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ISOTROPIC AND ANISOTROPIC A POSTERIORI ERROR ESTIMATION OF
THE MIXED FINITE ELEMENT METHOD FOR SECOND ORDER OPERATORS
IN DIVERGENCE FORM*

SERGE NICAISET AND EMMANUEL CREUSE#

Abstract. This paper presents an a posteriori residual error estimator for the mixed FEM of second order
operators using isotropic or anisotropic meshes in R%, d = 2 or 3. The reliability and efficiency of our estimator is
established without any regularity assumptions on the solution of our problem.
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1. Introduction. Let us fix a bounded domain © of R?, d = 2 or 3 with a polygonal
boundary (d = 2) or a polyhedral one (d = 3). In this paper we consider the following second
order problem: For f € L%(Q), letu € Hg (£2) be the unique solution of

(1.1) div (AVu) = —fin Q,

where the matrix A € L*>(Q, R?*?) is supposed to be symmetric and uniformly positive
definite.

The mixed formulation of that problem is well-known [27, 31, 28, 7, 8], and consists in
finding (p,u) in X x M solution of :

JoA™'p) - qdz + [udivgdz =0,Vq € X,
(12)
Joudivp dz=— [, fvdz, Yve M,

where
X = H(div,Q) := {g € [L*(Q)]? : divq € L*(N)},
endowed with the natural norm

”g“%{(div Q) = ||2||2L2(Q) + ||diVQ||%2(Q)a

and M = L?(Q). Since this problem has at most one solution [31, p.16], the unique solution
(p,u) is given by p = AVu, when u is the unique solution of (1.1).
~ Problem (1.2) is approximated in a conforming finite element subspace X, x M}, of X x
M based on a triangulation 7 of the domain made of isotropic or anisotropic elements. Under
the property div X, = My}, the discrete problem has a unique discrete solution (p p,up) €
X}, x My,. We then consider an efficient and reliable residual anisotropic a posteriori error
estimator for the errore = p —p, in the H (div , Q)-norm and e = u—wuy, in the L?(Q)-norm.
Anisotropic a posteriori error estimations are highly recommended for problem (1.2)
since the solution presents edge and corner singularities [14, 17, 13, 22, 25] or boundary
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layers [23, 24], for which the use of such elements is more appropriate than isotropic ones
(see [3, 18] for the treatment of standard elliptic problems). For corner singularities in 2D or
edge singularities in 3D a priori error estimations are available in special geometries [15, 30]
but require the explicit knowledge of the singularities which may require some numerical
efforts.

Isotropic a posteriori error estimators for standard elliptic boundary value problems are
currently well understood (see for instance [32] and the references cited there). The extension
of these methods to anisotropic meshes starts with the recent works [29, 18, 16, 12]. The
analysis of isotropic a posteriori error estimators for the mixed finite element method were
initiated in [6, 2, 8] but the estimator is efficient and reliable in a non-natural norm [6, 2] or
it is efficient and reliable but under the H?2-regularity of the solution of (1.1) [8] (which is
often not the case, see also [9] for the elasticity system). Therefore the goal of this paper is
to extend the method from [8] to the case of isotropic or anisotropic meshes in 2D and 3D,
using some techniques from [18], and moreover without any regularity assumptions on the
solution of (1.1).

The organization of the paper is the following: Section 2 recalls the discretization of our
problem, introduces some anisotropic quantities, some mild assumptions on the meshes and
some natural conditions on the finite element spaces. In Section 3 we give some anisotropic
interpolation error estimates for Clément type interpolation and prove the uniform discrete
inf-sup condition. Some examples of elements satisfying our theoretical assumptions are
presented in Section 4. There we further give sufficient conditions on the meshes ensuring
the stability of the scheme. The efficiency and reliability of the error are established in Section
5. Finally Section 6 is devoted to numerical tests which confirm our theoretical analysis.

Let us finish this introduction with some notation used in the whole paper: The L?(D)-
norm will be denoted by || - ||p. In the case D = Q, we will drop the index Q. The usual
norm and seminorm of H' (D) are denoted by || - ||1,p and | - |1,p. The notation » means that
the quantity w is a vector and Vu means the matrix (0;u;)1<;s,j<q (¢ being the index of row
and j the index of column). For a vector function u we denote by curl u = O1us — Oauz
in 2D and curl 4 = (62U3 — 83U2, Osuy — 61U3, Orug — 62'114)T in 3D. On the other hand
in 2D for a scalar function ¢ we write curl ¢ = (82¢, —01¢)T (note that the curl of a two-
dimensional vector field is a scalar but in order to avoid a multiplicity of notation we denote
it as a vector since no confusion is possible). Finally, the notation a < b and a ~ b means the
existence of positive constants C; and Cy (which are independent of 7 and of the function
under consideration) such that a < Cyb and C1b < a < (b, respectively.

2. Discretization of the problem. The domain (2 is discretized by a conforming mesh 7",
cf. [10]. In 2D, all elements are either triangles or rectangles. In 3D the mesh consists either
of tetrahedra, of rectangular hexahedra, or of rectangular pentahedra (i.e. prisms where the
triangular faces are perpendicular to the rectangular faces), cf. also the figures of Section 2.2.
The restriction to rectangles, rectangular hexahedra or rectangular pentahedra is only made
for the sake of simplicity; the extension to parallelogram, hexahedra or pentahedra is straight-
forward using affine transformations.

Elements will be denoted by T', T; or T", its edges (in 2D) or faces (in 3D) are denoted
by E. The set of all (interior and boundary) edges (2D) or faces (3D) of the triangulation will
be denoted by £ . Let z denote a nodal point, and let N, be the set of nodes of the mesh. The

measure of an element or edge/face is denoted by |T'| := meas4(T") and |E| := measq_1 (E),
respectively.
For an edge E of a 2D element T introduce the outer normal vector by n. = (nz,ny)".

Similarly, for a face E of a 3D element T setn = (n, Ny, nz)T. From now, the word “face”
will denote either an edge in the 2D case or a face in the 3D case. Furthermore, for each
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face E we fix one of the two normal vectors and denote it by ng. In the 2D case introduce
additionally the tangent vector t = n* := (—n,,n,)" such that it is oriented positively

(with respect to T'). Similarly set t g := np.

The jump of some (scalar or vector valued) function v across a face E at a pointy € E
is then defined as

lim v(y + ang) —v(y —ang) for an interior face E,
[[U(Q)HE . a—+0 = g
v(y) for a boundary face E.

Note that the sign of [[v]] ,, depends on the orientation of nz. However, terms such as a
gradient jump [[Vv n E]]  are independent of this orientation.

