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ON THE REDUCTION OF A HAMILTONIAN MATRIX TO HAMILTONIAN
SCHUR FORM

�
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�
Abstract. Recently Chu, Liu, and Mehrmann developed an �������
	 structure preserving method for computing

the Hamiltonian real Schur form of a Hamiltonian matrix. This paper outlines an alternative derivation of the method
and an alternative explanation of why the method works. Our approach places emphasis eigenvalue swapping and
relies less on matrix manipulations.
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1. Introduction. In [4] Chu, Liu, and Mehrmann presented an �
������� structure-preserv-
ing method for computing the real Hamiltonian Schur form of a Hamiltonian matrix. The
current paper is the fruit of this author’s attempt to understand [4]. The method sketched
here differs hardly at all from the one presented in [4]; the objective of this paper is not to
present a new algorithm but rather to provide an alternative explanation of the method and
why it works. There are two main differences between our presentation and that of [4]. 1)
We use the idea of swapping eigenvalues or blocks of eigenvalues in the real Schur form and
rely less on matrix manipulations. 2) The presentation in [4] expends a great deal of effort
on nongeneric cases. We focus on the generic case and dwell much less on special situations.
However, we do show that the method developed for the generic case actually works in all
of the nongeneric cases as well. This is true in exact arithmetic. It may turn out that in the
presence of roundoff errors one cannot avoid paying special attention to nongeneric cases as
in [4].

2. Definitions and Preliminary Results. Throughout this paper we restrict our atten-
tion to matrices with real entries. Define ��������������� by�! "$# % �& % � #('*)
A matrix +,�-�.�������/� is Hamiltonian if �0+1 2�3�0+!�54 . + is skew-Hamiltonian if �0+1 & �3�0+��54 . 67�8� �/�����/� is symplectic if 6 4 �96: ;� .

A number of elementary relationships are easily proved. Every symplectic matrix is non-
singular. The product of two symplectic matrices is symplectic. The inverse of a symplectic
matrix is symplectic. Thus the set of symplectic matrices is a group under the operation of
matrix multiplication. An important subgroup is the set of orthogonal symplectic matrices.
We use two types of orthogonal symplectic transformations in this paper: If <=�>� ����� is
orthogonal, then " < ## < '
is orthogonal and symplectic. If ? , @-�8� �A��� are diagonal and satisfy ? �CB @ �  % , then" ? & @@ ? 'D
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is orthogonal and symplectic. In particular, for any E , a rotator acting in the �FE0G5� B E�� plane
is symplectic.

If 6 is symplectic and + is Hamiltonian (resp. skew-Hamiltonian), then 6IHKJ�+L6 is
Hamiltonian (resp. skew-Hamiltonian).

If + is Hamiltonian and M is a right eigenvector of + with eigenvalue N , then M 4 � is a
left eigenvector with eigenvalue & N . It follows that if N is an eigenvalue of + , then so are N ,& N , and & N . Thus the spectrum of a Hamiltonian matrix is symmetric with respect to both
the real and the imaginary axes.

A subspace OQPR� ��� is called isotropic if SA4T�VUW # for all S , UX�XO . If YZ�[� �/�A�]\
is a matrix such that O( =^W��Y_� , then O is isotropic if and only if YX4T�VY` # . Given
a symplectic matrix @a�;� ��������� , let @ J and @ � denote the first � and last � columns of@ , respectively. Then the relationship @b4T�c@; 2� implies that ^W�F@ J � and ^W�d@ � � are both
isotropic. The following well-known fact is crucial to our development.

PROPOSITION 2.1. Let O>Pe� ��� be a subspace that is invariant under the Hamiltonian
matrix + . Suppose that all of the eigenvalues of + associated with O satisfy f*�FN��.g # . ThenO is isotropic.

Proof. Let Y be a matrix with linearly independent columns such that Oh i^W��Y_� .
We need to show that Y_4T�VYj # . Invariance of O implies that +kYj lY_? for some ?
whose eigenvalues all satisfy f*�dNA��g # . Multiplying on the left by YX4T� , we get YW4m�0Y�?n YW4C�3�0+��3Y . Since �0+ is symmetric, we deduce that Y�4m�VY_? is symmetric, so thatY 4 �0Y�? B ? 4 Y 4 �VY( # . Letting o7 pY 4 �VY , we have oq? B ? 4 o7 # . The Lyapunov
operator osrtoL? B ?u4�o has eigenvalues N \ B[vcw , where N \ and vcw are eigenvalues of ?
and ?*4 , respectively. Since the eigenvalues N w*Bpvcw all lie in the open left halfplane, they
are all nonzero. Thus the Lyapunov operator is nonsingular, and the homogeneous Lyapunov
equation ox? B ?*4yo; # has only the solution o; # . Therefore Y_4m�VYz # .

If + is Hamiltonian, then +�� is skew-Hamiltonian. { is skew-Hamiltonian if and only
if it has the block form{R "�| }~ | 4 ' G } 4  & } G ~ 4  & ~ )
A matrix �z���.����� is called quasitriangular if it is block upper triangular with �x��� and� � � blocks along the main diagonal, each

� � � block housing a conjugate pair of complex
eigenvalues. Quasitriangular form is also called real Schur form or Wintner-Murnaghan form.
A skew-Hamiltonian matrix ���!����������� is said to be in skew-Hamiltonian real Schur form
if �Z " � }# �x4 ' G
where � is quasitriangular.

THEOREM 2.2. [9] Every skew-Hamiltonian matrix is similar, via an orthogonal sym-
plectic similarity transformation, to a matrix in skew-Hamiltonian Schur form. That is, if{l�X� �/�A����� is skew Hamiltonian, then there is an orthogonal symplectic 6��X� �/�����/� and
a skew-Hamiltonian �j�8� �������/� such that�Z " � }# �x4 ' G
where � is quasitriangular, and {� [6���6 4 .

The eigenvalues of { and � are the eigenvalues of � repeated twice. We deduce that
the eigenspaces of a skew-Hamiltonian matrix all have even dimension.
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is Hamiltonian if and only if it has the block form�  "�� �� & � 4 ' G � 4  � G � 4  � )

A Hamiltonian matrix +��Q� �/�����/� that has no purely imaginary eigenvalues must have
exactly � eigenvalues in the left halfplane and � in the right halfplane. Such a matrix is said
to be in Hamiltonian real Schur form if+� "x� �# & � 4 ' G
where

�
is quasitriangular, and the eigenvalues of

�
all have negative real part.

