 from top to bottom
of B, moving each other eigenvalue upward. Then the last part of the algorithm exactly
reverses the process, returning all eigenvalues of B to their original positions.

We already discussed above the nongeneric cases wy = -+ = wg = 0, wgy1 # 0.
Now consider nongeneric cases in which w = 0. Then Q1 = Qs = Iy, and Hs = H.
There must be some largest k for which v, # 0. If k = 1, then Q3 = I, and H3 = H;
the whole transformation is trivial. Now assume k£ > 1. The kth component of the equation
Bv = v)\? implies that by, = 2. Since also b1 = A2, we see that this nongeneric case
cannot occur unless A has a multiple eigenvalue. In this case the first n — k rotators Yy, _1 p,
... Yk n—k+1 are all trivial and the rest of the rotators push the eigenvalue by, = A2 to the
top of B.

6. Accommodating complex eigenvalues. Now we drop the assumption that the eigen-
values are all real. Then in the real skew-Hamiltonian Schur form

, [B N
we-[2 5]

B is quasitriangular; that is, it is block triangular with 1 x 1 and 2 x 2 blocks on the main
diagonal. Each 2 x 2 block houses a complex conjugate pair of eigenvalues of 2. Each 1 x 1
block is a positive real eigenvalue of 2. There are no non-positive real eigenvalues because,
by assumption, # has no purely imaginary eigenvalues. Suppose there are ! diagonal blocks
of dimensions nq, ..., n;. Thus n; is either 1 or 2 for each 7.

As before, our objective is to build an orthogonal symplectic Q that causes a deflation as
explained in section 3. How we proceed depends upon whether ny is 1 or 2. If ny = 1, we
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do exactly as described in section 4.

Now suppose n; = 2. In this case span{e; } is not invariant under H? but span{eq,ea}
is. It follows that span{ey, e2, Hey, Hez} is invariant under . For now we will make the
generically valid assumption that this space has dimension 4. Letting E = [ er e ], we
have

H[E HE]|=[E HE][? g]

bir b2
bar  boo
of H associated with the invariant subspace span{ey, es, Hey, Hes} are A, =, N\, and =),
where A2 = p. Without loss of generality assume R(\) < 0.

From span{ey, e, He1, Hea } extract a two-dimensional subspace Sz, invariant under H,
associated with the eigenvalues A and X. This subspace is necessarily isotropic by Proposi-
tion 2.1. We will build a symplectic orthogonal @ whose first two columns span S3. This will
guarantee that we get a deflation as in (3.1), where F is 2x 2 and has X and X as its eigenval-
ues. Of course Q must have other properties that guarantee that the skew-Hamiltonian form
of the squared matrix is preserved. We will outline the algorithm first; then we will explain
why it works.

where C' = [ ] has complex conjugate eigenvalues p and f. Thus the eigenvalues

Outline of the algorithm, complex-eigenvalue case. Our procedure is very similar to
that in the case of a real eigenvalue. Let

[

denote a 2n x 2 matrix whose columns are an orthonormal basis of S». We can choose the
basis so that wy; = 0. Isotropy implies X7 JX = 0. The first part of the algorithm applies a

sequence of rotators that introduce zeros into W. We will use the notation U i(JZ:)H ,7=1,2t0
denote a rotator acting in the (%, 4 1) plane such that U, l(,]l)f; introduces a zero in position wy; ;.
(Here we are using the computer programming notation again, referring to the (4, j) position

of an array that started out as W but has subsequently been transformed by some rotators.)
The rotators are applied in the order U2(713), U1(,22)’ U3(714), 25’23), R U,(LI_)Ln, Ur(f—)z,n—r The
rotators are carefully ordered so that the zeros that are created are not destroyed by subsequent
rotators. We can think of the rotators as coming in pairs. The job of the pair U, i(i)l, it2s ﬁl_l

together is to zero out the ith row of W.? Let
1)77(2 1 2
v = U U, U

Then UTW = W), where

0 0
wh =1 o o
1
o wi‘(_)f)’2
wn,l wn,Z

3 Actually U_i(-}—)l,i 42 Zeros out t._he entry Wit1,1- This makes it possible for U i(,?+1 to zero out the entry w1,
thereby completing the task of forming zeros in row .
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Let
o = [ u U ] )
and let
XW=0ix = [ 1‘4//((11)) ]

Next let Q5 denote an orthogonal symplectic matrix acting rows n — 1, n, 2n — 1, 2n
such that QQT zeros out the remaining nonzero entries in W(l), that is,

X = glx™ = [ V(()z) ] _

This can be done stably by a product of four rotators. Starting from the configuration

Un—-1,1 VUn—1,2

Un,1 Un,2
)
0 Wn—1,2
Wn,1 Wn,2

)

(leaving off the superscripts to avoid notational clutter) a symplectic rotator in the (n,2n)
plane sets the wy, 1 entry to zero. Then a symplectic double rotator acting in the (n — 1,n)
and (2n — 1,2n) planes transforms the Wnp—1,2 and v,,1 entries to zero simultaneously, as
we explain below. Finally a symplectic rotator acting in the (n, 2n) plane zeros out the wy, 2
entry. Q; is the product of these rotators.