Furthermore one requires local subdomains (also known as patches). As usual, let wr be
the union of all elements having a common face with 7. Similarly let wg be the union of the
elements having E as face. By w, we denote the union of all elements having = as node.

Later on we specify additional, mild mesh assumptions that are partially due to the
anisotropic discretization.

2.1. Discrete formulation. The discrete problem associated with (1.2) is to find (p 4, us) €
Xy x My, such that

Jo(A ™ ph) - qndx + [ up divgpde = 0,Yg, € X,
@2.1)
Joun divpy de = — [, fop dx, Vv, € My,

where X}, (resp. M) is a finite dimensional subspace of X (resp. M).
Recall that the errors are defined by

€:=P —DPh, €:=U— Up.

Therefore subtracting (1.2) with ¢ = g and v = vy, from (2.1) we obtain the ’Galerkin
orthogonality’ relations

(2.2) /(Aflg) -qhd:v—}—/ edivgpdz =0,Yq, € Xy,
Q - Q - -

2.3) / v dive doz = 0, Yo, € My,
Q

2.2. Some anisotropic quantities. In our exposition 7" can be a triangle or rectangle
(2D case), or a tetrahedron, a (rectangular) hexahedron, or a prismatic pentahedron (3D case).

Parts of the analysis require reference elements T that can be obtained from the actual
element T' via some affine linear transformation F. The table below lists the reference
elements for each case. Furthermore for an element 7' we define 2 or 3 anisotropy vectors
P 1 =1...d, that reflect the main anisotropy directions of that element. These anisotropy

vectors are defined and visualized in the table below as well.
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Element T’ Reference Anisotropy vectors Pir
element T’ ’
0<z,v9 p1,r longest edge
z+y<1 P 2,7 height vector

0<z,y<1 | p1,rlongestedge
P21 height vector

p1,T longest edge

P 2,7 height in largest face
" that contains P1,T

P 3,7 remaining height

N o z o
= Q o
= : z
v o qa, o
8 [¢)
=

Hexahedron p1,7 longest edge
p 2,7 height in largest face
that contains p1,T

P 3,7 remaining height

L

Pentahedron (Prism)

o
&
IN

—

longest edge in triangle;
height in triangle;

height over triangle (see
figure, vectors ordered by
length)

K
7/
7/
/

&I
+ IA
LS|
IN <
=

The anisotropy vectors p ; T are enumerated such that their lengths are decreasing, i.e. | p 11| >
|p2,7| > |p3,r|in the 3D case, and analogously in 2D. The anisotropic lengths of an element
T are now defined by

hiT = |piT|

which implies by 7 > ha 7 > hgr in 3D. The smallest of these lengths is particularly
important; thus we introduce

Nomin,T = ha,T = ,Hiind hiT.
=1...

Finally the anisotropy vectors p; 1 are arranged columnwise to define a matrix

2.4) Cr = [pur,par] R in 2D }

3x3 .
Cr = [QLT,EQ,T,]_):;,T] € R in 3D.
Note that C'r is orthogonal since the anisotropy vectors p ; T are orthogonal too, and

C;CT == (:lla.g{h%7f177 ceey hi,T}'

Furthermore we introduce the height hg T = % over an edge/face E of an element 7T'.
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2.3. Mesh assumptions. The mesh has to satisfy some mild assumptions.

e The mesh is conforming in the standard sense of [10].
e A node z ; of the mesh is contained only in a bounded number of elements (uni-

formly in h).
e The size of neighbouring elements does not change rapidly, i.e.

hz’,T1 ~ hi,TZ Vi=1...d,VI1 NT> 75 0.

Sometimes it is more convenient to have face related data instead of element related data.
Hence for an interior face £ = 17 N T we introduce

i 1= i ;hmm’n and  hg = %

For boundary faces E C 0T simply set Apmin, E := Pmin, T, hE := hg 1. The last assumption
from above readily implies

hg ~hgmr, ~ hg 1 and hmin,E ~ hmin, 1y ~ Rmin, T,

2.4. Finite element spaces assumptions. We assume that the element spaces Xp,, M},
satisfy

(2.5) {g € H(div,Q) : q7 € [Po(T))*,VT € T} C X,
Xn C{q € H(div,Q): q7 € [H{(T)* VT €T},
(26) div Xh = Mh.

We suppose that the commuting diagram property holds [7, 8]: There exists an interpo-
lation operator IT, : W — X3, where W = H(div,Q) N L*(Q2), with s > 2, such that the
next diagram commutes

w Y oM
.7 Oyl dpn
Xh diy Mh,

where py, is the L?(Q)-orthogonal projection on Mj,. This property implies in particular
(2.8) div (Id —TI,)W L My,

the orthogonality being in the L?(2)-sense and Id meaning the identity operator.
We further assume that the interpolant satifies the global stability estimate

(2.9) Mg Il S llgllhe, Vg € [H' ()]

We will see that this assumption added to (2.6) and (2.7) leads to the uniform discrete inf-sup
condition. Even if our further method does not require this condition, it is recommended to
have a robust discrete analysis.

Finally we assume that II; satisfies the approximation property

(2.10) /vh(g—th)-nE:QVgEW,vaMh,EES.
E

Such properties will be checked in some particular cases in Section 4.
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3. Analytical tools. Since we treat anisotropic elements, some analytical tools which
are known from the standard theory have to be reinvestigated. This is mainly due to the
fact that the aspect ratio of the elements is no longer bounded, as it is the case with isotropic
elements.This leads to the introduction of a so-called alignment measure and a approximation
measure, cf. below. It is important to notice that these measures are not a (theoretical or
practical) obstacle to efficient and reliable error estimation; furthermore for isotropic meshes
they are equivalent to 1.

3.1. Bubble functions, extension operator, inverse inequalities. For the analysis we
require bubble functions and extension operators that satisfy certain properties. We start with
the reference element 7' and define an element bubble function bz € C(T). We also require
an edge bubble function by € C(T) for an edge E C OT (2D case), and a face bubble
functionbg p € C (T) for a face E C 8T (3D case). Without loss of generality assume that
E is on the Z axis (2D case) or in the Z7 plane (tetrahedral and hexahedral case). For the
pentahedral case, the triangular face E is also in the Zy plane but the rectangular face En
is in the ZZ plane.

Furthermore an extension operator Feyy : C(E) — C(T) will be necessary that acts on
some function v; € C(FE). The table below gives the definitions in each case. For vector
valued functions apply the extension operator componentwise.