THEOREM 2.3. [8] Let
� �8�.�/�A����� be a Hamiltonian matrix that has no purely imagi-

nary eigenvalues. Then
�

is similar, via an orthogonal symplectic similarity transformation,
to a matrix in Hamiltonian real Schur form. That is, there exists an orthogonal symplectic6��!� ��������� and a Hamiltonian +� " � �# & � 4 '
in Hamiltonian real Schur form, such that

�  -6�+L6 4 .
The linear-quadratic Gaussian problem of control theory, also known as the quadratic

regulator problem, can be solved by solving an algebraic Riccati equation. This is equivalent
to finding the � -dimensional invariant subspace of a Hamiltonian matrix associated with the
eigenvalues in the left halfplane [7]. If one can compute a Hamiltonian real Schur form as in
Theorem 2.3, then the first � columns of 6 span the desired invariant subspace, leading to the
solution of the linear-quadratic Gaussian problem.

The proof of Theorem 2.3 in [8] is nonconstructive. Since the publication of [8], it has
been an open problem to find a backward stable �
��� � � method to compute the orthogonal
symplectic similarity transformation to Hamiltonian real Schur form.

We will use the following version of the symplectic �*�u� decomposition theorem [2].
THEOREM 2.4. Let +a�!� �/�A����� be a Hamiltonian matrix. Then there exist orthogonal,

symplectic 6 , �p�!���/�����/� , an upper-triangular
� �!������� , quasitriangular @-��������� , and?��!� ����� such that +� [6�^ J � 4 and +� >�m^ � 6 4 G

where ^ J  " @ ?# � 4 ' and ^ �  " & � ?*4# & @ 4 ' )
There is a backward stable �
��� � � algorithm, implemented in HAPACK [1], to compute

this decomposition. The decompositions +� �6�^ J � 4 and +l ��b^ � 6 4 together show that
the skew-Hamiltonian matrix +�� satisfies +��� �6�^ J ^ � 6 4 . Since^ J ^ �  " & @ � & @m?*4 & ?u@T4# & �d@ � � 4 ' G
this is the skew-Hamiltonian real Schur form of + � , computed without ever forming + �
explicitly. The eigenvalues of + are the square roots of the eigenvalues of the quasitriangular
matrix & @ � . Thus the symplectic �*�u� decomposition is a backward stable method of
computing the eigenvalues of + .
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3. The Method. Let
� �R���������/� be a Hamiltonian matrix that has no eigenvalues

on the imaginary axis. Our objective is to compute the Hamiltonian Schur form of
�

. We
begin by computing the symplectic �*�u� decomposition of

�
, as described in Theorem 2.4.

Taking the orthogonal symplectic matrix 6 from that decomposition, let +� -6 4 � 6 . Then+ is a Hamiltonian matrix with the property that +!� is in skew-Hamiltonian Schur form.
As was explained in [4], the new method produces (at �
��� � � cost) an orthogonal sym-

plectic � such that the Hamiltonian matrix � 4 +_� can partitioned as

� 4 +��n ,���� �� J � � �# �� � ��# # & �� 4J ## �� � & �� 4
� ��¡ G(3.1)

where
�� J is either �q�¢� with a negative real eigenvalue or

� � � with a complex conjugate
pair of eigenvalues in the left halfplane, and the remaining Hamiltonian matrix�+� " �� ���� & �� 4 '(3.2)

has the property that its square is in skew-Hamiltonian Schur form. Now we can apply the
same procedure to

�+ to deflate out another eigenvalue or two, and repeating the procedure as
many times as necessary, we get the Hamiltonian Schur form of + , hence of

�
, in �
��� � �

work.

4. The Method in the simplest case. To keep the discussion simple let us assume at
first that all of the eigenvalues of

�
are real. Then+ �  " � }# �x4 ' G

where � is upper triangular and has positive entries on the main diagonal. It follows that£ J is an eigenvector of +�� with associated eigenvalue ¤ J�J . Generically £ J will not be an
eigenvector of + , and we will assume this for now. Thus the vectors £ J and + £ J are linearly
independent.1 Since £ J is an eigenvector of + � , the two-dimensional space span ¥ £ J G¦+ £ J�§ is
invariant under + . In fact+z¨ £ J + £ J!©  2¨ £ J + £ Jª© " # ¤ J�J� # ' )
The associated eigenvalues are Nl &�« ¤ J�J and & N¬ « ¤ J�J , and the eigenvectors are�­+ B N % � £ J , and �­+ & N % � £ J , respectively.

Our objective is to build an orthogonal symplectic � that causes a deflation as explained
in the previous section. Let S® ���+ B N % � £ J G(4.1)

the eigenvector of + associated with eigenvalue N . We will build an orthogonal symplectic� that has its first column proportional to S . This will guarantee that

� 4 +X�> ���� N � � �# �� � ��# # & N ## �� � & �� 4
� ��¡ G(4.2)

1All nongeneric cases,including the trivial case ¯�°²±K³�´µ°¶± , will be resolved eventually.
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thereby deflating out eigenvalues ·*N . We have to be careful how we construct � , as we
must also guarantee that the deflated matrix

�+ of (3.2) has the property that its square is
in skew-Hamiltonian Schur form. For this it is necessary and sufficient that � 4 + � � be in
skew-Hamiltonian Schur form. We will outline the algorithm first; then we will demonstrate
that it has the desired properties.

Outline of the algorithm, real case. Partition the eigenvector S from (4.1) asS® " M¸ ' G
where M , ¸ �8� � . We begin by introducing zeros into the vector ¸

Let � J
¹ � be a rotator in the �5�ºG � � plane such that �»4J
¹ � ¸ has a zero in position 1.2 Then
let � � ¹ � be a rotator in the � � G/¼½� plane such that �u4� ¹ � �*4J
¹ � ¸ has zeros in positions 1 and 2.
Continuing in this manner, produce � & � rotators such that� 4� HVJ
¹ ��¾¿¾¶¾ � 4� ¹ � � 4J
¹ � ¸  eÀ £ � G
where À8 :·
Á ¸ Á � . Let �R �� J
¹ � � � ¹ � ¾¶¾¶¾ � � HKJÂ¹ � )
Then �*4 ¸  pÀ £ � . Let � J  " � � ' G
and let SKÃ J5Ä  " M Ã J5Ä¸ Ã J¦Ä '  7� 4J " M¸ '  " �*4�MÀ £ � ' )

Let � � be an orthogonal symplectic rotator acting in the ���TG � �c� plane that annihilates
the À . In other words, � � S Ã J¦Ä  " M Ã � Ä# ' )

Next let o � HVJ
¹ � be a rotator in the ��� & �ºG/�c� plane such that oL4� HVJ
¹ � M Ã � Ä has a zero
in the � th position. Then let o � H � ¹ � HKJ be a rotator in the ��� & � G/� & ��� plane such thatox4� H � ¹ � HVJ ox4� HKJÂ¹ � M Ã � Ä has zeros in positions � & � and � . Continuing in this manner, produce
rotators o � H � ¹ � H � , . . . , o J
¹ � such that oq4J
¹ � ¾¶¾¿¾ o»4� HVJ
¹ � M Ã � Ä  ÆÅ £ J , where Å2 Ç·
ÁÈM Ã � Ä Á .
Letting o7 >o � HKJÂ¹ � ¾¶¾¿¾ o JÂ¹ � , we have oq4KM Ã J5Ä  eÅ £ J . Let� �  " o o ' G
and �� 7� J � � � � )
This is the desired orthogonal symplectic transformation matrix.