The simultaneous appearance of two zeros is a consequence of isotropy. The condition
XTJX = 0, which was valid initially, continues to hold as X is transformed, since each of
the transforming matrices is symplectic. The isotropy forces wy—_1,2 to zero when vy, ; is set
to zero, and vice versa.

The final part of the algorithm applies a sequence of rotators that introduce zeros into

V(). Notice that the (n, 1) entry of V'(?) is already zero. We will use the notation Yz(_J)M,
j =1, 2, to denote a rotator acting in the (¢ — 1,%) plane such that Yz(_J)lqz introduces a zero in

position v; ; (actually the transformed v; ;). The rotators are applied in the order eri)2,n—1’

v® vy YTEE)Zn—l’ e Y1(,12) , Y2(’23). Again the rotators are ordered so that the zeros

n—1,n’> "n—-3,n—2°
that are created are not destroyed by subsequent rotators, and again the rotators come in pairs.

The job of the pair Yi(_lg,i_l, Yz(_zi,l together is to zero out the ¢th row of V. Let
1 2 1)+ (2
Y = YTE—)z,n—lyn(—)Ln T Yl(,z) YQ(,3)-
Then YTV = V), where
3,03

V11 ’U%Z)
3
0wy

v =1 0 0
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Let
Y
Q3 - |: Y :| 9
and let
T V(3
X® =07 x® = [ 0 ] '

Let

Q= 0:1Q:9s.

This is the desired orthogonal symplectic transformation matrix. Q is a product of approxi-
mately 8n rotators; the transformation # — QT HQ is effected by applying the rotators in
order.

7. Why the algorithm works. The transforming matrix Q was designed so that oTx =
QgQgQTX = X®), Thus 9QX®) = X. Since R(X®) = span{e;,es}, we have
Qspan{e;,e2} = Ss; the first two columns of Q span the invariant subspace of H asso-
ciated with A and . Therefore we get the deflation shown in (3.1).

Again the more challenging task is to show that Q7 #H?Q is in skew-Hamiltonian Schur
form. Let

Hi = QT’HQh Ho = Q2T7'i1 Qa, and Hs = Q?Hz Qs,
so that
Hs = QTHO,

as before. We must show that 3 is in skew-Hamiltonian real Schur form.

We will cover the cases n; = 2 and ny = 1. In the case n; = 2, X denotes an n X 2
matrix such that the two-dimensional space R(X) is invariant under #. In the case ny = 1,
X will denote the eigenvector z from sections 4 and 5. For this X, the one-dimensional space
R(X) is invariant under H.

Since R(X) is invariant under #, we have HX = XA, for some n; X n; matrix A. If
n; = 1, then A = ), a negative real eigenvalue. If n; = 2, A has complex eigenvalues A and
X lying in the left half-plane. Consequently H2X = X A2 or

Lo o] lwl=lw]»

BTW = WA2.

which implies

Thus R(W) is invariant under B .
Recalling that B is quasitriangular with main-diagonal blocks of dimension mn;,
i =1, ..., 1, we introduce the partition

By By --- By
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where Bj; is n; % n;. Partitioning W conformably with B, we have
W1
W = : ,
Wi

where W; is n; X nq.

We start with the transformation from H to 41, for which it suffices to study the trans-
formation from B to UT BU. Again we will use computer programming notation, treating B
and W as arrays whose entries get changed as the rotators are applied.

The equation BTW = W A2 implies that

B, 0 Wi | _ | Wi 2
o b ][] =[]
In particular Bﬂ W1 = W;A2, which reminds us that the eigenvalues of By, are the same
as those of A2. Generically Wy will be nonsingular, implying that the equation BL W; =
W1 A? is a similarity relationship between BI; and A2, but it could happen that W; = 0.
Lemma 9 of [4] implies that these are the only possibilities: If W is not zero, then it must be
nonsingular. For now we will make the generically valid assumption that W is nonsingular.
The nongeneric cases will be discussed later.