Ref. element T | Bubble functions | Extension operator

by = 331'11(1 - Z—17) Foxt (vg) (%, 7) = vp(T)
b1 :=22(1 -7 —7)

The element bubble function by for the actual element 7" is obtained simply by the cor-
responding affine linear transformation. Similarly the edge/face bubble function bg  is de-
fined. Later on an edge/face bubble function bg is needed on the domain wg = T7 UT5. This
is achieved by an elementwise definition, i.e.

bE|T,- = bE,T,-; = 1,2.

Analogously the extension operator is defined for functions vg € C(E). By the same ele-
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mentwise definition obtain then Feyy (vg) € C(wg). With these definitions one easily checks
br = 0on 0T, bg = 0 on Owg, |67 ]| co, 7 = ||bE|0ows = 1.

Next, one needs so-called inverse inequalities proved for instance in Lemma 4.1 of [12].

LEMMA 3.1 (Inverse inequalities). Let EE C OT be an edge/face of an element T.
Consider vy € P* (T') and vg € P (E). Then the following equivalences/inequalities
hold. The inequality constants depend on the polynomial degree ko or k1 but not on T, E or
vT, VE.

3.1) llorbe! ||z ~ vzl

(3.2) IV (vrbr)llr S By rllor |l

(3.3) logby*l|e ~ lvells

(3.4) [Fext (v)bEllT $ byl pllvElle

(3.5) IV (Fex (v)bE) I S hihphn wllvEl £-

3.2. Clément interpolation. For our analysis we need some interpolation operator that
maps a function from H*(f2) to the usual space S(2, 7 ) made of continuous and piecewise
polynomial functions on the triangulation. Hence Lagrange interpolation is unsuitable, but
Clément like interpolant is more appropriate. Recall that the nodal basis function ¢, €
S(Q, T ) associated with a node z is uniquely determined by the condition

‘Pl(g):‘sz,g Vy € Na,

and by the polynomial space of ¢, |T":

Finite element domain 7’ ‘ Local space Pr of g |T o Fr

Triangle, Tetrahedron P'(T)

Rectangle, Hexahedron Ql (T)

Pentahedron span{l,Z,y, 2,2, §Z}
Then S(2,7) is defined as the space spanned by the functions ¢, , for all nodes z € Ng.
Equivalently, it can be expressed as

(3.6) S, T) :={vn € C(Q) : va|, 0 Fr € Pr} Cc H(Q),

with Pr as described in the above table.

Next, the Clément interpolation operator will be defined via the basis functions ¢, €
S(Q,7T).

DEFINITION 3.2 (Clément interpolation operator). We define the Clément interpolation
operator I, : HY(Q) = S(Q,T) by

1
I,v:= Z m(/w U) Pg -

z ENg

The interpolation error estimates on anisotropic triangulations are different to the isotropic
case. The anisotropic elements have to be aligned with the anisotropy of the function in order
to obtain sharp estimates. To this end we introduce a quantity which measures the alignment
of mesh and function.
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DEFINITION 3.3 (alignment measure). Forv € H(Q), set

)’

(3.7) mﬂmTy=( IWM

From that definition we see that

hi,T
1<mi(v,T) < max ——.
- 1( ’ ) TeT hmznT

These estimates imply that for isotropic meshes my(v,T ) ~ 1 and consequently for such
meshes the alignment measure disappears in other constants.

For anisotropic meshes the term C7. Vv contains directional derivatives of v along the
main anisotropic directions p ; 7 of T'. Therefore T' will be aligned with v if long (resp. small)
anisotropic direction P1,T fresp ps,T) is associated with small (resp. large) directional
derivative p 1,1 - Vo (resp. p 3,7 - V). If all elements are aligned with v then the numerator
and denominator of my (v, T ) will be of the same size and consequently m; (v, T ) ~ 1. We
refer to [18, 19] for more details.

Finally we may state the interpolation estimates.

LEMMA 3.4 (Clément interpolation estimates). For any v € H' () it holds

(3.8) > bt rllv =T vl < mi(, T)[IVol?
TeT
h
(3.9) > = Taolk <mi(, T)|IVol.

Feg minF

Proof. The proof of the estimates (3.8) and (3.9) is given in [18] and simply use some
scaling arguments. 0
At the end for ¢ € [H*(2)]? we introduce its approximation measure

1/2
( th||2T)
(3.10) a(g,T):= lallo '

Roughly speaking this quantity measures the alignement of the mesh 7" with ¢. For
isotropic meshes it is then bounded from above by 1 (see Section 4).

3.3. Surjectivity of the divergence operator. Here we focus on the surjectivity of the
divergence operator from [H(2)]? to L2(€2). This result will be used in the next subsection
as well as in Subsection 5.3.

LEMMA 3.5. Let g be an arbitrary function in L*(Q), then there exists v € [H*(Q)]¢
such that

(3.11) dive = gin Q,
(3.12) llulle < llgll-

Proof. Consider a domain D with a smooth boundary such that @ C D. We extend g by
zero outside €2 to get § in L2(D). Let ¢ € Hg (D) be the unique weak solution of

Ay =ginD.
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As § € L?(D) and D has a smooth boundary, 1 belongs to H?(D) with the estimate

(3.13) [¥ll2.0 S Nlgllo = llgll-

Therefore v defined in 2 by
v =V ind

belongs to [H1(2)]? and satisfies (3.11) as well as (3.12) as a consequence of (3.13). 0
This lemma differs from the classical result on the divergence operator [17] by the fact
that v is no more zero on the boundary and then allows to leave the zero mean condition on

g.

3.4. Uniform discrete inf-sup condition. We end this section by showing that the com-
muting diagram property and the continuity of II;, from H'(f2) into L?(f) guarantee the
uniform discrete inf-sup condition.

LEMMA 3.6. If (2.7) and (2.9) hold then there exists a constant 3* > 0 independent of
h such that for every v, € M},

vpdi dx
(3.14) sup fﬂh—vgh

> B*[|vnl|-
qrhEXn ||gh||H(div ,Q)

Proof. Let us fix v, € M. It suffices to show that there exists ¢ , € X} such that

(3.15) divgh = Up in Q,
(3.16) g all S llonll-

Letv € [H'(Q)]¢ be the solution of (3.11) with g = v}, obtained in Lemma 3.5. Take
qn = Ipo.

By (2.7) it satisfies (3.15). Indeed by (2.8), we have

/ div (v — g p)wp = 0,YVwy, € My,
o q

or equivalently
/(Uh - divqh)wh =0,Ywy, € My,
Q £

which leads to (3.15) since div g », belongs to My, by the assumption (2.6).
The estimate (3.16) directly follows from (2.9) and (3.12). O

4. Examples. In this section we present a list of finite element pairs fulfilling the theo-
retical assumptions of the previous sections. For an easier readibility, since our a posteriori
error analysis from section 5 is independent of the choice of the elements, the reader not
interested in all the details from this section may skip the remainder of this section.

