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QUADRATURE-FREE QUASI-INTERPOLATION ON THE SPHERE*

M. GANESH' AND H. N. MHASKAR?

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. We construct certain quasi-interpolatory operators for approximation of functions on the sphere,
using tensor product scattered data satisfying certain symmetry conditions. Our operators are constructed without
using any quadrature formulas. We use instead a special class of orthonormal bivariate trigonometric polynomials.
These polynomials are functions on the sphere, and are constructed in a numerically stable way, based on the data
locations. The quasi-interpolatory operators give near best approximation to every continuous function.

We demonstrate our constructions numerically with several benchmark functions using randomly generated data
locations.
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1. Introduction. The problem of approximation of functions on the sphere arises in
almost all applications involving modelling of data collected on the surface of the earth. A
simple, classical technique for approximation is to interpolate the data. However, in many
practical applications, interpolation is not a suitable method for approximation. For example,
if the data has noise, one may not wish to require that the approximation should reproduce
this noise as well. Also, in the case when the number of sites at which the data is collected
is too large, it may be neither feasible nor necessary to obtain interpolation from a subspace
that is commensurately large. We note also that the sequence of interpolants may not always
converge, and hence, the accuracy of approximation may not be good in spite of the effort
needed to compute the interpolation operator.

The idea behind quasi-interpolation is to consider a sequence {V}, } of finite dimensional
subspaces of the space C'(K) of all continuous functions on a compact set K. One then uses
the data to construct an operator 7, (f) taking values in V;,, where the dimension of V,, is
less than the number of data points. Instead of requiring interpolation, one requires that the
operator norms of 7, be uniformly bounded in n, and that 7,,(P) = P for all P € V,, for
some constant & € (0, 1). Denoting by || o || the supremum norm for C(K), and by B the
bound on the operator norms of 7T, these conditions imply that for every f € C(K) and
P e Van,

If = TaOl = I(f = P) = Tu(f = P)| < (L + B)||f — PI|.

Taking infimum over P € V., this implies that
1 = Talf)ll < (14 B) dist (£, Van) i= (14 B) inf || = P].

Thus, if the union of the spaces V, is dense in C'(K), the quasi-interpolatory operators Ty, (f)
always converge to f for every f € C(K), and moreover, at a near optimal rate of approxi-
mation.
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Such quasi-interpolatory operators are used routinely in the context of spline functions
[2, 3, 4]. In the case of approximation of periodic functions, S. N. Bernstein [ 1] constructed
quasi-interpolatory trigonometric polynomial operators, based on equidistant data. In the case
of approximation on the sphere, there is no natural, coordinate—free analogue of “equidistant
data.” Several substitutes have been investigated by Saff and his collaborators, among others
(cf., for example, [10, 11] and citations therein). However, in all the applications where the
data is generated experimentally, for example, by a satellite, one does not have any control on
choosing the locations of the sites where the data is collected. Such data is called scattered
data.

In [14, 17, 16, 13, 20, 9], we have studied quasi-interpolatory operators using scattered
data. These operators yield spherical polynomials, and are guaranteed to yield a near best
approximation to every continuous function from polynomials of a commensurate degree.
These results have been applied to obtain several theorems concerning approximation by
neural networks, construction of polynomial and zonal function frames for an analysis of data,
solution of pseudo-differential equations, and representation of functions using finitely many
bits. Our construction requires the use of quadrature formulas that are exact for polynomials
of higher and higher degrees. While the existence of these quadrature formulas has been
proved in [15], and their use illustrated by a few numerical examples, a numerically stable
construction is not yet available in the case when the data set is large.

In [5], interpolation from certain spaces of bivariate trigonometric polynomials that are
functions on the sphere was used in the numerical solution of certain integral equations on the
sphere. In [6], we have given matrix—free constructions for interpolation by such spherical
trigonometric polynomials at judiciously chosen sites. In this paper, we explore the construc-
tion of quasi-interpolatory operators for these spaces, without using any quadrature formu-
las. Instead, we use the data locations to construct orthogonal bases for spaces of bivariate
trigonometric polynomials which are functions on the sphere.