The algorithm begins by creating zeros in the top of . Proceed until the first ny (1 or
2) rows of W have been transformed to zero. In the case ny = 1 (resp. ny = 2), this will
require na rotators (resp. pairs of rotators). We apply these rotators to B as well, effecting
an orthogonal symplectic similarity transformation. The action of these rotators is confined
to the first ny + ng rows and columns of B. The resulting new “B” remains quasitriangular,

except that the block By; could now be nonzero. At this point the relationship (7.1) will have
been transformed to

B, BI 0O _| O 2

72 BTN
Here we must readjust the partition in order to retain conformability. The block of zeros is
na X ni, so the new Wy must be n; X ny. Since the original W; was nonsingular, the new
W5 must also be nonsingular. The new Bj; and Bsy are ny X ny and ng X ng, respectively.
The top equation of (7.2) is BE; W, = 0, which implies By; = 0. Thus the quasitriangularity
is preserved. Moreover, the second equation of (7.2) is BQTQWg = W,A2, which implies that
Bss has the eigenvalues of A? (and the new By; must have the eigenvalues of the old Bs2).
Thus the eigenvalues have been swapped.

In the language of invariant subspaces, equation (7.2) implies that the space
span{en, 41, -- -, €n,+n, t is invariant under BT Therefore the block B, must be zero.

Now, proceeding inductively, assume that the first ng +ng - - - + ng rows of W have been
transformed to zero. At this point we have a transformed equation BTW = WA2. Assume
inductively that B has quasitriangular form, where By, is nqy X n; and has the eigenvalues
of A2. Fori=1,...,k—1, By is n;4+1 X n;4+1 and has the same eigenvalues as the original
Bit1,i+1 had. Fori = k+ 1, ..., [, By has not yet been touched by the algorithm. Our
current W has the form
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where the zero block has ng + - -+ + ny rows, Wy, is nq X nq and nonsingular, and Wi 1,
..., Wi have not yet been touched by the algorithm. From the current version of the equation

BTW = WA? we see that
Wi | _ | Wk A2
Wit Wit ’

T
ngk Bl N
kok+1 k+1,k+1
The next step of the algorithm is to zero out the next nyy; rows of W. The situation is
exactly the same as it was in the case k¥ = 1. Arguing exactly as in that case, we see that the
quasitriangularity is preserved, and the eigenvalues are swapped.
At the end of the first stage of the algorithm we have

where W is my x n; and nonsingular. This W is what we previously called W), The
corresponding B (which is actually B™)) is quasitriangular. By is n1 x m; and has the
eigenvalues of A2. Each other By; is ni41 X niy1 and has the eigenvalues of the original
Bit1,i+1. At this point we have transformed # to H; = QT’HQL

Before moving on to the next stage of the algorithm, we pause to consider what happens
in the nongeneric cases. Assume Wj is not nonsingular. Then W; must be zero. Suppose
Wi, ..., W are all zero and W; # 0. Then, by Lemma 9 of [4], W; must be n; x nyq
and nonsingular. If we partition the equation BTTW = W A2, then the jth block equation is
BjTj W, = W;A?. Thus By; is similar to A? and must therefore have the same eigenvalues
as By;. We conclude that this nongeneric case can occur only if the eigenvalues of A have
multiplicity greater than one as eigenvalues of . In this case the first ny + ... + n;_
rotators (or pairs of rotators) are trivial. Once we reach W, the rotators become nontrivial,
and the eigenvalues of the block Bj; (i.e. the eigenvalues of A?) get swapped downward to
the bottom, just as in the generic case. Another nongeneric case occurs when the entire matrix
W is zero to begin with. We will say more about that case later.

Whether we are in the generic case or not, we have

9 B  N@)
1= 0 BLT |

where B() is quasi-triangular.
Now consider the transformation from H; to Hy = Q2T’H1 Q5. We have to show that the
skew-Hamiltonian Schur form of

BML N
is preserved by the transformation. If we write Hf in block form conformably with the
blocking of B(l), we have 2] block rows and block columns. The action of the transformation
affects only block rows and columns / and 2I. If we consider the block-triangular form of
B we find that zero blocks are combined only with zero blocks and no unwanted nonzero
entries are introduced except possibly in block (21,1).