For any element T € T, we describe in the next table the finite dimensional spaces
Dy(T) and M (T'), where k € N, for the Raviart-Thomas elements (in short RT), the Brezzi-
Douglas-Marini elements (BDM), and the Brezzi-Douglas-Fortin-Marini elements (BDFM).
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Name | Element M(T) Dy (T)
RT Triangle/Tetra RTy = [Py]¢ + 2Py P,
RT Rectangle Priik x Pr gt Q,
RT Hexahedra Pk—i—l,k,k X Pk,k—i—l,k X Pk,k,k+1 Qk
RT Pentahedra RTo(z1,72) x P1(z3) Py
BDM | Triangle/Tetra [Pri1]? Py
BDFM | Triangle/Tetra | {g € [Pr41]?:q -n € Re(8T)} | T

Here P41k, means the space of polynomials of degree k + 1 in z; and of degree k

in z2 and x3, P, means the space of homogeneous polynomials of degree k, while R (0T)
denotes the space of functions defined in 07" which are a polynomial of degree at most £ on
each edge/face of T'. With these sets we may define

“4.1) My, = {’Uh e M : Up|T € Dk(T),VT € T},
“4.2) Xy = {]_)hEX:]_)MTEMk(T),VTGT}.

For these element pairs (X}, M},), except the pentahedral case, the assumptions (2.6),
(2.7) and (2.10) are checked in Section II1.3 of [7]. The case of pentahedra is proved similarly
by using the standard degrees of freedom

/Q-Q,VEEE,EC(?T.
E

We now show that the stability estimate (2.9) holds in some particular situations.
We start with a general result.
LEMMA 4.1. If the elements T € T satisfy

(43) hiT ,s hmin,Ta

then (2.9) holds.
_ Proof. Using the affine transformationz = ArZ + Py which maps the reference element
T to T and Piola’s transformation

7(@) = Ar'q(2),

which preserves the degree of freedom, we have
la =g = 71 | 14r(q ~ i)
< ITllel? | iz - Mgl
T
S iTllarl? [ vgP
T
SlarlP [ (947" 0)rP

< Az | A7) /T IV 2.

Since by Lemma 2.2 of [ 18] we have || A7|| ~ hy 7 and || A7 ~ h;ﬁn’T, the above estimate
and the assumption (4.3) yields

le ~Tegliy S [ 1Val
T
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The sum of this estimate on T € T leads to the conclusion. 0

For boundary layer meshes hinr = Th and hy = h, where 7 ~ \/€|In /€|, the
thickness of the layer being +/€ (see [3, 18, 20]), therefore the assumption (4.3) becomes then
h < 7 and could be too restrictive. Similarly for refined meshes along edge singularities, then
Pmin,T = h> and hi, T = h, where A > 0 is the smallest edge singular exponent [4, 3, 18, 5],
in that case (4.3) reduces to A > 1/2. Again this condition is too restrictive for strong
edge singularities (X is always > 1/2 for the Laplace equation, but for general transmission
problems (A piecewise constant), A could be as small as we want [ 14, 22, 25, 26, 11]). These
considerations motivate the use of finer arguments to get (2.9), namely adapting the arguments
of Sections 4 and 5 of [1], we can prove the following results.

LEMMA 4.2. Assume given a 2D triangulation T made of triangles T which satisfy

(44) hl,T ,s sin amaz,Ta

where O e T is the maximal angle of T. Assume that (X, My,) corresponds to the Raviart-
Thomas element of order 0 (i.e. defined by (4.1)-(4.2) with k = 0). Then (2.9) holds.
Proof. By Lemmas 4.1 and 4.2 of [1] for any T' € T, we have

hi,T
llg —Magllr S ————IVgllz-
sin Opmaz,

The assumption (4.4) directly yields the desired estimate. [

Remark that the assumption (4.4) is much weaker than (4.3). Indeed it is satisfied for
any tensor product meshes, for any meshes satisfying the maximal angle condition (i.e. there
exists v* < 7 such that @,4.,7 < 7*), while such meshes may not satisfy (4.3). The
condition (4.4) is weaker than the maximal angle condition since it is equivalent to

m
g S Hmaz,T S ™= Chl,T7
for some ¢ > 0 and then allows 6,45, 7 to tend to 7.

In a similar manner we prove the

LEMMA 4.3. Assume given a 3D triangulation T made of tetrahedra T satisfying

4.5) hi,r < (det M)?,

where M is a matrix made of three vectors v;, 1 = 1,2, 3, where v; are the direction of the
edges sharing a common vertex and such that |v;| = 1. Assume that (Xp, Mp) corresponds
to the Raviart-Thomas element of order 0 (i.e. defined by (4.1)-(4.2) with k = 0). Then (2.9)
holds.

Proof. By Lemmas 5.1 and 5.2 of [1] for any T € T, we have

le ~Thgllr S g IVl

and we conclude with the assumption (4.5). O

Note that the regular vertex property introduced in [ 1] implies (4.5), note furthermore that
Theorem 5.10 of [1] implies that (2.9) holds under the maximal angle condition introduced
by Krizek [21] and quite often used for anisotropic meshes [4, 3].

Let us now pass to rectangular meshes.

LEMMA 4.4. Assume given a 2D triangulation T made of rectangles such that the edges
of the elements are parallel to the x1 or xo axis. Assume that (Xp, My,) corresponds to the
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Raviart-Thomas element of order 0 or 1 (i.e. defined by (4.1)-(4.2) with k = 0 or 1). Then
(2.9) holds.