In Section 2, we describe the construction of our operators with scattered data on the unit
circle, and use these operators to construct corresponding operators based on tensor product
scattered data on the sphere. The numerical aspects of these constructions and applications to
the approximation of certain benchmark functions using randomly generated data points are
described in Section 3. The proofs of the results in Section 2 are given in Section 4.

‘We would like to thank the two referees for their valuable comments on the first submitted
draft of this paper.

2. Quasi-interpolation.

2.1. Quasi-interpolation on the unit circle. The starting point of our investigation is
a finite set of points S C [0, 27), such that § € S implies that (2 — 6) € S. As usual, we
identify points which are equal modulo 2. We assume that there exists an integer N > 4
such that each subinterval of [0, 7] with length 7 /N contains at least one point in S. We now
choose N distinct points {6}, such that §; € [(j — 1)x/N,jx/N]NS,j =1,---,N,
and observe that Oy = 2m — Oy_j41 € S. Our constructions will depend only on the
points {#;}. Therefore, we may now assume that S = {6; }?ﬁl, where the point 7, if present,
is listed twice. We note in this connection that the points not selected above may be used for
such purposes as noise reduction, numerical verification, etc.

For z > 0, we denote the class of all algebraic polynomials of degree at most z by II,
and the class of all trigonometric polynomials of order at most z by H,,. Let {t;, € Hk}ff:_ol
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and {ug € I }1—;° be polynomials such that

N
(2.1) N Ztk (cosB;)te(cosb;) z;uk (cos 8;)ug(cos 6;) sin® 6;
j
(1, ifk=¢
~ 1 0, otherwise.

Let h : R — [0,00) be an even function, nonincreasing on [0, c0), that can be expressed
as an indefinite integral of a function with bounded variation on R. We assume further that
h(t) = 1if0 <t < 1/2 and h(t) = 0if ¢t > 1. For every integer n > 0, we write
hin = h(k/(n+1)),k=0,%1,%2,---

If f is a continuous, 27—periodic function, we write || f||oc = maxgejo,24] |f(0)], and for
integer k > 0,

ar(f) = 2sz i)tk (cos ), bi( ZNZf ) sin 8;u(cos ;).

For integer n, 0 < n < N — 3, we define the quasi-interpolatory operator of degree at most
n, based on the 2N data points by

n—1

22) Tun(f,0) = th nik ()t (costh) + D hpyr nbi(f)ur(cos ) sing.

k=0

We remark that Szabados [21] has shown that the operator f +— >_7_ Ak nar(f)tr(coso)
is quasi-interpolatory for approximation of functions on [—1, 1] by algebraic polynomials, in
the case when N = 3n, §; = jm /N, and h is chosen to be

1, ifo0<t<1/2,
(2.3) h(t):=<¢ 2(1—-1), ifl/2<t<1,
0, otherwise.

We will prove the following theorem in Section 4. Throughout this paper, the symbol ¢
denotes a generic, absolute constant.

THEOREM 2.1. Let N > 4,0 < n < N — 3 be integers. Then T,, n(P) = P for
P € Hiy41)/2. Let f be a continuous 2m—periodic function. We have Ty, n(f) € Hy,

2.4 17,5 (F)lloe < e(1+v/n2/N)| flloos
and hence,
2.5) If — Ton(flleo < c(1++/n2/N)dist (f, H(n+1)/2).

Thus, if N > ¢n?, then the operators T}, n are quasi-interpolatory operators (with uni-
formly bounded norms) in the sense of Section 1. Numerical experiments in Section 3 indi-
cate that N = n + 10 may be sufficient to obtain good results.