To see that the (21, 1) block also remains zero, examine our main equation

BML NO v _ v A2
0 BWMT w® w®) ’
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bearing in mind that almost all of the entries of W (1) are zeros. Writing the equation in

partitioned form and examining the /th and 2/th block rows, we see that they amount to just
(1) (1)

By N i
o B

V;(l)
Wl(l)

(1)
v
(7.3) Loy | AR

Wl( )

Every matrix in this picture has dimension n; x n;. The similarity transformation by Qo
changes (7.3) to

@ N
(7.4) By ]\Zl2l)T
M B

2 2
VO _[ v ] e
0 0 ’

where M is the block in question. Notice that Vl(2) cannot avoid being nonsingular. The
second block equation in (7.4) is M Vl(2) = 0, which implies M = 0, as desired. The first
block equation is Bl(f){/;@) = V;(Z)A2, which says that Bl(f) is similar to A2 and therefore
has the same eigenvalues as A2. If we prefer, we can use the language of invariant subspaces.

(2) (2)
Equation (7.4) shows that span{es, ..., ep, } is an invariant subspace of ]\l/l[ ;\?f‘f)T ,
u

forcing M to be zero. Either way, we conclude that the skew-Hamiltonian Schur form is
preserved in stage 2 of the algorithm.

Now consider the transformation from H4 to H3, for which it suffices to study the trans-
formation from B®) to B®) = YTB®)Y . At this point the main equation H>X = X A? has
been transformed to H3 X (2) = X()A? or

B® N©® vl [v® A2
0 BOT o || o ’

which implies BV (2 = V()A2, 5o R(V(?)) is invariant under B,

Returning to our computer programming style of notation, we now write B and V in
place of B and V(2 and consider the transformation from B to Y7 BY, where BV =
VA%, For now we assume that we are in the generic case; we will discuss the remaining
nongeneric cases later. Thus B is quasi-triangular. The block Bj;; is nj4+1 X njy1 fori =1,
..., I — 1. The block By is n; x m; and has the eigenvalues of A2, If we partition V
conformably with B, we have

Vi

Vi
where each V; has its appropriate dimension. In particular V} is n1 X n1 and is, in the generic
case, nonsingular. The equation BV = VA2 and the quasitriangularity of B imply that

Bi_1;1 B, Vieir | | Vil 2
(7.5) : BHHW]‘[W]A'

The third stage of the algorithm is wholly analogous with the first stage, except that we
work upward instead of downward. We begin by transforming the bottom n; rows of V' to
zero. In the case n; = 1 (resp. n1 = 2) this requires n; rotators (resp. pairs of rotators).
When we apply these rotators to B, their action is confined to the bottom n; + n4 rows and
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columns, so the new B remains quasitriangular, except that the block B;;_; could now be
nonzero. At this point the relationship (7.5) will have been transformed to

Bi_1,-1 Bi_iy Viea Vica 2
7.6 ’ ’ = A“.

Just as in stage 1, we must readjust the partition in order to retain conformability. The block of
zeros is ng Xny, so the new V;_; must be nq Xn4, and it is nonsingular. The new B;_; ;—; and
By are ny X ny and ny X ny, respectively. The bottom equation of (7.6) is By;_1V;_1 =0,
which implies B;;—1 = 0. Thus the quasitriangularity is preserved. Moreover, the top
equation of (7.6)is Bj_1,;-1Vj—1 = Vi—1A2, which implies that B;_1 ;1 has the eigenvalues
of A2 (and the new Bj; must have the eigenvalues of the old B;_1 ;—1). Thus the eigenvalues
have been swapped.

In the language of invariant subspaces, equation (7.6) implies that the space
Bi_1;-1 Bi_iy

. Therefore the block B; ;1 must
1i—1 By

span{ey, ..., ey, } is invariant under [

be zero.

This first step sets the pattern for all of stage 3. We will skip the induction step, which
is just like the first step. Stage 3 preserves the quasitriangular form of B and swaps the
eigenvalues of A2 back to the top. In the end we have

2 B®  NGB)
HB - [ 0 B®T |
where
BY B B
(3) (3)
B _ 0 B, B
0 B

where each Bz(f ) is n; X n; and has the same eigenvalues as the original B;;.

It seems as if we are back where we started. Indeed we are, as far as 2 is concerned. But
we must not forget that our primary interest is in #, not 2. Thanks to this transformation,
span{e; } (in the case n; = 1) or span{es, ez} (in the case ny = 2) is now invariant under
Hs as well as Hg, so we get the deflation (3.1).