Proof. Denote by E;, E3 the edges of T parallel to the z; axis. Then by definition of the
interpolant ITpq of ¢ we remark that g1 — (IIpq )1 has a mean zero on E; and g2 — (ITpq )2
has a mean zero on Es, therefore by a standard scaling argument we have - -

(4.6) lg —Tagllr £ > hylldj(g —Tag)llr,

j=1,2

where h; means here the length of Ej, j = 1,2. It then remains to estimate ||3;11xg ||7. For
that purpose we distinguish between the cases k = 0 and k = 1.
For k = 0 we shall prove that

.7 IVITagllr S [IVellr,
while for & = 1, we shall prove that
(4.8) 10, TTrg I S 1185 llr + 15 g Iz
In both cases these estimates yield
lg —Trgllr S harllVallr + gl

and the conclusion follows by summing the square of this estimate onT' € T .
In the case k = 0, we remark that

_( ao+a1x1
th(;c) o ( bo + b1xo ) ’

for some real numbers a;, b;,7 = 0, 1. Consequently we get

1 0
51th=al<0>;aznhg=b1( 1)-

Now by Green’s formula, the fact that the edges of T" are parallel to the axes and the interpo-
lation properties, we may successively write

/31(th)1 =/ n1(IIhg )1 =/ n1(IIhg )1
T oT EoUE,
:/ g -n :/ qg-n
E2UEs E2UE,
=/ n1g1=/31g1-
EoUE, T

By the fact that 9; (ITq )1 is constant and by Cauchy-Schwarz’s inequality we obtain
|01 (Tag 1| < [T~ [101g1 |-
Integrating the square of this estimate on 7' we arrive at
161 (Thg )1 I3 < 101 1|7
Since a similar argument yields

182(TThg )27 < (1022117,
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we have proved (4.7) (recalling the form of 9;(ITxq)).
For k = 1, II,g has the form

Mpq (z) =

ag +airy + azw% + azxs + ag4x1x2 + a5x%$2
bo + b1z2 + box2 + b3xy + byx1 T2 + bsT12E )

for some real numbers a;, b;,7 = 0, ---, 5. Consequently we get

ay + 2a2x1 + @422 + 20512
alﬂhg=(1 21 422 512)_

b3 + byxo + b533%

For the estimation of 9; (TInq )1, applying Green’s formula and the interpolation properties
we have

/T|61(th)1|2 = —/T(th)laf(ﬂhg)1+/ n1(Mpq )10:1(TThg )1

orT

= —/(th)laf(ﬂhgh +/ n1(Irq)101 (TIhg )1
T

ExUE,

_ /T (g )182(Tag )1 + /E  (Mug) - nds (g,

= —/(Hhﬂ)lafﬂl +/ q -n01(Ilng )1
T

E;UE, -

= / 01(TThg )101q 1.
T
By Cauchy-Schwarz’s inequality we obtain

101 (Mg )1l < [|01g 1|7

By symmetry we actually have
4.9) 105 ()l < 18545l for j = 1,2.

For the estimation of &, (IIp, q )a, recalling that it is constant we may start with

al(th)z/

z1(hy —m1) = / 31(th)2$1(h1 - x1),
T T

where (1, z3) are local Cartesian coordinates such that E, is a subset of the 5 axis and Fs
is a subset of the line ; = h;y. In the above right-hand side, applying Green’s formula we
get

o1 (IThg )2 /

z1(hy — 1) = — / (Mpq )20 [z1 (b1 — 21)],
T T

since the boundary term is zero. Using the interpolation properties we obtain

01(IThq )2 /Tiﬁl(hl —z1) =~ /T(thb(hl - 2z1)

- [ ( w o )
== [ (o)

—/TQQ(hl —214).
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This proves the identity

_Jra2(h —231)
Jroi(ht —21)

Cauchy-Schwarz’s inequality and direct calculations yield

O01(TThq )2 =

101 (Tag)2| S by T llg 22
Integrating the square of this inequality on 7" leads to

101 (Thg ol S by g2l

Exchanging the role of 1 and 2, we have proved that
(4.10) 10; Magq)kllr < hj Hllgkllr for j # k.

The estimates (4.9) and (4.10) immediately give (4.8). O

Obviously the above result is still valid for a 3D triangulation made of rectangular hexa-
hedra with RTy or RT}.

Let us go on with the case of pentahedra.

LEMMA 4.5. Assume given a 3D triangulation T made of rectangular pentahedraT =
Ty x I, where I is a real interval and Ty is a 2D triangle, which satisfies

4.11) hi1 S sinbmaz, -

Assume that (Xy, M},) corresponds to the Raviart-Thomas element of order O (i.e. defined by
(4.1)-(4.2) with k = 0). Then (2.9) holds.
Proof. Arguments like Lemmas 4.1 and 4.2 of [1] yield

h .
lgi — Mag)illr S =4IV (g — Mag )|z fori = 1,2,
Sin Opmaz,my
lgs — Mrg)sllr S he,rllV(g — Trg)llz.

The assumption (4.11) then yields

(4.12) llg —Trgllr S IV(g —Tag)ll7-

It then remains to estimate ||VII,q ||7. Remarking that

ag + a1y
th (z) = bo + a1z2 ,
Co +C13

for some real numbers a;, b;, c;,¢ = 0,1, 2, we see that

1 0 0
Blﬂhg = a 0 ,62th = a3 1 , 83th (.’L’) =C 0 ,
0 0 1

which in particular imply divII,g = 2a1 + c1.
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Denote by E;,i = 1,2 the two faces of T' perpendicular to the z3 axis. As before by
Green’s formula and the interpolation properties, we may successively write

[ 3= [ mgs=[ g
T aT E,UE5
=/ Ing -n =/ q-n
FE1UE5 - E1UE2_
:/63g3.
T

By the fact that 03(TI1q )3 is constant and by Cauchy-Schwarz’s inequality we obtain

|03 (Mg )3| < |T|71/2||33g3||T-
Integrating the square of this estimate on 7" we arrive at
105(Thg )37 < 103 3]|7-
A similar argument leads to
|div Tag |7 < |div g |[7-
By the form of 9;(IInq ), the two above estimates imply that
IV )7 S Ve liz-
This estimate in (4.12) gives
llg = Magllr S IVellr,

which leads to the conclusion. O

We end this section by showing that the approximation measure a is bounded from above
by 1 for isotropic meshes:

LEMMA 4.6. For any isotropic mesh T and the above finite element spaces,

a(g,T) $1,Vq € [H' ()]

Proof. By the proof of Lemma 4.1, we have

lg — g |12 < || Ar[*| A7 2 /T Vg 2.

-1

Since for an isotropic mesh we have || A7|| ~ hy,r and ||[A7'|| ~ b,k 7 ~ by T, we get

B2, ollg — g I3 ~ hi2llg - Tag |2 < /T Vg 2.

We conclude by summing this estimate on 7' € T . [0
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5. Error estimators.

5.1. Residual error estimators. For Pn € X}, we define the jump of A*I;l_) p in the
tangential direction across a face E by

— [[Ailljh 'tE]] in 2D,
Loelen) = { [A~'prxng],  in3D.

In2D, J E,t(g 1) s a scalar quantity, but for shortness we write it as a vector, allowing us
to treat the 2D and 3D cases in the same time.

DEFINITION 5.1 (Residual error estimator). For any T € T, the local residual error
estimator is defined by

r = |If +divpallf + Ao rllcurl (A~ pa)lI7

. — hpni T p
+ Bvinr 10 A7 20— Vouliz + 30 ()l

ECHT
The global residual error estimator is simply

=)

TeT

5.2. Proof of the lower error bound. We proceed as in [8] with the necessary adapta-
tion due to the anisotropy of the meshes (compare with [18, 12]).
THEOREM 5.2 (Lower error bound). Assume that there exists k € N such that (A~1 Ph)|T

belongs to Pk,for all T € T . Then for all elements T, the following local lower error bound
holds:

(5.1 nr S el maiv wr) + llellT-

Proof. Curl residual By the inverse inequality (3.1) and Green’s formula, one has

=— [ breurl (A™"€) - curl (A7"py)
. p

. / (A~%€) - curl (breurl (A~'p1))
T

|A" e ||z |lcurl (breurl (A pp))lle-

IN

The inverse inequality (3.2) yields
(5.2) hmin,rllcurl (A" pp)llr S llellz
Tangential jump Set
wg = Fext(JE,t(Pr))bE,
which belongs to H} (wg) in 2D and to [Hg (wg)]? in 3D. The inverse inequality (3.3) yields

s n) % < /E Tre(pn) - we = - /E Trae) - w.
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Elementwise integration yields

el S 3 /T {(Ae) - curl wp — curl (A~'e) - wp}

TCwk

> /T{(A_lg) -cul wg + curl (A™'py) - we}

TCwg

SIA e llwpllcud wellos + Y llcurd (A pa)ll7llwe|lws-
TCwg

By the estimate (5.2) we get

16, @illE S llellos (lcurl wellus + by rllwsllos)-

The inverse inequalities (3.4) and (3.5) lead to
B2
(5.3) I2er)lle S 5=—ll€ lwe-

min, T

Element residual The inverse inequality (3.1) and the fact that p = AVu yield
1A p 1 — Vual3 ~ / br(A pn — Vun) - (A ps — Vun)
T

~ / bT(A_lg — Ve) - (A_11_7h — Vup).
T

Using Green’s formula we get

1A p s — Vual < /TbT(Aflg) (A ph — Vun) + Le div (br(A ' ps — Vun)).

Cauchy-Schwarz’s inequality and the inverse inequality (3.2) lead to

(5.4) Bmin, | A~ ph — Vunllr S llellr + llellz
Using the estimates (5.2) and (5.3) and (5.4) provides the desired bound (5.1). O
REMARK 5.3. The assumption of theorem 5.2 is not always fulfilled, even if py, is

elementwise polynomial, since A1 is not necessarily elementwise polynomial. However, it
holds if A is piecewise constant.

5.3. Proof of the upper error bound. The use of Lemma 3.5 allows to prove the fol-
lowing error bound on e.

LEMMA 5.4. Letv € [H'(Q)]? be the solution of (3.11) with g = e and satisfying
(3.12), obtained in Lemma 3.5. Then the next estimate holds

(5.5) llell < llell + al, T)n.

~

Proof. By (3.11) we may write

el = /Q(u — up)dive.
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By Green’s formula and the fact that Vu = A~'p (recall that u = 0 on 9Q) we get

lle||* = —/(A_IQ) -y—/uhdivy.
Q Q

Now using the commuting property (2.8) we obtain

lelf? = — / (A'p) v / undiv o,
Q Q

The discrete mixed formulation (2.1) then leads to

lell? = — /Q(A-l@ —pn) u- /Q<A—1ph) (v = ).

Since Green’s formula on each element and the properties (2.8) and (2.10) imply that
> / Von - (v — Thw) = 0, Yo, € My,
TeT *7T

we have shown that

lell? = — / (A (p —pn) v

- Z /(Aflf_)h — Vo) - (v — ), Yo, € M.
TeT *7T

Now Cauchy-Schwarz’s inequality leads to

lell> < 147" (p — pa)llllull
+ z ||A_1Qh — VvhHTHy— th||T,‘v’vh € My,
TeT

Using the definition of the approximation measure a we obtain

llell” < <||A1(1_o —pwll+a(e, T Minrll A pr — lel%)”"‘) lvll,e;,
TeT

for any v, € M} The conclusion follows from the estimate (3.12). O

Comparing the above lemma with Lemma 5.2 of [8], we remark that the use of Lemma
3.5 allows to avoid the H2-regularity of the solution of (1.1).

It remains to estimate the error bound on €, which is obtained by adapting Lemma 5.1 of
[8]. We start with a Helmholtz like decomposition of this error.

LEMMA 5.5. There exist z € H}(Q) and B € HY(Q) in 2D or B € [H'(Q)]? in 3D
such that B B

(5.6) §=AVz+CLrlﬁ,
with the estimates

(5.7) llzll,e S llell
(5.8 18 1l1.0 S llell-
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Proof. Firstly we consider z € H¢ () as the unique solution of div (AVz) = dive, i.e.,
solution of

/(AVz)-Vw:/g -Vw,Yw € Hy(Q),
Q Q

which clearly satisfies (5.7). Secondly we remark that ¢ — AVz is divergence free so by
Theorem 1.3.1 or 1.3.4 of [17], there exists 3 € H'(Q) in 2D or § € [H'(Q)]? in 3D such
that

curl B =€ — AVz
with the estimate
1Bl < lle — AVz|,

which leads to (5.8) thanks to (5.7). O
For the sake of shortness, in the above lemma, we use exceptionally the notation 8 in 2D
for the scalar function appearing in the decomposition (5.6). B
LEMMA 5.6. If z and B are from Lemma 5.5 then the next estimate holds

(5.9) lell £ @ +mu(B,T ).
Proof. Since Green’s formula yields
Vz-curl B =0,

Q

we may write

(5.10) fte)e = [(92)-e+ [ (Atcurt p) - cun 5.

We now estimate separetely the two terms of this right-hand side. For the first one ap-

plying Green’s formula we get
/(Vz)-g = —/ zdive
Q Q

By Cauchy-Schwarz’s inequality we obtain

‘/Q(VZ)'E

Using finally the fact that div p = — f and the estimate (5.7), we conclude

/Q(VZ) €

For the second term of the right-hand side of (5.10) we take ﬁ n =1 ﬁ . By (5.6) and
Green’s formula, we have

S lldivellllz]l1,0-

(5.11) I + divpalllle]-

[ tan ) -an g = [ (4% i
Q

Q
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Ascurl ﬁ 1, belongs to X, (due to (2.5)), by the orthogonality relation (2.2) the above identity
becomes

/(A_lmﬁ)-Mth/ediVMﬂh=0-
o p b p

Q
This identity allows to write

J a7 et 5 -curt 5 = [ (47 curl B) - cut (8 - §1).
Q Q

Using the Helmholtz decomposition (5.6) and the fact that p = AV it becomes

[t 5 cut § = [ (Vu—2) = A7pa) - cutl (8 - B1).
Q Q

Green’s formula in 2 (the boundary term being zero since v — z = 0 on the boundary) leads
to

Ja e ) cu § =~ [ (47p)-curd (8 - 1),
Q

0 £ 2 -F
Now applying Green’s formula on each element 7' we get

[t gy -ang =— ¥ [ an (46 - 80)
Q

TeT T

+ Z/iEnﬁ(Bh)-(ﬁ —Bh)-

EBee 7P
Continuous and discrete Cauchy-Schwarz’s inequalities yield

/(A—mg)-mg‘ <
Q

1/2 1/2
(Z h2, . llcurl (A—lgh)u%) (Z hoan 7|8 —ghu%)

TeT TeT

1/2 1/2
+ (Z h?m,ﬂ?llimt(ﬁn)ll%) <Z hrin, 5hEIB — éhll%) :

Ec€ EcE
By Lemma 3.4 we obtain

[ e ) cun g‘ < mi (8, TlIVB]l

According to (5.8) we arrive at the estimate

[t g)mg\ <ma(8, Tnlell

The conclusion directly follows from the identity (5.10) and the estimates (5.11) and
(5.12).0

Using the two above Lemmas and recalling that dive = —(f+divp ) we have obtained
the

THEOREM 5.7 (Upper error bound). Let v € [H'(Q)]? be the function from Lemma 5.4
and B the function from Lemma 5.5. Then the error is bounded globally from above by

(5.13) llell + llella@iv.e) S (L+ae, T) +mi(8,7))n.

(5.12)
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5.4. Applications to isotropic meshes. Our results apply to any element pairs from
Section 4 on isotropic meshes. In that case we have hpin,7 ~ hr ~ hp for all faces F' of
T (recall that hr is the diameter of T), m1(-,7 ) ~ Land a(-,7 ) < 1. As a consequence
the above results may rephrased as follows: the local residual error estimator is given by (see

(8D

nr = ||f +divpall7 + A7 lleurd (A pa)ll7

+ hT min, A pn = Vorllz +hr D @)l
ECOT

With this definition the lower error bound (5.1) holds under the same assumption on p p, than
in Theorem 5.2, while the upper error bound (5.13) reduces to

llell + lle lacaiv,0) S m
without any regularity assumption on the solution of (1.1).

6. Numerical experiments. In this section, we present two 3D experiments which con-
firm the efficiency and reliability of our estimator. The first example treats the case of a
smooth solution presenting a boundary layer, while the second example considers the case of
a singular solution (not in H2(f2)) having an edge singularity. The first example was chosen
to show that the alignment and approximation measures are not an obstacle for the efficiency
and reliability of the estimator, while the choice of the second example is motivated by the
relaxation of the H2-regularity of the solution.

6.1. Solution with a boundary layer. The present experiments consist in solving the
three dimensional mixed problem (2.1) with A = Id on the unit cube = (0,1)3. Here, we
use the Raviart-Thomas element RTy described in Section 4, on anisotropic Shishkin type
meshes composed of tetrahedra. Each mesh is the tensor product of a 1D Shishkin type mesh
and of a uniform 2D mesh, both with n subintervals. With 7 € (0, 1) being a transition point
parameter, the coordinates (z;, y;, z) of the nodes of the hexahedra are defined by

dxy :=27/n, dre:=2(1-71)/n, dy=1/n, dz=1/n,

x; = idr (0<i<n/2),

z; = T+ (i—n/2)dzs (n/2+1<i<n),
y; = Jjdy (0<j <n),

zr = kdz (0 <k <n).

Each hexahedron is then divided in three tetrahedra, without adding any node (see Figure
6.1).

The discrete problem (2.1) is solved with an Uzawa-type algorithm. The number of
degrees of freedom for the determination of py, is equal to the number of faces N F' of the
mesh. The tests are performed with the following prescribed exact solution u :

w(z,y,2) = z(l—2)y(l—y)z(l—2)e V5.

This allows to have in particular u;r = 0. Note that g—g presents an exponential boundary
layer along the line = 0 that does not converge uniformly towards zero when € goes towards
zero. The transition parameter 7 involved in the construction of the Shishkin-type mesh is
defined by T := min{1/2,24/¢|In+/¢|}, which is roughly twice the boundary layer width.
The maximal aspect ratio in the mesh is equal to 1/(27).
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FIG. 6.1. Shishkin type mesh on the unit cube withn = 8 and T = 0.25.

Now we investigate the main theoretical results which are the upper and the lower error
bounds. In order to present the underlying inequalities (5.13) and (5.1) appropriately, we
reformulate them by defining the ratios of left-hand side and right-hand side, respectively:

llell + lle | i
® qup = p H(div,0) as a function of NF,
= max L
7T €|l m(diviwn T Ilellr

as a function of NF'.

The first ratio gy is frequently referred to as effectivity index. It measures the reliability
of the estimator and is related to the global upper error bound. In order to investigate this er-
ror bound, recall first that the factor (1 + a(v,7T) +m1(8,T)) is expected to be of moderate
size since we employ well adapted meshes (cf. Theorem 5.7). Hence the corresponding ratio
Gup should be bounded from above. This is actually confirmed by the experiments (left part
of Figure 6.2), where we even notice that the quality of the upper error bound is independent
of €. Thus the estimator is reliable.

The second ratio is related to the local lower error bound and measures the efficiency of
the estimator. According to Theorem 5.2, g0y has to be bounded from above. This can be
observed indeed in the right part of Figure 6.2, as soon as a sufficiently resolution of the
boundary layer is achieved (the smaller ¢ is, the larger NV F' must be). Hence the estimator is
efficient.

6.2. Singular solution. Let us now consider the three dimensional mixed problem (2.1)
with A = Id on the truncated cylinder domain 2 defined in the usual cylindrical system of
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FIG. 6.2. qup (left) and qiov, (right) in dependence of N F', anisotropic solutions.

coordinates (r, 8, z) by :

The tests are performed with the following prescribed exact solution u satisfying the
homogeneous Dirichlet boundary conditions on 02 and defined by :

u(r,0,z) =3 (0.1 —r)sin (22) 2(0.1 - z).

This solution u does not belong to H2(f2), and has the typical edge singular behaviour
near the edge r = (0. Because of this edge singularity, the mesh is refined in the radial
direction near the axis of the cylinder, making it anisotropic (see Figure 6.3). The finite
element and the algorithm are the same as in Section 6.1.

Once again, we plot gup and qiow defined in Section 6.1 versus NF. This is done in
Figure 6.4. Each of these two parameters is bounded from above. That confirms that the esti-
mator is actually reliable and efficient, even for a singular solution as theoretically expected.

The tests presented in this section have been performed with the help of the NETGEN
mesh generator (Johannes Kepler University of Linz in Austria) and the SIMULA+ finite
element code (MACS, University of Valenciennes and LPMM, University and ENSAM of
Metz, both in France).

REFERENCES

[1] G. AcosTA AND R. G. DURAN, The maximum angle condition for mixed and non-conforming ele-
ments,Application to the Stokes equations, SIAM J. Numer. Anal., 37 (1999), pp. 18-36.

[2] A. ALONSO, Error estimators for mixed methods, Numer. Math., 74 (1996), pp. 385-395.

[3]1 T. APEL, Anisotropic Finite Elements: Local Estimates and Applications, Adv. Numer. Math, (1999).

[4] T. APEL AND S. NICAISE, The finite element method with anisotropic mesh grading for elliptic problems in
domains with corners and edges, Math. Methods Appl. Sci., 21 (1998), pp. 519-549.

[5] T. APEL, S. NICAISE AND J. SCHOBERL, Crouzeix-Raviart type finite elements on anisotropic meshes, Nu-
mer. Math., 89 (2001), pp. 193-223.



ETNA

Kent State University
etna@mcs.kent.edu

ISOTROPIC AND ANISOTROPIC A POSTERIORIERROR ESTIMATION 61

F1G. 6.3. truncated cylinder mesh refined near the axis.

2r- 2r-
Sk —e—a—8—8 _% 1+
T < B//
0 Ll Ll Ll Ll Ll 0 Ll Ll Ll Ll Ll
10" 10° 10 10 10 10' 10 10° 10 10 10 10°
NF NF

FIG. 6.4. qup (left) and qioy, (right) in dependence of N F, singular solution.

[6] D. BRAESS AND R. VERFURTH, A posteriori error estimators for the Raviart-Thomas element, SIAM J.
Numer. Anal., 33 (1996), pp. 2431-2444.
[7]1 F. BREZZI AND M. FORTIN, Mixed and Hybrid Finite Element Methods, Springer, New York, 1991.
[8] C. CARSTENSEN, A posteriori error estimate for the mixed finite element method, Math. Comp., 66 (1997),
pp. 465-476.
[9] C. CARSTENSEN AND G. DOLZMANN, A posteriori error estimates for mixed fem in elasticity, Numer. Math.,
81 (1998), pp. 187-209.
[10] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[11] M. COSTABEL, M. DAUGE AND S. NICAISE, Singularities of Maxwell interface problems, RAIRO Modél.
Math. Anal. Numér., 33 (1999), pp. 627-649.
[12] E. CREUSE, G. KUNERT AND S. NICAISE, A posteriori error estimation for the Stokes problem: Anisotropic
and isotropic discretizations, Math. Models Methods Appl. Sci., 14 (2004), pp. 1297-1341.
[13] M. DAUGE, Elliptic boundary value problems on corner domains — smoothness and asymptotics of solutions,
Lecture Notes in Math., Vol. 1341, Springer, Berlin, 1988.




ETNA

Kent State University
etna@mcs.kent.edu

62 S. NICAISE AND E. CREUSE

[14] M. DOBROWOLSKI, Numerical approximation of elliptic interface and corner problems, Bonn, Habilitation-
sscrift, 1981.

[15] M. FARHLOUL, S. NICAISE AND L. PAQUET, Some mixed finite element methods on anisotropic meshes,
RAIRO Modél. Math. Anal. Numér., 35 (2001), pp. 907-920.

[16] L. FORMAGGIA AND S. PEROTTO, New anisotropic a priori error estimates, Numer. Math., 89 (2001),
pp. 641-667.

[17] V. GIRAULT AND P.-A. RAVIART, Finite element methods for Navier-Stokes equations, Springer Ser. Comput.
Math. Vol. 5, Springer, Berlin, 1986.

[18] G. KUNERT, A posteriori error estimation for anisotropic tetrahedral and triangular finite ele-
ment meshes, Logos Verlag, Berlin, 1999. Also PhD thesis, TU Chemnitz, http:/archiv.tu-
chemnitz.de/pub/1999/0012/index.html.

[19] G. KUNERT, Towards anisotropic mesh construction and error estimation in the finite element method, Numer.
Methods Partial Difterential Equations, 18 (2002), pp. 625-648.

[20] G. KUNERT AND R. VERFURTH, Edge residuals dominate a posteriori error estimates for linear finite element
methods on anisotropic triangular and tetrahedral meshes, Numer. Math., 86 (2000), pp. 283-303.

[21] M. KRIZEK, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal., 29
(1992), pp. 513-520.

[22] D. LEGUILLON AND E. SANCHEZ-PALENCIA, Computation of singular solutions in elliptic problems and
elasticity, RMA 5. Masson, Paris, 1991.

[23] J.-L. LIONS, Perturbations singuliéres dans les problémes aux limites et en controle optimal, Lecture Notes
in Math., Vol. 323, Springer, Berlin, 1973.

[24] J. M. MELENK, hp-Finite Element Methods for Singular Perturbations, Lecture Notes in Math., Vol. 1796,
Springer, Berlin, 2002.

[25] S. NICAISE, Polygonal Interface Problems, Peter Lang Verlag, Berlin, 1993.

[26] S. NICAISE AND A.-M. SANDIG, General interface problems LI, Math. Methods Appl. Sci., 17 (1994),
pp- 395-450.

[27] P. A. RAVIART AND J. M. THOMAS, A mixed finite element method for second order elliptic problems, In
I. Galligani and E. Magenes, eds., Mathematical Aspects of Finite Element Methods, Lecture Notes in
Math., Vol. 606, pp. 292-315, Springer, Berlin, 1977.

[28] J. E. ROBERTS AND J. M. THOMAS, Mixed and Hybrid Methods, pp. 523—-639, North-Holland, Amsterdam,
1991.

[29] K. G. SIEBERT, An a posteriori error estimator for anisotropic refinement, Numer. Math., 73 (1996), pp. 373—
398.

[30] H. E. SOSSA AND L. PAQUET, Refined mixed finite element method of the Dirichlet problem for the Laplace
equation in a polygonal domain, Adv. Math. Sci. Appl., 12 (2002), pp. 607-643.

[31] J. M. THOMAS, Sur [I’analyse numérique des méthodes d’élements finis mixtes et hybrides, PhD thesis (These
d’Etat), Université Pierre et Marie Curie, Paris, 1977.

[32] R. VERFURTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley
and Teubner, Chichester and Stuttgart, 1996.