2.2. Quasi-interpolation on the sphere. In this section, we use the operators devel-
oped above to construct corresponding operators on the sphere

S?i={(z,y,2)T €R® : 2® +y* + 2 =1}.
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We assume the standard parametrization
% = p(8, ¢) := (sin cos ¢,sin Hsin ¢, cos )T, % e S

Following the ideas in the previous subsection, we assume that the set C of data locations
on the sphere is of the form {p(6;, ¢x)}, where 8; € [(j —1)x/N, jn/N],j =1,---,N,are
distinct points, and for k = 1,---, M, ¢y, € [(k — 1)7/M, kn/M] are distinct points, and
M4k = 20 — dpr—p+1. We write Oy := 20 —On_j41,5 = 1,---, N, and observe that
PON+j, k) = PON—jy1, 0k +7), 5 =1,---,N, k=1,---,2M. We assume further that
the values of the target function are available at p(6;, ¢x),j =1,---,2N, k=1,---,2M.

Let C* denote the class of all continuous functions on R? that are 27-periodic in each of
their variables, equipped with the uniform norm || o||%_. Forreal z,y > 0, we denote the class
of all bivariate trigonometric polynomials of order at most x in the first variable and at most y
in the second variable by Hj, ,,. For g € C*, we define the operator Uy, (9) := Up,m,n,m(9)
by applying the operator T}, v, defined in (2.2), to g in the variable  and the operator T}, ps
to g in the variable ¢. We have from (2.5) that

2.6) llg = Unm(9)ll3 < c(1+ v/n?/N)(1 + /m? /M) dist (g, Hip1)/2,(m+1)/2)-

Our quasi-interpolatory operator on the sphere is obtained by modifying the operator Uy, ,
to ensure that if f is a function on the sphere, then the resulting trigonometric polynomial is
also a function on the sphere. Towards this goal, we review the connection between bivariate
periodic functions and functions on the sphere.

The space of all continuous functions on S, equipped with the uniform norm || o ||,
will be denoted by C(S2). For f € C(S2), let f*(6, ¢) := f(p(8,$)). Since p(—b,p+m) =
p(0,9),0,¢ € R, and p(0, ¢), p(m, ) are independent of ¢, it is clear that f € C(S?) if and
only if f* € C*, and satisfies the following symmetry conditions:

f*(_0’¢+77):f*(67¢)a 05¢€Ra

and

77(0,¢), f*(m, ¢) are independent of ¢.

We will denote by C° the subspace of C'* comprising of functions satisfying the above two
conditions. If f € C°, there exists a unique f € C(S?) such that f = f*. We will write
f = (f)°. tis clear that || f*||%, = [|f||S.. The class of all P for which P* € H,, ,,, will be
denoted by X}, ,,,. Following the proof of [6, Theorem 2.1], it is straightforward to obtain the
following characterization for Xy ,, := C° N H,

PROPOSITION 2.1. For integern,m > 0, T € X ., if and only if

T(8,¢) = So(cosf) + sin” § Z Q¢ (cos ) exp(ilo)

[£]<m., ££0
{ even

+sinf Z Ry(cos 0) exp(ile)

|£[<m
£ odd

= L(cos ) +sin® 6 Z Q(cos ) exp(ilg)

[£|<m
£ even

+sind Z Ry(cos 0) exp(ilo),

|[£]<m
£ odd
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where So € I1,,, L € Iy, and for |£] < m, Q; € I,,_2, Ry € II,,_1.
Let f € C(S?). As in [6], we have
(/2)[Un,m(f*,8,¢) + Upnm(f*, —0,¢ + )]
= Z Sy(cos 0)e?? + sin @ Z Ry(cos §)et?,
[£]<m 12| <m

£ even £ odd

where Sy € II,,, R, € II,,_1. We set
8u(x) = Selw) - Se()(1+2)/2— S(—1)(1—2)/2, 1< || <m, Leven,
and

Unm(F*,6,8) = So(cos6) + Z Sy(cos f)ei?

1<|e|Em
£ even

+sind Z Ry(cosf)e?.

[£]<m
£ odd

Then (7;;,/,1(f"‘)o € Xyp.m, and it is easy to check (cf. [6]) that

@7 1f = Unn(F)°IIS, < el = Un (£
Hence, (2.6) implies that

1F = T (F)°115, < €1+ v/m2/N)(1 + v/m? M) dist (£*, Hin 1) 2,(m41)/2)-

We summarize the properties of the quasi-interpolatory operator

—~

Vn,m(f) = n,m,N,M(f) = Un,m(f*)o

on the sphere in the following theorem.
THEOREM 2.2. Let Ny M > 4,0<n <N -=3,0<m < M — 3 be integers, Then
Vn,m(P) = P for P € X(n41)/2,(m+1)/2- Let f € C(S?). We have Vi (f) € Xy,

Vam(Hll% < 1+ v/n2/N)(1 +vm? [M)||fII%,

and hence,

1f = Vam (D% < e+ V02 [N)(L+ /m? [M) dist (f, Xinr1)/2,(m+1)/2)-

Finally, we remark that arguments similar to those in the proof of [6, Lemma 4.5] show
that the degrees of approximation of f from &, ,,, and that of f* by bivariate trigonometric
polynomials are related by

dist (f*, Hom) < dist (f, Xnm) < e dist (f, Hoo1m1)-

3. Numerical aspects. In this section, we demonstrate the approximation properties of
our quasi-interpolatory operator V,_ ,, numerically, using a few benchmark functions. Since
a critical component of our constructions is the computation of orthogonal polynomials with
respect to discrete inner products, we first review in Subsection 3.1 the algorithms we use for
this purpose. The approximation of the benchmark functions is discussed in Subsection 3.2.
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3.1. Computation of orthogonal polynomials. The material in this section is based
primarily on [7]. Given a discrete inner product with weights w; and points z;,j = 1,---, N,
the collection {py : ¥ = 0, - -, N} of monic polynomials that are orthogonal with respect to
the inner product satisfies the three-term recurrence relation

Pry1(2) = (& — ar)pe(x) — Bipr-1(z), k=0,---,N -1,

where po(z) = 1, ap = (Zjvzl wj:cj)/(zj.v:l w;), Bo = 0. The 2N — 1 coefficients
determine the N x NN real symmetric tridiagonal Jacobi matrix

[ ag B
,31 aq 52

B2 oa P

Bn—2 an—2 PBn-1
BN-1 an_1 |

A numerically stable construction of .J is equivalent to that of the orthogonal polynomials.
Given a real symmetric (N + 1) x (N + 1) matrix A, the Lanczos algorithm can be used
to compute the unique matrices 7 and @, satisfying QT AQ = T, where T is a tridiagonal
matrix (with non—zero sub— and super—diagonal elements) and () is an orthogonal matrix with
first column e; = [1,0,---,0]T € RVN*L.
Using the given weights and nodes of the discrete inner product, if we choose

1 o Jws - Jon

4/ W1 X1 0 0

A= | Vw2 0 Ty - 0 ;
vyon 0 0o - =zn
then foré,j =1,---,N,T(i+ 1,7+ 1) = J(i,7) [7, p. 154], and, theoretically, the unique
matrices ) and 7 can be computed using the Lanczos algorithm.

However, the Lanczos algorithm is numerically unstable, even in the modified Gram-
Schmidt form [8]. We use instead the Rutishauser-Kahan-Pal-Walker (RKPW) algorithm,
described in [8, p. 328] using a sequence of Givens rotations. The RKPW algorithm requires
at most 6 N2 operations, and many numerical experiments in [8] demonstrate its stability.

Our numerical experiments modeling some random data on the sphere further demonstrate
the stability of RKPW algorithm.

3.2. Approximation of benchmark functions. We demonstrate the quality of our quasi-
interpolatory operator using random data locations on the sphere. We first choose [N random
latitudinal angles §; € ((j — 1)n/N,jn/N),j=1,---,N.