Each of � and o is a product of � & � rotators. Thus � is a product of
� ��� & �²� sym-

plectic double rotators and one symplectic single rotator. The transformation +ÉrÊ� 4 +��
is effected by applying the rotators in the correct order.

2Generically it will be the case that Ë ±.Ì³�Í , and the rotator Î ±3Ï Ð is nontrivial. However, it could happen thatË ± ³[Í . If Ë Ð ³[Í as well, then Î ±3Ï Ð could be an arbitrary rotator in principle. However, we will insist on the
following rule: In any situation where the entry that is to be made zero is already zero to begin with, then the trivial
rotator (the identity matrix) must be used.
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5. Why the algorithm works (real-eigenvalue case). The transforming matrix � was
designed so that � 4 S¢ 2� 4� � 4� � 4 J S� ÑÅ £ J . Thus � £ J  ÑÅ HKJ S ; the first column of � is
proportional to S . Therefore we get the deflation shown in (4.2).

The more challenging task is to show that � 4 + � � is in skew-Hamiltonian Schur form.
To this end, let+ J  7� 4J +�� J G + �  �� 4� + J � � G and + �  7� 4� + � � � )
Then + �  7� 4 +��xG
so our objective is to show that + �� is in skew-Hamiltonian Schur form. We will do this by
showing that the skew-Hamiltonian Schur form is preserved at every step of the algorithm.

We start with the transformation from + to + J . Since+ � J  Ñ� 4J + � � J  " �u4c�L� �*4 } �# � 4 � 4 � ' G
it suffices to study the transformation �Òr��»4��L� . Since � is a product of rotators, the
transformation from � to �u4c�
� can be effected by applying the rotators one after another.
We will show that each of these rotators preserves the upper-triangular structure of � , effect-
ing a swap of two eigenvalues.

We will find it convenient to use computer programming notation here. We will treat� as an array whose entries can be changed. As we apply the rotators, � will gradually be
transformed to � 4 �L� , but we will continue to refer to the matrix as � rather than giving it
a new name each time we change it.

Our argument uses the fact that ¸ is an eigenvector of �
4 : The equation +kSR =S0N
implies + � S8 nS0N � , which implies �q4 ¸  ¸ N � . (It can happen that ¸  # . Our argument
covers that case.) The transformations in � correspond to transformations in ¸ . For example,
when we change � to �u4J
¹ � �L� JÂ¹ � to get a new “ � ”, we also change ¸ to �»4J
¹ � ¸ , and this is
our new “ ¸ ”. Thus we are also treating ¸ as an array. It will start out as the true ¸ and be
transformed gradually to the final “ ¸ ”, which is À £ � .

Let us start with the original � and ¸ . It can happen that ¸ J  #
, in which case� J
¹ �  % . Thus the new � , after the (trivial) transformation is still upper triangular. Now

assume ¸ J�Ó # . Then the rotator � J
¹ � is non trivial, and the operation ¸sÔ �»4J
¹ � ¸ gives a
new ¸ that satisfies ¸ J  # and ¸ � Ó # . The transformation � Ô �»4JÂ¹ � �L� JÂ¹ � recombines
the first two rows of � and the first two columns, resulting in a matrix that is upper triangular,
except that its � � G¿�²� entry could be nonzero. The new � and ¸ still satisfy the relationship�x4 ¸  ¸ N � . Looking at the first component of this equation, remembering that ¸ J  # , we
have ¤ � ¹ J ¸ �  # . Thus ¤ � ¹ J  # , and � is upper triangular. Moreover, the second component
of the equation implies ¤ � ¹ � ¸ �  ¸ � N � , so ¤ � ¹ �  >N � . Since we originally had ¤ J
¹ J  >N � , the
similarity transformation has reversed the positions of the first two eigenvalues in � .

Now consider the second step: � Ô �»4� ¹ � �L� � ¹ � . Immediately before this step, we
may have ¸ �  # , in which case � � ¹ �  % , the step is trivial, and triangular form is pre-
served. If, on the other hand, ¸ � Ó # , then � � ¹ � is a nontrivial rotator, and the transformation¸(Ô �u4� ¹ � ¸ gives a new ¸ that satisfies ¸ J  ¸ �  # and ¸ � Ó # . The corresponding
transformation � Ô �u4� ¹ � �L� � ¹ � operates on rows and columns 2 and 3, and gives a new� that is upper triangular, except that the ��¼9G � � entry could be nonzero. The new � and ¸
continue to satisfy the relationship �L4 ¸  ¸ N � . Looking at the second component of this
equation, we see that ¤ � ¹ � ¸ � Ó # . Therefore ¤ � ¹ �  # , and � is upper triangular. Looking at
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the third component of the equation, we find that ¤ � ¹ �  ÑN � . Thus another eigenvalue swap
has occurred.

Clearly this same argument works for all stages of the transformation. We conclude that
the final � , which is really �u4c�
� , is upper triangular. We have ¤ �º�  sN � . In the generic
case, in which the original ¸ satisfies ¸ J
Ó # , each of the transforming rotators is nontrivial
and moves the eigenvalue N � downward. In the end, N � is at the bottom of the matrix, and
each of the other eigenvalues has been moved up one position.

In the nongeneric case, suppose ¸ J  ¸ �  ¾¶¾¶¾  ¸ w  # , and ¸ wÖÕ J8Ó # . Then the�dE B �²� st component of the equation �L4 ¸  ¸ N � implies that ¤ w
Õ JÂ¹ w
Õ J  sN � . Since also¤ J
¹ J  ;N � , we see that the nongeneric case (with ¸ Ó # ) cannot occur unless N is a multiple
eigenvalue of + . In this case the first E transformations are trivial, then the subsequent
nontrivial transformations moves the eigenvalue ¤ w
Õ JÂ¹ w
Õ J  >N � to the bottom.

In any event, we have + � J  " � Ã J¦Ä } Ã J5Ä# � Ã J¦Ä 4 ' G
where � Ã J5Ä is upper triangular.

Now consider the transformation from + J to + �  =� 4� + J � � , which is effected by a
single symplectic rotator in the ���TG � �c� plane. The

� � � submatrix of +!�J extracted from rows
and columns � and

� � is " ¤ �µ� ## ¤ �µ� ' )
(Recall that the “

}
” matrix is skew symmetric.) This submatrix is a multiple of the identity

matrix, so it remains unchanged under the transformation from +ª�J to +��� . An inspection of
the other entries in rows and columns � and

� � of + � J shows that no unwanted new nonzero
entries are produced by the transformation. We have+ �  " � Ã � Ä } Ã � Ä# � Ã � Ä 4 ' G
where � Ã � Ä is upper triangular.