The discussion is now complete, except for some more nongeneric cases. Suppose that
at the beginning of stage 3, V] is singular. Then, by Lemma 6 of [4], V; must be zero. In fact
this can happen only if the original W was zero. In this case the transformations Q; and Qs
are both trivial, and we have Ho = H. Thus the B and V with which we begin stage 3 are the
original B and V. It must be the case that V' # 0; in fact V' has full rank n;. If we partition
V' conformably with B, we have

i
V= I
Vi
where V; is n; x ny. Suppose V; # 0 and Vj44, ..., V] are all zero, and suppose j > 1.

Then, by Lemma 6 of [4], V} is n1 X nq and nonsingular. Moreover, the equation BV = VA2
implies that B;;V; = V;A2, so we see that B;; is similar to A2, so it has the same eigenvalues
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as Bj1. Thus this nongeneric case cannot arise unless the eigenvalues of A have multiplicity
greater than one as eigenvalues of H.

In this nongeneric case all of the rotators are trivial until the block V; is reached. From
that point on, all of the rotators are nontrivial, and the algorithm proceeds just as in the generic
case. Because V; is nonsingular, the arguments that worked in the generic case are valid here
as well. The eigenvalues of Bj; = V;A? ijl get swapped to the top of B.

Finally we consider the nongeneric case j = 1. Here V; is nonsingular, and all other V;
are zero. This is the lucky case, in which R(X) = span{e1} (whenn; = 1) or R(X) =
span{ey, ea} (when ny = 2). In this case all rotators are trivial, @ = I, and Hz = H.

Now the story is nearly complete.

8. One last difficulty with the nongeneric case. Our stated goal has been to get the
left-half-plane eigenvalues into the (1,1) block of the Hamiltonian Schur form. In the non-
generic cases we may fail to achieve this goal. First of all, in the “lucky” nongeneric case
that we just mentioned above, span{e; } or span{e;, ez} is already invariant under H, and we
get an immediate deflation for free. If the eigenvalue(s) associated with this invariant sub-
space happen to be in the right half plane, then we get a deflation of one or two unwanted
eigenvalues in the (1,1) block.

Something even worse happens in the other nongeneric cases. For clarity let us consider

the case ny = 1 first. Then X = 2 = Z ], an eigenvector of H. In all nongeneric

cases, w1 = 0. Suppose this holds, and e is not an eigenvector. Then span{e;, He; } is two
dimensional, and we will show immediately below that the space spanned by the first two
columns of Q is exactly span{e;, He; }.* Since the eigenvalues associated with this invariant
space are A and — ], the effect of this is that the first two columns of H3z = QT'HQ have the
form

A *
0 =X
0 0
0 0

The desired deflation of A is followed immediately by a trivial, undesired deflation of —A\.

Let V denote the space spanned by the first two columns of Q. To see that span{e;, He; } =
V, recall that Q is the product of a large number of rotators, the first pair of which are
diag{U12,U12}, and the last pair of which are diag{Y12,Y12}. These are the only rotators
that act in the (1,2) plane, and they are the only rotators that affect directly the first col-
umn of Q. Let Z = diag{Y12, Y12}, and let @, = QZ'. Then Q, is the same as Q,
except that the final pair of rotators has not yet been applied. Since w; = 0, the rotator pair
diag{Ui2, U1z} is trivial. Therefore Q, is a product of rotators that do not act on the first
column; the first column of Qp is thus e;. Notice also that the relationship Q = QpZ implies
that ), the space spanned by the first two columns of Q, is the same as the space spanned by
the first two columns of Q,,. Therefore e; € V. Recall also that Q is designed so that its first
column is proportional to z, so z € V. But x = Hey + Aey. Therefore He; = x — dey € V.
We conclude that span{ey, He; } = V.

The exact same difficulty arises in the case of complex eigenvalues. First of all, there can
be the undesired trivial deflation of a right-half-plane pair of complex eigenvalues in the (1,1)

4Recalling that z = Hej + Aei, notice that the condition w; = 0 means exactly that span{e1,He1 } is an
isotropic subspace.
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block. If that doesn’t happen but we are in the nongeneric case W3 = 0, then an argument
just like the one we gave in the real-eigenvalue case shows that the space spanned by the first
four columns of Q is exactly the isotropic invariant subspace span{ey, e2, Hey, Hea}. This
means that the desired deflation of a pair A, X is immediately followed by the unwanted trivial
deflation of the pair —\, — .

Thus in nongeneric cases we frequently end up with right-half-plane eigenvalues in the
(1,1) block, and we are faced with the additional postprocessing task of swapping them out.
Methods for swapping eigenvalues in the Hamiltonian real Schur form have been outlined by
Byers [3] and Kressner [5, 6].
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