Electronic Transactions on Numerical Analysis. Volume 23, pp. 320-328, 2006. Copyright © 2006, Kent State University. ISSN 1068-9613.

APPROXIMATION OF THE HILBERT TRANSFORM VIA USE OF SINC CONVOLUTION*

TOSHIHIRO YAMAMOTO †

Abstract. This paper derives a novel method of approximating the Hilbert transform by the use of sinc convolution. The proposed method may be used to approximate the Hilbert transform over any subinterval Γ of the real line $\mathbb{R} \equiv (-\infty, \infty)$, which means the interval Γ may be a finite or semi-infinite interval, or the entire real line \mathbb{R} . Given a column vector f consisting of m values of a function f defined on m sinc points of Γ , we obtain a column vector g = Af whose entries approximate the Hilbert transform on the same set of m sinc points. The present paper describes an explicit method for the construction of such a matrix A.

Key words. sinc methods, Hilbert transform, Cauchy principal value integral

AMS subject classifications. 65R10

^{*}Received May 11, 2006. Accepted for publication May 17, 2006. Recommended by F. Stenger.

[†] Graduate Department of Computer Systems, The University of Aizu, Aizuwakamatsu, Fukushima 965-8580, Japan (d8031204@u-aizu.ac.jp).

³²⁰