Now consider the transformation from + � to + � . Since+®��  Ñ� 4� +®�� � �  " oq4c� Ã � Ä o ox4 } Ã � Ä o# o 4 � Ã � Ä 4 o ' G
it suffices to study the transformation of � Ã � Ä to o 4 � Ã � Ä o .

At this point the eigenvector equation + � S  S0N � has been transformed to+ �� S Ã � Ä  eS Ã � Ä N � or " � Ã � Ä } Ã � Ä# � Ã � Ä 4 ' " M Ã � Ä# '  " M Ã � Ä# ' N � G
which implies � Ã � Ä M Ã � Ä  >M Ã � Ä N � . The � th component of this equation is ¤ Ã � Ä� ¹ � M Ã � Ä�  �M Ã � Ä� N � ,
implying that ¤ Ã � Ä� ¹ �  ¬N � if M Ã � Ä� Ó # . In fact, we already knew this. The entry M Ã � Ä� cannot
be zero, unless the original ¸ was zero. We showed above that if ¸ Ó # , then we must have¤ Ã � Ä� ¹ �  >N � .

Returning to our computer programming style of notation, we now write � and M in
place of � Ã � Ä and M Ã � Ä and consider the transformation from � to oL4��xo , where �xM
 pM�N � .
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Since o is a product of rotators, the transformation from � to oL4��qo can be effected by
applying the rotators one after another. We will show that each of these rotators preserves the
upper-triangular structure of � , effecting a swap of two eigenvalues.

The first transforming rotator is o � HKJÂ¹ � , which acts in the ��� & �ºG/�c� plane and is de-
signed to set M � to zero. If M �  # already, we have o � HVJ
¹ �  % , and � remains upper
triangular. If M � Ó # , then o � HVJ
¹ � is nontrivial, and the transformation � Ô oq4� HVJ
¹ � �xo � HVJ
¹ �leaves � in upper-triangular form, except that the ���TG/� & �²� entry could be nonzero. The
transformation M Ô oq4� HKJÂ¹ � M gives a new M with M �  # and M � HVJXÓ # . The new � andM still satisfy �xM� �M�N � . The � th component of this equation is ¤ � ¹ � HVJ M � HVJ  # , which
implies ¤ � ¹ � HKJ  # . Thus � is upper triangular. Moreover, the ��� & ��� st component of the
equation is ¤ � HKJÂ¹ � HVJ M � HVJ  >M � HVJ N � , which implies ¤ � HKJÂ¹ � HVJ  nN � . Thus the eigenvalue N �
has been swapped upward.

The next rotator, o � H � ¹ � HVJ , acts in the ��� & � G5� & �²� plane and sets M � HKJ to zero.
If M � HVJ  #

, the rotator is trivial, and � remains upper triangular. If M � HVJ Ó #
, theno � H � ¹ � HVJ is nontrivial, and the transformation � Ô o
4� H � ¹ � HKJ �xo � H � ¹ � HKJ leaves � in upper-

triangular form, except that the ��� & �ºG/� & � � entry could be nonzero. The transformationM Ô o»4� H � ¹ � HVJ M gives a new M with M �  >M � HVJ  # and M � H � Ó # . The equation �»M× >M�N �
still holds. Its ��� & �²� st component is ¤ � HVJ
¹ � H � M � H �  # , which implies ¤ � HVJ
¹ � H �  # .
Thus � is still upper triangular. Furthermore the ��� & � � nd component of the equation is¤ � H � ¹ � H � M � H �  7M � H � N � , which implies ¤ � H � ¹ � H �  ÑN � . Thus the eigenvalue N � has been
swapped one more position upward.

Clearly this argument works at every step, and our final � , which is actually � Ã � Ä , is
upper triangular. Thus +��� has skew-Hamiltonian Hessenberg form.

In the generic case M Ã � Ä� Ó # (which holds as long as ¸ Ó # ) each of the transforming
rotators is nontrivial and moves the eigenvalue N � upward. In the end, N � has been moved to
the top of � , and each of the other eigenvalues has been moved down one position.

In the generic case ¸ J Ó # , the first part of the algorithm marches N � from top to bottom
of � , moving each other eigenvalue upward. Then the last part of the algorithm exactly
reverses the process, returning all eigenvalues of � to their original positions.

We already discussed above the nongeneric cases ¸ J  ¾¶¾¶¾  ¸ w  # , ¸ w
Õ J Ó # .Now consider nongeneric cases in which ¸  # . Then � J  1� �  % �/� , and + �  2+ .
There must be some largest E for which M w Ó # . If E� z� , then � �  % ��� and + �  s+ ;
the whole transformation is trivial. Now assume EWØ�� . The E th component of the equation�»MX sM�N � implies that ¤ w ¹ w  lN � . Since also ¤ JÂ¹ J  ¬N � , we see that this nongeneric case
cannot occur unless + has a multiple eigenvalue. In this case the first � & E rotators o � HVJ
¹ � ,
. . . o � H w ¹ � H w
Õ J are all trivial and the rest of the rotators push the eigenvalue ¤ w ¹ w  >N � to the
top of � .

6. Accommodating complex eigenvalues. Now we drop the assumption that the eigen-
values are all real. Then in the real skew-Hamiltonian Schur form+®�� " � }# �x4 ' G� is quasitriangular; that is, it is block triangular with �q�-� and

� � � blocks on the main
diagonal. Each

� � � block houses a complex conjugate pair of eigenvalues of + � . Each �b�L�
block is a positive real eigenvalue of +8� . There are no non-positive real eigenvalues because,
by assumption, + has no purely imaginary eigenvalues. Suppose there are Ù diagonal blocks
of dimensions � J , . . . , �KÚ . Thus �KÛ is either 1 or 2 for each Ü .

As before, our objective is to build an orthogonal symplectic � that causes a deflation as
explained in section 3. How we proceed depends upon whether � J is 1 or 2. If � J  �� , we
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do exactly as described in section 4.
Now suppose � J  � . In this case span ¥ £ J § is not invariant under +�� but span ¥ £ J G £ � §is. It follows that span ¥ £ J G £ � G¦+ £ J G¦+ £ � § is invariant under + . For now we will make the

generically valid assumption that this space has dimension 4. Letting Ý� Þ¨ £ J £ � © , we
have + ¨ Ý +®Ý ©  ¨ Ý +®Ý © " # ?% # ' G
where ?; " ¤ J�J ¤ J �¤ � J ¤ �/� ' has complex conjugate eigenvalues v and v . Thus the eigenvalues

of + associated with the invariant subspace span ¥ £ J G £ � G¦+ £ J G¦+ £ � § are N , & N , N , and & N ,
where N �  v . Without loss of generality assume f*�dNA��g # .

From span ¥ £ J G £ � G¦+ £ J G5+ £ � § extract a two-dimensional subspace O � , invariant under + ,
associated with the eigenvalues N and N . This subspace is necessarily isotropic by Proposi-
tion 2.1. We will build a symplectic orthogonal � whose first two columns span O � . This will
guarantee that we get a deflation as in (3.1), where

�� J is
� � � and has N and N as its eigenval-

ues. Of course � must have other properties that guarantee that the skew-Hamiltonian form
of the squared matrix is preserved. We will outline the algorithm first; then we will explain
why it works.

Outline of the algorithm, complex-eigenvalue case. Our procedure is very similar to
that in the case of a real eigenvalue. LetYz " �ß '
denote a

� �¢� � matrix whose columns are an orthonormal basis of O � . We can choose the
basis so that ¸ J�J  # . Isotropy implies Y_4à�VY= # . The first part of the algorithm applies a
sequence of rotators that introduce zeros into

ß
. We will use the notation � Ã \ ÄÛ ¹ Û Õ J , áL ;� , 2, to

denote a rotator acting in the ��Ü�G/Ü B ��� plane such that � Ã \ Ä 4Û ¹ Û Õ J introduces a zero in position ¸ Û ¹ \ .
(Here we are using the computer programming notation again, referring to the ��ÜÂGFáÈ� position
of an array that started out as

ß
but has subsequently been transformed by some rotators.)

The rotators are applied in the order � Ã J5Ä� ¹ � , � Ã � ÄJ
¹ � , � Ã J5Ä� ¹ â , � Ã � Ä� ¹ � , . . . , � Ã J5Ä� HKJÂ¹ � , � Ã � Ä� H � ¹ � HKJ . The
rotators are carefully ordered so that the zeros that are created are not destroyed by subsequent
rotators. We can think of the rotators as coming in pairs. The job of the pair � Ã J¦ÄÛ Õ J
¹ Û Õ � , � Ã � ÄÛ ¹ Û Õ J
together is to zero out the Ü th row of

ß
.3 Let�R n� Ã J¦Ä� ¹ � � Ã � ÄJÂ¹ � ¾¶¾¿¾ � Ã J5Ä� HVJ
¹ � � Ã � Ä� H � ¹ � HKJ )

Then �*4 ß  ß Ã J5Ä , where

ß Ã J5Ä  ��������
# #
...

...# ## ¸ Ã J¦Ä� HKJÂ¹ �¸ Ã J¦Ä� ¹ J ¸ Ã J5Ä� ¹ �
� ������¡ )

3Actually Îbã ±däå�æ ±3Ï åçæ Ð zeros out the entry Ë åçæ ±3Ï ± . This makes it possible for ÎCã Ð3äå Ï å�æ ± to zero out the entry Ë å Ï ± ,
thereby completing the task of forming zeros in row è .



ETNA
Kent State University 
etna@mcs.kent.edu

150 D. S. WATKINS

Let � J  " � � ' G
and let Y Ã J5Ä  Ñ� 4J Yz " � Ã J5Äß Ã J5Ä ' )

Next let � � denote an orthogonal symplectic matrix acting rows � & � , � ,
� � & � , � �

such that � 4� zeros out the remaining nonzero entries in
ß Ã J¦Ä , that is,Y Ã � Ä  7� 4� Y Ã J¦Ä  " � Ã � Ä# ' )

This can be done stably by a product of four rotators. Starting from the configuration

���� M � HKJÂ¹ J M � HKJÂ¹ �M � ¹ J M � ¹ �# ¸ � HKJÂ¹ �¸ � ¹ J ¸ � ¹ �
� ��¡ G

(leaving off the superscripts to avoid notational clutter) a symplectic rotator in the ���TG � �c�
plane sets the ¸ � ¹ J entry to zero. Then a symplectic double rotator acting in the ��� & �ºG/�c�
and � � � & �]G � �c� planes transforms the ¸ � HVJ
¹ � and M � ¹ J entries to zero simultaneously, as
we explain below. Finally a symplectic rotator acting in the ���TG � �c� plane zeros out the ¸ � ¹ �
entry. � 4� is the product of these rotators.

The simultaneous appearance of two zeros is a consequence of isotropy. The conditionYW4m�0YÒ # , which was valid initially, continues to hold as Y is transformed, since each of
the transforming matrices is symplectic. The isotropy forces ¸ � HVJ
¹ � to zero when M � ¹ J is set
to zero, and vice versa.

The final part of the algorithm applies a sequence of rotators that introduce zeros into� Ã � Ä . Notice that the ���TG¶�²� entry of � Ã � Ä is already zero. We will use the notation o Ã \ ÄÛ HKJÂ¹ Û ,áq �� , 2, to denote a rotator acting in the ��Ü & �]G5Ü¦� plane such that o Ã \ Ä 4Û HKJÂ¹ Û introduces a zero in

position MµÛ ¹ \ (actually the transformed MºÛ ¹ \ ). The rotators are applied in the order o Ã J¦Ä� H � ¹ � HVJ ,o Ã � Ä� HVJ
¹ � , o Ã J5Ä� H � ¹ � H � , o Ã � Ä� H � ¹ � HKJ , . . . , o Ã J¦ÄJÂ¹ � , o Ã � Ä� ¹ � . Again the rotators are ordered so that the zeros
that are created are not destroyed by subsequent rotators, and again the rotators come in pairs.
The job of the pair o Ã J5ÄÛ H � ¹ Û HVJ , o Ã � ÄÛ HVJ
¹ Û together is to zero out the Ü th row of � . Leto; �o Ã J¦Ä� H � ¹ � HVJ o Ã � Ä� HVJ
¹ � ¾¿¾¶¾ o Ã J5ÄJ
¹ � o Ã � Ä� ¹ � )
Then oq4�� Ã � Ä  �� Ã � Ä , where

�
Ã � Ä  �������
M Ã � ÄJ/J M Ã � ÄJ �# M Ã � Ä�/�# #

...
...# #
� �����¡ )
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Let � �  " o o ' G
and let Y Ã � Ä  Ñ� 4� Y Ã � Ä  " � Ã � Ä# ' )
Let �� 7� J � � � � )
This is the desired orthogonal symplectic transformation matrix. � is a product of approxi-
mately éµ� rotators; the transformation +tr�� 4 +�� is effected by applying the rotators in
order.

7. Why the algorithm works. The transforming matrix � was designed so that � 4 Y= � 4� � 4� � 4 J Y  jY Ã � Ä . Thus ��Y Ã � Ä  jY . Since ^W��Y Ã � Ä �ê span ¥ £ J G £ � § , we have� span ¥ £ J G £ � §  =O � ; the first two columns of � span the invariant subspace of + asso-
ciated with N and N . Therefore we get the deflation shown in (3.1).

Again the more challenging task is to show that � 4 + � � is in skew-Hamiltonian Schur
form. Let + J  7� 4J +�� J G + �  7� 4� + J � � G and + �  7� 4� + � � � G
so that + �  Ñ� 4 +��xG
as before. We must show that +8�� is in skew-Hamiltonian real Schur form.

We will cover the cases � J  � and � J  �� . In the case � J  � , Y denotes an �[� �
matrix such that the two-dimensional space ^W��Y�� is invariant under + . In the case � J  Q� ,Y will denote the eigenvector S from sections 4 and 5. For this Y , the one-dimensional space^W��Y_� is invariant under + .

Since ^W��Y_� is invariant under + , we have +kY1 7YWë , for some � Û �W� Û matrix ë . If� Û  7� , then ëp :N , a negative real eigenvalue. If � Û  � , ë has complex eigenvalues N andN lying in the left half-plane. Consequently + � Y( >YWë � or" � }# �x4 ' " �ß '  " �ß ' ë � G
which implies � 4 ß  ß ë � )
Thus ^W� ß � is invariant under � 4 .

Recalling that � is quasitriangular with main-diagonal blocks of dimension �yÛ ,Üà ;� , . . . , Ù , we introduce the partition

�7 ����� � J/J � J � ¾¿¾¶¾ � J Ú� �/� � � Ú. . .
...��ÚìÚ
� ���¡ G
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where � ÛçÛ is � Û �8� Û . Partitioning
ß

conformably with � , we haveß  ��� ß J...ß Ú
� �¡ G

where
ß Û is �KÛà��� J .

We start with the transformation from + to + J , for which it suffices to study the trans-
formation from � to �u4��L� . Again we will use computer programming notation, treating �
and

ß
as arrays whose entries get changed as the rotators are applied.

The equation �q4 ß  ß ë � implies that" �x4J/J #�x4J � �q4�/� ' " ß Jß � '  " ß Jß � ' ë � )(7.1)

In particular �q4J/J ß J  ß J ë � , which reminds us that the eigenvalues of � J�J are the same
as those of ë � . Generically

ß J will be nonsingular, implying that the equation �
4J�J ß J  ß J ë � is a similarity relationship between �q4J/J and ë � , but it could happen that
ß J  # .

Lemma 9 of [4] implies that these are the only possibilities: If
ß J is not zero, then it must be

nonsingular. For now we will make the generically valid assumption that
ß J is nonsingular.

The nongeneric cases will be discussed later.
The algorithm begins by creating zeros in the top of

ß
. Proceed until the first � � (1 or

2) rows of
ß

have been transformed to zero. In the case � J  2� (resp. � J  � ), this will
require � � rotators (resp. pairs of rotators). We apply these rotators to � as well, effecting
an orthogonal symplectic similarity transformation. The action of these rotators is confined
to the first � J B � � rows and columns of � . The resulting new “ � ” remains quasitriangular,
except that the block � � J could now be nonzero. At this point the relationship (7.1) will have
been transformed to " �x4J/J �q4� J�x4J � �q4�/� ' "É#ß � '  "i#ß � ' ë � )(7.2)

Here we must readjust the partition in order to retain conformability. The block of zeros is� � �!� J , so the new
ß � must be � J �!� J . Since the original

ß J was nonsingular, the newß � must also be nonsingular. The new � J�J and � �/� are � � �8� � and � J ��� J , respectively.
The top equation of (7.2) is �q4� J ß �  # , which implies � � J  # . Thus the quasitriangularity
is preserved. Moreover, the second equation of (7.2) is � 4��� ß �  ß � ë � , which implies that� �/� has the eigenvalues of ë � (and the new � J�J must have the eigenvalues of the old � ��� ).
Thus the eigenvalues have been swapped.

In the language of invariant subspaces, equation (7.2) implies that the space
span ¥ £ �]í Õ J G )¿)¶) G £ �]í Õ �ºî § is invariant under �q4 . Therefore the block �q4� J must be zero.

Now, proceeding inductively, assume that the first � � B � � ¾¿¾¶¾ B � w rows of
ß

have been
transformed to zero. At this point we have a transformed equation �×4 ß  ß ë � . Assume
inductively that � has quasitriangular form, where � wÖw is � J �ª� J and has the eigenvalues
of ë � . For Üy �� , . . . , E & � , � ÛçÛ is � Û Õ J �®� Û Õ J and has the same eigenvalues as the original��Û Õ J
¹ Û Õ J had. For Üq 2E B � , . . . , Ù , ��ÛçÛ has not yet been touched by the algorithm. Our
current

ß
has the form ß  �����

#ß w
...ß Ú
� ���¡ G
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where the zero block has � � B ¾¶¾¶¾ B � w rows,
ß w is � J �ª� J and nonsingular, and

ß w
Õ J ,
. . . ,

ß Ú have not yet been touched by the algorithm. From the current version of the equation�x4 ß  ß ë � we see that" �x4wÖw #�q4w ¹ w
Õ J �x4wÖÕ JÂ¹ wÖÕ J ' " ß wß w
Õ J '  " ß wß w
Õ J ' ë � )
The next step of the algorithm is to zero out the next � w
Õ J rows of

ß
. The situation is

exactly the same as it was in the case Ek Ñ� . Arguing exactly as in that case, we see that the
quasitriangularity is preserved, and the eigenvalues are swapped.

At the end of the first stage of the algorithm we haveß  �����
#
...#ß Ú
� ���¡ G

where
ß Ú is � J �¢� J and nonsingular. This

ß
is what we previously called

ß Ã J5Ä . The
corresponding � (which is actually � Ã J5Ä ) is quasitriangular. ��ÚìÚ is � J ��� J and has the
eigenvalues of ë � . Each other ��ÛçÛ is �KÛ Õ J �X�KÛ Õ J and has the eigenvalues of the original��Û Õ J
¹ Û Õ J . At this point we have transformed + to + J  7� 4J +�� J .Before moving on to the next stage of the algorithm, we pause to consider what happens
in the nongeneric cases. Assume

ß J is not nonsingular. Then
ß J must be zero. Supposeß J , . . . ,

ß \ HVJ are all zero and
ß \ Ó # . Then, by Lemma 9 of [4],

ß \ must be � J �W� J
and nonsingular. If we partition the equation � 4 ß  ß ë � , then the á th block equation is�x4\3\ ß \  ß \ ë � . Thus � \3\ is similar to ë � and must therefore have the same eigenvalues
as � J�J . We conclude that this nongeneric case can occur only if the eigenvalues of ë have
multiplicity greater than one as eigenvalues of + . In this case the first � � B )¿)¶) B � \ HVJ
rotators (or pairs of rotators) are trivial. Once we reach

ß \ , the rotators become nontrivial,
and the eigenvalues of the block � \3\ (i.e. the eigenvalues of ë � ) get swapped downward to
the bottom, just as in the generic case. Another nongeneric case occurs when the entire matrixß

is zero to begin with. We will say more about that case later.
Whether we are in the generic case or not, we have+®�J  " � Ã J¦Ä } Ã J5Ä# � Ã J¦Ä 4 ' G

where � Ã J5Ä is quasi-triangular.
Now consider the transformation from + J to + �  �� 4� + J � � . We have to show that the

skew-Hamiltonian Schur form of +®�J  " � Ã J5Ä } Ã J5Ä# � Ã J5Ä 4 '
is preserved by the transformation. If we write +8�J in block form conformably with the
blocking of � Ã J¦Ä , we have

� Ù block rows and block columns. The action of the transformation
affects only block rows and columns Ù and

� Ù . If we consider the block-triangular form of� Ã J5Ä , we find that zero blocks are combined only with zero blocks and no unwanted nonzero
entries are introduced except possibly in block � � Ù¦G�Ùd� .

To see that the � � Ù¦G�Ùd� block also remains zero, examine our main equation" � Ã J5Ä } Ã J¦Ä# � Ã J¦Ä 4 ' " � Ã J¦Äß Ã J5Ä '  " � Ã J5Äß Ã J5Ä ' ë � G
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bearing in mind that almost all of the entries of
ß Ã J5Ä are zeros. Writing the equation in

partitioned form and examining the Ù th and
� Ù th block rows, we see that they amount to justï � Ã J¦ÄÚìÚ } Ã J5ÄÚìÚ# � Ã J¦Ä 4ÚìÚ ð ï � Ã J5ÄÚß Ã J¦ÄÚ ð  ï � Ã J5ÄÚß Ã J¦ÄÚ ð ë � )(7.3)

Every matrix in this picture has dimension � J �_� J . The similarity transformation by � �
changes (7.3) to ï � Ã � ÄÚìÚ } Ã � ÄÚ Úñ � Ã � Ä 4ÚìÚ ð " � Ã � ÄÚ # '  " � Ã � ÄÚ # ' ë � G(7.4)

where
ñ

is the block in question. Notice that � Ã � ÄÚ cannot avoid being nonsingular. The
second block equation in (7.4) is

ñ � Ã � ÄÚ  # , which implies
ñ  # , as desired. The first

block equation is � Ã � ÄÚìÚ � Ã � ÄÚ  �� Ã � ÄÚ ë � , which says that � Ã � ÄÚìÚ is similar to ë � and therefore
has the same eigenvalues as ë � . If we prefer, we can use the language of invariant subspaces.

Equation (7.4) shows that span ¥ £ J G )¶)¿) G £ � í § is an invariant subspace of

ï � Ã � ÄÚìÚ } Ã � ÄÚ Úñ � Ã � Ä 4ÚìÚ ð ,

forcing
ñ

to be zero. Either way, we conclude that the skew-Hamiltonian Schur form is
preserved in stage 2 of the algorithm.

Now consider the transformation from + � to + � , for which it suffices to study the trans-
formation from � Ã � Ä to � Ã � Ä  eoq4c� Ã � Ä o . At this point the main equation + � Y= pYWë � has
been transformed to + �� Y Ã � Ä  >Y Ã � Ä ë � or" � Ã � Ä } Ã � Ä# � Ã � Ä 4 ' " � Ã � Ä# '  " � Ã � Ä# ' ë � G
which implies � Ã � Ä � Ã � Ä  �� Ã � Ä ë � , so ^W�d� Ã � Ä � is invariant under � Ã � Ä .

Returning to our computer programming style of notation, we now write � and � in
place of � Ã � Ä and � Ã � Ä and consider the transformation from � to oq4y�xo , where �L�Ò �»ë � . For now we assume that we are in the generic case; we will discuss the remaining
nongeneric cases later. Thus � is quasi-triangular. The block �uÛçÛ is �KÛ Õ J �8�KÛ Õ J for Üò s� ,
. . . , Ù & � . The block ��ÚìÚ is � J ��� J and has the eigenvalues of ë � . If we partition �
conformably with � , we have �� ��� � J...� Ú

� �¡ G
where each ��Û has its appropriate dimension. In particular �AÚ is � J �
� J and is, in the generic
case, nonsingular. The equation �L�� ��uë � and the quasitriangularity of � imply that" � Ú HKJÂ¹ Ú HVJ � Ú HVJ
¹ Ú# � ÚìÚ ' " � Ú HVJ� Ú '  " � Ú HVJ� Ú ' ë � )(7.5)

The third stage of the algorithm is wholly analogous with the first stage, except that we
work upward instead of downward. We begin by transforming the bottom �yÚ rows of � to
zero. In the case � J  h� (resp. � J  � ) this requires �KÚ rotators (resp. pairs of rotators).
When we apply these rotators to � , their action is confined to the bottom ��Ú B � J rows and
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columns, so the new � remains quasitriangular, except that the block � Ú ¹ Ú HKJ could now be
nonzero. At this point the relationship (7.5) will have been transformed to" � Ú HKJÂ¹ Ú HKJ � Ú HVJ
¹ Ú� Ú ¹ Ú HVJ � ÚìÚ ' " � Ú HVJ# '  " � Ú HVJ# ' ë � )(7.6)

Just as in stage 1, we must readjust the partition in order to retain conformability. The block of
zeros is � Ú �ò� J , so the new � Ú HVJ must be � J ��� J , and it is nonsingular. The new � Ú HKJÂ¹ Ú HVJ and� Ú Ú are � J �!� J and � Ú �8� Ú , respectively. The bottom equation of (7.6) is � Ú ¹ Ú HVJ � Ú HVJ  # ,
which implies ��Ú ¹ Ú HVJ  #

. Thus the quasitriangularity is preserved. Moreover, the top
equation of (7.6) is ��Ú HKJÂ¹ Ú HVJ �9Ú HKJ  ��9Ú HKJ ë � , which implies that ��Ú HVJ
¹ Ú HVJ has the eigenvalues
of ë � (and the new ��ÚìÚ must have the eigenvalues of the old �*Ú HVJ
¹ Ú HVJ ). Thus the eigenvalues
have been swapped.

In the language of invariant subspaces, equation (7.6) implies that the space

span ¥ £ J G )¶)¿) G £ �½í § is invariant under
" ��Ú HVJ
¹ Ú HVJ ��Ú HVJ
¹ Ú��Ú ¹ Ú HKJ ��Ú Ú ' . Therefore the block � Ú ¹ Ú HKJ must

be zero.
This first step sets the pattern for all of stage 3. We will skip the induction step, which

is just like the first step. Stage 3 preserves the quasitriangular form of � and swaps the
eigenvalues of ë � back to the top. In the end we have+ ��  " � Ã � Ä } Ã � Ä# � Ã � Ä 4 ' G
where

� Ã � Ä  ������ � Ã � ÄJ�J � Ã � ÄJ � ¾¶¾¶¾ � Ã � ÄJ Ú# � Ã � Ä��� � Ã � Ä� Ú...
. . .

...# � Ã � ÄÚìÚ
� ����¡ G

where each � Ã � ÄÛ�Û is � Û �®� Û and has the same eigenvalues as the original � Û�Û .
It seems as if we are back where we started. Indeed we are, as far as + � is concerned. But

we must not forget that our primary interest is in + , not + � . Thanks to this transformation,
span ¥ £ J¶§ (in the case � J  2� ) or span ¥ £ J G £ � § (in the case � J  � ) is now invariant under+ � as well as +®�� , so we get the deflation (3.1).

The discussion is now complete, except for some more nongeneric cases. Suppose that
at the beginning of stage 3, ��Ú is singular. Then, by Lemma 6 of [4], �9Ú must be zero. In fact
this can happen only if the original

ß
was zero. In this case the transformations � J and � �

are both trivial, and we have + �  p+ . Thus the � and � with which we begin stage 3 are the
original � and � . It must be the case that � Ó # ; in fact � has full rank � J . If we partition� conformably with � , we have �� ��� � J...�9Ú

� �¡ G
where ��Û is �KÛ���� J . Suppose � \ Ó # and � \ Õ J , . . . , �9Ú are all zero, and suppose á-Øz� .
Then, by Lemma 6 of [4], � \ is � J ��� J and nonsingular. Moreover, the equation �L�� ��xë �
implies that � \3\ � \  �� \ ë � , so we see that � \3\ is similar to ë � , so it has the same eigenvalues
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as � J/J . Thus this nongeneric case cannot arise unless the eigenvalues of ë have multiplicity
greater than one as eigenvalues of + .

In this nongeneric case all of the rotators are trivial until the block � \ is reached. From
that point on, all of the rotators are nontrivial, and the algorithm proceeds just as in the generic
case. Because � \ is nonsingular, the arguments that worked in the generic case are valid here
as well. The eigenvalues of � \3\  �� \ ë � � HKJ\ get swapped to the top of � .

Finally we consider the nongeneric case áI Ñ� . Here � J is nonsingular, and all other �AÛ
are zero. This is the lucky case, in which ^W��Y_�x span ¥ £ J¶§ (when � J  =� ) or ^W��Y��x 
span ¥ £ J G £ � § (when � J  � ). In this case all rotators are trivial, �> % �/� , and + �  e+ .

Now the story is nearly complete.

8. One last difficulty with the nongeneric case. Our stated goal has been to get the
left-half-plane eigenvalues into the �5�ºG¿�²� block of the Hamiltonian Schur form. In the non-
generic cases we may fail to achieve this goal. First of all, in the “lucky” nongeneric case
that we just mentioned above, span ¥ £ J¶§ or span ¥ £ J G £ � § is already invariant under + , and we
get an immediate deflation for free. If the eigenvalue(s) associated with this invariant sub-
space happen to be in the right half plane, then we get a deflation of one or two unwanted
eigenvalues in the �¦�]G¶��� block.

Something even worse happens in the other nongeneric cases. For clarity let us consider

the case � J  Þ� first. Then Yó ÉS7 " M¸ ' , an eigenvector of + . In all nongeneric

cases, ¸ J  # . Suppose this holds, and £ J is not an eigenvector. Then span ¥ £ J G5+ £ J²§ is two
dimensional, and we will show immediately below that the space spanned by the first two
columns of � is exactly span ¥ £ J G5+ £ J § .4 Since the eigenvalues associated with this invariant
space are N and & N , the effect of this is that the first two columns of + �  Q� 4 +�� have the
form �������

N �# & N# #
...

...# #
� �����¡ )

The desired deflation of N is followed immediately by a trivial, undesired deflation of & N .
Let � denote the space spanned by the first two columns of � . To see that span ¥ £ J G¦+ £ J §  � , recall that � is the product of a large number of rotators, the first pair of which are

diag ¥ô� J � G
� J � § , and the last pair of which are diag ¥²o J � G/o J � § . These are the only rotators
that act in the �¦�]G � � plane, and they are the only rotators that affect directly the first col-
umn of � . Let õh diag ¥²o J � G�o J � § , and let ��ö- ,�*õ HVJ . Then ��ö is the same as � ,
except that the final pair of rotators has not yet been applied. Since ¸ J  # , the rotator pair
diag ¥ô� J � G
� J � § is trivial. Therefore ��ö is a product of rotators that do not act on the first
column; the first column of ��ö is thus £ J . Notice also that the relationship �n 7�.ö½õ implies
that � , the space spanned by the first two columns of � , is the same as the space spanned by
the first two columns of �.ö . Therefore £ J �!� . Recall also that � is designed so that its first
column is proportional to S , so S!�!� . But S® e+ £ J B N £ J . Therefore + £ J  eS & N £ J �8� .
We conclude that span ¥ £ J G¦+ £ J §  >� .

The exact same difficulty arises in the case of complex eigenvalues. First of all, there can
be the undesired trivial deflation of a right-half-plane pair of complex eigenvalues in the �¦�]G¶���

4Recalling that ÷L³¢¯�° ±Kø ´µ° ± , notice that the condition Ë ± ³�Í means exactly that span ù�° ±
ú ¯�° ±�û is an
isotropic subspace.
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block. If that doesn’t happen but we are in the nongeneric case
ß J  # , then an argument

just like the one we gave in the real-eigenvalue case shows that the space spanned by the first
four columns of � is exactly the isotropic invariant subspace span ¥ £ J G £ � G¦+ £ J G¦+ £ � § . This
means that the desired deflation of a pair N , N is immediately followed by the unwanted trivial
deflation of the pair & N , & N .

Thus in nongeneric cases we frequently end up with right-half-plane eigenvalues in the�¦�]G¶�²� block, and we are faced with the additional postprocessing task of swapping them out.
Methods for swapping eigenvalues in the Hamiltonian real Schur form have been outlined by
Byers [3] and Kressner [5, 6].

REFERENCES

[1] P. BENNER AND D. KRESSNER, Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matri-
ces, ACM Trans. Math. Software, 32 (2006), pp. 352–373.

[2] P. BENNER, V. MEHRMANN, AND H. XU, A numerically stable, structure preserving method for computing
the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78 (1998), pp. 329–358.

[3] R. BYERS, Hamiltonian and Symplectic Algorithms for the Algebraic Riccati Equation, PhD thesis, Cornell
University, 1983.

[4] D. CHU, X. LIU, AND V. MEHRMANN, A numerically strongly stable method for computing the Hamiltonian
Schur form, Tech. Rep. 24-2004, TU Berlin, Institut für Mathematik, 2004.

[5] D. KRESSNER, Numerical Methods and Software for General and Structured Eigenvalue Problems, PhD thesis,
TU Berlin, Institut für Mathematik, Berlin, Germany, 2004.

[6] D. KRESSNER, Numerical Methods for General and Structured Eigenproblems, Springer, 2005.
[7] A. J. LAUB, A Schur method for solving algebraic Riccati equations, IEEE Trans. Auto. Control, AC24 (1979),

pp. 913–921.
[8] C. C. PAIGE AND C. VAN LOAN, A Schur decomposition for Hamiltonian matrices, Linear Algebra Appl., 41

(1981), pp. 11–32.
[9] C. F. VAN LOAN, A symplectic method for approximating all the eigenvalues of a Hamiltonian matrix, Linear

Algebra Appl., 61 (1984), pp. 233–252.