Next, we fix 0 < n < N,and forj = 1,---, N, let CL'? = cos(b;), w?’l = 7 /N, and
w?ﬂ = (r/N) sin? 0;. Using the RKPW algorithm, we construct n+ 1 algebraic polynomials
tz € Iy, (resp. ug € IIy), k =0, - - -, n, orthonormal with respect to the inner product defined
by the weights w | (resp. wf,) withzf, j =1,---, N.

Following the procedure for the latitudinal case, we choose M random partial longitu-
dinal data locations ¢; € [0,7], j = 1,---, M, and for 0 < m < M, we use the RKPW

algorithm to construct {tﬁ :k=0,---,m} and {uﬁ : k= 0,---,m} that are orthonormal
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with respect to its associated inner product with points :U‘f = cos(¢; ), and respective weights
wil =x/M andwﬁ2 = (n/M)sin® ¢;, forj = 1,---, M.

We augment the NV x M random data locations, by defining On; = 27 — On_j41, for
j=1,---,N,and ¢pyr = 270 — ¢pr—p+1 and k = 1,---, M. We note that the random
generation of the data implies that the entire procedure to compute the quasi-interpolant,
including the computation of the orthogonal polynomials, has to be repeated afresh each time
the procedure is called.

In this work, we demonstrate properties of our quadrature-free quasi-interpolatory oper-
ator on the sphere using data values arising from (i) spherical polynomials of degree n/2; (ii)
a smooth function with steep boundary layer near the north pole; (iii) a continuous function
that is not differentiable; (iv) a locally supported continuous function with Hoélder exponent
3/4; and (v) a weather model cosine cap test function [22] that is once (but not twice) con-
tinuously differentiable on the unit sphere. More precisely, using the random data locations
Xjr =pP0j,0r), j=1,---,N, k=1,---, M on the sphere, we obtain five distinct sets of
data values f(p(6;, x)), where for X = (z1, 22, z3) € S? the functions are defined by

1

B 1
n(%) = anA g0, U S )= -
JT(X) 1 2 T3 fa(%) Fs(%) |z1| + |@2| + 23]

~ 101 — 1003’

£1(%) = {max(z; — 0.9,0)}** + {max(z5 — 0.9,0)}*/*,
and

o\ _ [ cos® (3dist(x,p(m/4,5m/4)), if dist(x,p(w/4,57/4) <1/3,
Fs(%) =1 o, if dist(%.p(r/4 57/4) > 1/3.

where the dist(%,¥) = cos™!(x - §) is the geodesic distance between two points X,y € S2.
We note that in the case when n is an integer divisible by 4, f* € Xy, /2 r/2-1.

For our numerical experiments, we chose M = N, m = n, withn = N — 10. We
computed approximations of the corresponding periodic functions in H, ,, using the data
points and the quasi-interpolation operators Up, m, n,mr = Up, with h given by (2.3). For each
i = 1,---,5, the global uniform norm errors Err(f;) := ||fF — Un(f7)||%, were estimated
by taking the maximum of errors over 19, 000 points on the sphere. We recall from (2.7) that
i = VoGNS, < ellf = Un(f) 150, where £ (6, 6) := £i(p(6, 9)).

The results in Table 3.1 clearly demonstrate that our operators yield a good reconstruc-
tion of these functions with various smoothness properties from their semi—random data in-
formation. In the case of approximation of the functions f{*, the second column of Table 3.1
demonstrates the reproduction of spherical trigonometric polynomials of degree at most n/2
in each of its variables. For the non—smooth functions, we also estimated local uniform norm
errors Brr(f;)!°¢ == || f# — Un(f7)]|'2° by taking the maximum of errors over 19,000 points
on the sphere inside the local support (or smooth) part of the function. The results in Table 3.2
demonstrate that our operators yield better reconstructions in smoother parts of the functions.

4. