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TOWARD THE SINC-GALERKIN METHOD FOR THE POISSON PROBLEM IN
ONE TYPE OF CURVILINEAR COORDINATE DOMAIN

�
TOSHIHIRO YAMAMOTO

�
Abstract. This paper introduces the Sinc-Galerkin method for the Poisson problem in one type of curvilinear

coordinate domain and shows an example of the numerical results. The method proposed in this paper transforms
the domain of the Poisson problem designated by the curvilinear coordinates into a square domain. In this process,
Poisson’s equation is transformed into a more general two-variable second-order linear partial differential equation.
Therefore, this paper also shows a unified solution for general two-variable second-order linear partial differential
equations. The derived matrix equation is represented by a simple matrix equation by the use of the Kronecker prod-
uct. However, the implementation for real applications requires a more efficient calculation of the matrix equation.
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1. Introduction. The Sinc-Galerkin method is the numerical method for solving differ-
ential equations introduced in [1], which proposes the solution for second-order differential
equations. The solution for higher order differential equations is studied in [2, 3, 4]. The text-
book [5] shows its applications for solving Poisson’s equation, the heat equation and Burger’s
equation in a square domain. The textbook [6] collects a wide range of topics involving so-
called “Sinc methods”—a class of numerical methods, including the Sinc-Galerkin method,
based on the use of the Cardinal function, which is an expansion of a function using the
Sinc basis functions. These topics are more recently summarized in [7]. The Sinc-Galerkin
method for typical differential equations in a square domain has been well studied in these
and other references. Also, the domain decomposition for rectangular domains and L-shaped
domains is discussed in [8, 9, 10, 11, 12]. However, the case of more complicated domains
has not been studied very much.

This paper introduces the solution of the Poisson problem in a certain type of curvilinear
coordinate domain and points out problems with it. In this solution, Poisson’s equation in the
curvilinear coordinate domain is transformed into a more general two-variable second-order
linear partial differential equation in a square domain. Therefore, this paper first shows a
unified solution for general two-variable second-order linear partial differential equations in
a square domain.

2. The Sinc-Galerkin Method for General Two-Variable Second-Order Linear Par-
tial Differential Equations. To solve a differential equation, the Sinc-Galerkin method de-
rives a matrix equation which corresponds to the differential equation. Derivations of the
matrix equation in response to the type of the differential equation have been introduced in
[1, 2, 3, 4, 5, 6, 7]. This section shows a more unified derivation of the matrix equation for
two-variable second-order linear partial differential equations using integration by parts.
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Let us consider solving the two-variable second-order linear partial differential equation

(2.1) �����	��

���������������������	��� ��� ���	��

���� � � � � � �	����� � �	��� ��� ���	��

���� � � �� ��� �	�����!���	��� � � ���	��
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whose boundary conditions are����0�
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In the Sinc-Galerkin method, by using the sinc function, which is defined by

sinc �����>� ?@ ACB&DFE �	GH���GH� 
I�KJ,.0�
2 
 �L,.0�

the basis functions for approximating a one-variable function are defined byM �ON�
QP��SRUT$�	���V� sinc W T$�	���1XKN�PP Y 

and the basis functions for approximating a two-variable function are defined byMSZ#[ ���%
&�'�\�<] M �^N�
#P�_+��RUT`_`�	���#a+] M ��b

QP`cd�%RUT�c'�	���#a�

where T%
#T�_ and T�c are conformal maps from the domain of the approximated function onto�3Xfe4
#eg� , N and b , the subscripts of the basis functions, are integers, and P%
QPH_ and P�c , the
step sizes for the discretization, are positive real numbers. By using the basis functions for a
two-variable function, the approximate solution of (2.1) is represented by the truncated series

(2.2) ��hji/hUk'�	��

����, l km[Fn�o�p k l imZ!n�oHp i �$��� Z 
&� [ � MSZ#[ �	�%
&���!

where q _r�9sK_ �7t _ � 2+
q cu�9sKc �7t c � 2+
� Z �9T o �_ �^N�P _ �/
� [ �9T o �c ��b^P c �!=(2.3)

As noticed from the notation, the coefficients of the basis functions correspond to the values
of the approximated function at the discrete points. The selection of s _ 
 t _ 
Qs c 
 t c 
#P _ andP c for a good approximation is precisely discussed in [5, 6].

The values of the approximate solution at the discrete points, � h i h k'�	� Z 

� [ � , are deter-
mined by the orthogonal conditions

(2.4) �^����hji!hUk)
 MSZ![ ��,v�O-�
 MSZ![ �!
 Nw,xXys _ 
�Xys _ � 2+
�=z=�=z
 t _ 
b%,{Xys c 
�Xys c � 2+
�=z=�=/
 t c =
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TABLE 2.1
Values of |&} and ~	} .� 1 2 3 4 5 6��� 2 1 0 1 0 0� � 0 1 2 0 1 0

The inner product is, with its interval adjusted to that of the problem, defined by

(2.5) �O-�
3����,<� �� � �� -����%

�����H�	��

���)���	���)���	���'� �`� ��

where � and � are weight functions.

For the differential equation (2.1), the left-hand side of the orthogonal conditions (2.4)
comprises the terms

(2.6) W � � �	����� � ���'� ���3���H�	� ��hUi�hUk'�	�%
&���� � ��� � � �	� 
 M%Z#[ Y 

where ��� and

� � are set to be 0�
z2 or � according to � ,{2+
Q��
�=z=�=/
Q� (Table 2).
From the definition of the inner product (2.5), the terms (2.6) are represented by the

integral� �� � �� � � �	����� � �	��� �H���d�S�	� � h i h k'���%

���� � � � � � � �] M �^NH
QP _ �%RUT _ �����#a>] M �^b3
QP c �SRUT c �	���#a��������)�������'�+���+��

which can be transformed into

(2.7) � �� � �� � h i h k'�	��

���H�
Xu2�� �3� �H� �� � ���j� � � ������] M �^NH
QP _ �SRUT _ �����!a%����������
Xu2�� �	� �`� �� � � �U� � � ������] M �^b3
#P c �SRUT c �	���!a%���	������� �`� ��

by using integration by parts multiple times so as to eliminate the derivatives of the ap-
proximate solution � h i h k . Note that the boundary terms generated by integration by parts
can be assumed to vanish when the weight functions � and � are appropriately set because� h i h k)
 M �^N�
#P _ ��RfT _ and

M �^b3
#P c �1R�T c are 0 at the boundaries. To make this assumption
hold, appropriate functions are selected to be the weight functions � and � so as to make
these terms converge. The most important problem is about the derivatives of the Sinc basis
functions ] M �^NH
QP���RUT$�����#a:��, M �O�^N�
#P`�%RUT$�����1��T`�������!

because the map T from the finite domain ����
#�/� onto �3Xfe4
#eg� is usually set to beT$�	���\,����+� W ��X���\X�� Y 

and its derivative is T � �����>, �\X���	�8X��'�/�O�\X���� 
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which has singularities at the boundaries. It means that the derivatives of the Sinc basis
functions have singularities at the boundary. To avoid this problem, it is convenient to set the
weight function to be ���	���>, 2T � �	��� 

so that the terms converge.

In the Sinc-Galerkin method, the integrals of the orthogonal conditions (2.4) are approx-
imated by the trapezoidal rule using variable transformations. To compute these integrals by
the use of the values of the integrands at the discrete points defined in (2.3), the integrals with
respect to � from 0 to 2 are transformed into the integrals with respect to  �,¡T _ �	��� and
approximated by � �� �$�����'� �L, �7¢o ¢ ���	��� 2T �_ ����� �  r£.P`_ l im¤ n�o�p i ���	� ¤ �T �_ ��� ¤ � =
Applying the two-variable trapezoidal rule to (2.7) results in

(2.8) P`_ P`c l km¥ n�oHp k l im¤ n�oHp i ��hji!hUk���� ¤ 

� ¥ ��
Xu2�� �3�T �_ �	� ¤ � �H���� � � �¦� � � ������] M �^N�
#P�_��SRUT�_`�����#a����������#§§§ _ n _/¨� �3Xu2:� �	�T �c �	� ¥ � ���	�� � �	� � � � �	����] M ��b

QP`c:��RUT`c'�����#a%���������#§§§ c n c#© =
Here, the Sinc basis functions and their first-order and second-order derivatives have the
following properties:ª�« �#¬Z ¤ �<] M �^N�
#P`�SRUT$�	���#a §§§ _ n _�¨ ,®­ 2 
¡Nw,K¯�
0�
¡N°J,K¯�
ª « � ¬Z ¤ �9P ���T ] M �^N�
#P`�SRUT$�	���#a�§§§ _ n _ ¨ , ?±@ ±A 0�
 Nw,K¯%
�3Xu2�� ¤ o�Z¯²X�N 
³N°J,K¯%
ª�« � ¬Z ¤ �4P � � ��)T � ] M �^N�
#P`�SRUT$�	���#a�§§§ _ n _ ¨ , ?±±±@ ±±±A X G �´ 
 Nw,K¯%
X �j�3Xu2:� ¤ o�Z�µ¯wXKN�� � 
³N°J,K¯%=
Therefore, the differentiation parts of � of (2.8) can be represented by� � � �	����] M �ON�
QP`_+�%RUT�_������!a%��������� §§§ _ n _ ¨ , ª « �Q¬Z ¤ � � �	� ¤ �'����� ¤ �!
�� � � � � �	����] M �^N�
#P�_��%RVT`_��	���#a%���	������§§§ _ n _�¨,

ª�« � ¬Z ¤P`_ � T`�_ �	� ¤ ��� � ��� ¤ �)���	� ¤ ��� � ª�« �#¬Z ¤v¶ �� � ]:� � �����)���	���#a�§§§ _ n _ ¨z· 
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QP`_ �%RUT�_������!a%��������� §§§ _ n _ ¨,
ª « � ¬Z ¤P �_¹¸ ]dT��_ �	� ¤ �#a � � � ��� ¤ �)���	� ¤ ��º�

ª « � ¬Z ¤P _ ¶�T`� �_ �	� ¤ �'� � �	� ¤ �)���	� ¤ � � � T��_ �	� ¤ � �� � ]�� � �	���)���	���!af§§§ _ n _/¨ ·� ª « �#¬Z ¤ ¶ � �� � � ]�� � �����)���	���#a §§§ _ n _ ¨�· 

for � � ,90�
�2+
#� respectively. The differentiation parts of � are obtained just by replacing the
functions and variable names in the above.

Applying the two-variable trapezoidal rule to the right-hand side of the orthogonal con-
ditions (2.4) yieldsP _ P c l km¥ n�oHp k l im¤ n1o�p i

ª�« �#¬Z ¤ ª�« �Q¬[ ¥ -��	� ¤ 

� ¥ �'����� ¤ �)����� ¥ �T �_ �	� ¤ ��T �c �	� ¥ � ,9P _ P c -���� Z 
&� [ �)���	� Z �)����� [ �T �_ ��� Z ��T �c ��� [ � =
Let us define the symbol » , � �)¼µ½��¾¼¿½

to be the matrix which has �'¼¿½ , a value related to À and Á , as its ( À � s � 2 ),(Á � s � 2 )-th
element �	À#
�ÁÂ,vXys<
�Xys � 2+
z=�=z=/
 t � .

The orthogonal conditions (2.4) of the problem (2.1) can be represented by the linear
matrix equation

(2.9)

» ��ÃÅÄ;Æ� � » � ÃÅÄ;Æ� � �z��� � » *dÃÇÄÅÆ* ,.È�

where Ã , � � h i h k'�	� ¤ 

� ¥ ��� ¤z¥ 
» � , ¶ �3Xu2�� ���T �_ ��� ¤ � � ���� � ���¦� � � �	����] M �ON�
QP _ �%RUT _ �����!a%��������� §§§ _ n _ ¨z· Z ¤ 
Ä � , ¶ �3Xu2�� � �T �c ��� ¥ � ��� �� � �	�U� � � �	����] M ��b3
#P c �%RUT c ���'�!a%�����'���Q§§§ c n c!© · [ ¥ 
ÈÉ,Ê¶ -��	� Z 

� [ �)���	� Z �)�Â�	� [ �T �_ ��� Z ��T �c ��� [ � · Z#[ =
Note that in (2.9) the matrix Ã is multiplied by

» � , matrices of � , from the left and multiplied
by Ä � , matrices of � , from the right � � ,v2+
#�'
�=z=�=!
Q� � . Therefore, the coefficient functions of
the differential equation to be solved must be able to be separated with respect to the variables
like (2.1).

The linear matrix equation (2.9) can be transformed into a simple matrix equation by the
use of the Kronecker product and vec-function [13]. Let

»
and Ä be

qÌËÇq
matrices. The

Kronecker product of the two matrices

»
and Ä is defined by»vÍ Ä ,ÏÎÐÐÐÑ

���&� Ä �'� � Ä ���z� ���
h Ä� � � Ä � �Q� Ä ���z� � � h Ä
...

...
...� h¦�/Ä � h � Ä ���z�Ò� hUhÓÄ

ÔÖÕÕÕ× =
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Let Ø ½ �FÁÅ,É2+
Q��
�=z=�=!
 q � be the Á -th column vector of the matrix Ù . The matrix Ù can be
denoted by Ù , � Ø\��Ø � ���z��Ø1h¦� . The operator vec, concatenating these column vectors,
transforms Ù into the

q �
-element column vector which is defined by

vec ÙÏ, ÎÐÐÐÑ
Ø �Ø �
...Ø1h
Ô ÕÕÕ× =

By using the Kronecker product and vec-function, the linear matrix equation (2.9) can be
transformed into

(2.10) Ú8Ûg,gÜ�

where Ú¹, *m� n � � Ä � Í7» � �!
Ûg, vec Ã 
Ü°, vec È°=
To solve (2.10), we can use a solution for simultaneous linear equations. Then, we get approx-
imate values of the solution at the discrete points, �Shji!hUk'�	� Z 
&� [ � . If you want to know the
values at other points, you can exploit (2.2) as an interpolation formula, using �Hhji!hUk'�	� Z 

� [ �
as its coefficients since � h i h k'�	� Z 

� [ ��£����	� Z 

� [ � .

When the number of the used bases is rather big, the coefficient matrix of the derived
matrix equation (2.10) becomes immense. Then, the implementation for real applications
requires a more efficient matrix calculation of (2.9). In the case of Poisson’s equation, the
derived matrix equation can be transformed into the Sylvester equation. The numerical so-
lution of the Sylvester equation has been well studied [14, 15] et al. and implemented in the
matrix computation package LAPACK [16]. Also, the textbooks [5, 6] show a solution of the
Sylvester equation using the diagonalization of the coefficient matrices. However, the general
solution of the matrix equation (2.9) has not been studied enough.

3. The Sinc-Galerkin Method for The Poisson Problem in One Type of Curvilin-
ear Coordinate Domain. This section introduces the Sinc-Galerkin method for the Poisson
problem in the curvilinear coordinate domain which is proposed in [6, 7] but has not been
discussed in detail for the Sinc-Galerkin method.

Let us consider solving the two-variable Poisson problem

(3.1) ÝÂ�$�� '

Þ���,9-��	 '

Þ��/

in a domain designated by the curvilinear coordinates in which the range of   is determined
by the constants � � and � � , and the range of Þ is determined by � � �� +� and � � �� +� , the functions
of   (Figure 3.1). For the sake of simplicity, assume �$�� '

Þ���,.0 at the boundary.

By using the variable transformations

(3.2) ­  u,.� � � �O� � X�� � ����
Þw,4� � �	 +� � ]d� � �	 +�1X�� � �� +�#a%��




ETNA
Kent State University 
etna@mcs.kent.edu

TOWARD THE SINC-GALERKIN METHOD FOR THE POISSON PROBLEM 69

PSfrag replacements

 

Þ

ß�à á�àâwã4ß)ä å	æ+ç
âwã.á!ä+å�æ+ç

FIG. 3.1. One type of curvilinear coordinate domain.

the domain designated by   and Þ is mapped onto the square domain �	�%
&���>,{�^0�
�2:� Ë �^0�
z2�� .
Also, the derivatives with respect to   and Þ transform into?±±@ ±±A ��   , 2� � X�� � �� � X � �� �� +� � ]:� �� �� +��X�� �� �	 +�!a%�� � �� +��X�� � �	 +� �� � 
�� Þ , 2� � �	 +��X�� � �� +� �� � =
Therefore, the problem mapped onto the new domain is not of the form of Poisson’s equa-
tion but a little more complex two-variable second-order linear differential equation, which
requires the solution introduced in Section 2. For the sake of simplicity, the range of   is fixed
to �^0�
�2:� , and the range of Þ is described by ������ +�!
Q���	 +�
� in the remainder of this paper. This
simplification allows the transformations (3.2) to be represented by

(3.3) ­  u,4�%
Þ6,.���	��� � ]d�d�	����X��������#a���=
By using the transformations (3.3), Poisson’s equation (3.1) is transformed into

(3.4)
� ��è���	�%
&���� � � �ré � �	��

��� � ��è���	��

���� � � � �ué � �	��

��� � ��è���	��

���� � � �ué � ���%

��� � è�$�	��

���� � , è-����%
&�'�/


where �$�� '

Þ��>, è���	��

���!
-��� '

Þ��>, è-����%
&�'�/
é �+�	��

���>,xXy��� � � �	��� � ]:� � �	���1X�� � �	���#a%����	���1X����	��� 
é � �	��

���>, � � � ����� � ]d� � �����1X�� � �����!az��� � � 2]d�d�	����X��������!a � 

é � �	�%
&���>, � � �	���#]:� � �����1X�� � �����!a � ]d� � ������X�� � �	���!a � �]:���	���$X����	���#a � X �� � W � � ����� � ]:� � �	����X�� � �����#a���d������X����	��� Y =
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The solution of general two-variable second-order linear differential equations in Section 2
is applied to this transformed equation. However, since the coefficient function of each term
must be separated with respect to the variables � and � , by expanding the coefficient func-
tions, (3.4) is transformed into

(3.5)
� ��è�$���%

���� � � � ] é �&êS����� �gé ��ë����������`a � �`è�$���%

���� � � �� ] é � êS����� �7é � ë%�	���1��� �gé �
ì �	���1�/� � a � ��è���	�%
&���� � �� ] é �#ê%����� �gé �3ë%�����1���`a � è�$�	�%
&���� � , è-$���%

���/


where é �&ê �	���\, Xy��� � �	����d������X����	��� 
é ��ë �	���\, Xy�)]d� � ������X�� � �����!a�d�	����X�������� 
é � ê �	���\, ]:� � �	���#a � � 2]:���	���1X����	���#a � 
é � ë$�	���\, ��� � �	����]:� � �	���1X�� � �����#a]d�d�	����X��������!a � 
é �&ì �	���\, ]:� � ������X�� � �����#a �]:�d�����$X����	���!a � 
é �#ê �	���\, � � ������]d� � �	����X�� � �	���#a]d�d�	����X��������#a � X �� � W � � �	����d������X����	���+Y 
é �3ë �	���\, ]:� � ������X�� � �����#a �]:�d�����$X����	���!a � X �� � W � � �	����X�� � �	����d�	����X��������ÓY =
Notice that the coefficient function of each term is represented as a product of two parts of �
and � . The transformed equation is treated as an eight-term differential equation. Therefore,
the derived matrix equation becomes like» � Ã;ÄÅÆ� � » � Ã;ÄÅÆ� � ����� � »²í ÃÅÄ;Æí ,.È°

where the � -th term in the equation above corresponds to the � -th term in (3.5).

Note that the coefficient matrices which depend on the functions � and � are only

» � 
 » �+
�=z=�=/
»�í
and that Ä " , ÄÅî and Ä í

are identical to

» � , Ä � and Ä � respectively.
This paper shows only the case of the type of curvilinear coordinate domain described

above, but the procedure in this section can be applied to other types of coordinate domains
if the coefficient functions of the transformed equation can be separated with respect to the
variables.

4. Numerical Experiment. This section shows an example of the numerical results for
the Poisson problem (3.1) in a curvilinear coordinate domain solved by a C language program.

The functions ������� and ���	��� were set to be���	���>,�ï�0��$�	��Xð2:ñdï��/���wX ´ ñ:ï)�/�	�wXð2��$Xð2+
�d�	���>,{X �´>ò 2jXó�	��Xð2�� � �õô� =
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FIG. 4.1. The domain of the example.

TABLE 4.1
Maximum errors of Sinc-Galerkin solution.sK_ Max Error

2 ô = � ö�÷ Ë 2�0 o �
5 2 = 0 � ´ Ë 2�0 o �

10 �'=¿ö ô ÷ Ë 2z0 o �
20 �'= ÷ ô 2 Ë 2z0 o "

The shape of the domain is shown in Figure 4.1.
A certain function whose value is 0 at the boundary was chosen as the solution ���	 '
&Þ��

in advance, and the nonhomogeneous term -��	 '

Þ�� was obtained by calculating Ý����	 '
&Þ�� . In
this example, we selected]zï�0��$�	�wXó2:ñdï��/���wX ´ ñ:ï)�/�	�wXð2��$Xð2jX��`a ]z� � � ñ ´ ò 2jXó�	�²Xg2:� � X ô ñ��'az�$�32UX����
as the solution. The numbers of the basis functions were set to be s _ ,.s c , t _ , t c ,��0 and the step sizes P _ and P c were set to be different values, P _ ,4P c ,9P . Figures 4.2–4.7
show the shapes of the approximate solution obtained by the procedure introduced in this
paper with different step sizes P . Table 4.1 shows the maximum errors at the discrete points�	� Z 

� [ � in the cases s _ ,9�'
Qö�
�2�0�
Q�+0 with PL, ò G�ñ/s _ , which gives the best result for the
above selected P ’s.

Since the solutions of Poisson’s equation in non-smooth boundary domains have singu-
larities at the angular points [6, 17, 18], a bad selection of the step sizes P _ and P c sometimes
results in a fatal error. The step size smaller than the optimal value makes the discrete points
get closer to the center of the domain, while the step size larger than the optimal value makes
the discrete points get closer to the boundaries [6]. Therefore, a large step size gives rise to
the occurrence of corner singularities and drastically decreases the accuracy. Figures 4.6 and
4.7 show the shapes which have corner singularities.

5. Conclusion. This paper introduced the Sinc-Galerkin method for the Poisson prob-
lem in one type of curvilinear coordinate domain. In this procedure, the derived matrix equa-
tion can be represented by the simple matrix equation (2.10), but the coefficient matrix of
(2.10) becomes immense when the number of the bases used is rather big. Therefore, the
implementation for real applications requires a more efficient matrix calculation of (2.9).

This paper shows only the case of one type of curvilinear coordinate domain, but the
procedure in this paper can be applied to other types of coordinate domains if the coefficient
functions of the transformed equation can be separated with respect to the variables.
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FIG. 4.2. Sinc-Galerkin solution of the example with øúùjûLü!ý and þyû°ÿ���� øÂù .
Max Error= 2+= 0 ö�� Ë 2�0 o �
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FIG. 4.3. Sinc-Galerkin solution of the example with øúùVûÇü!ý and þ¦û�ÿ�� ��� � ø�ù .
Max Error= 2+= 0�ï ÷ Ë 2�0 o �
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FIG. 4.4. Sinc-Galerkin solution of the example with øúùjûLü!ý and þ¦û�� 	
�
ø�ù .
Max Error= ��= ÷ ô 2 Ë 2�0 o "
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FIG. 4.5. Sinc-Galerkin solution of the example with øúùUûÇü!ý and þyûLü�� � øÂù .
Max Error= ö�= � ÷ ô Ë 2�0 o "
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FIG. 4.6. Sinc-Galerkin solution of the example with øúùjûLü!ý and þ¦û�	
��� øÂù .
Max Error= 2+=�2�ï�÷ Ë 2z0 �
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FIG. 4.7. Sinc-Galerkin solution of the example with øúùjûLü!ý and þyû���� � øÂù .
Max Error= �'= ÷+� ÷ Ë 2z0 î
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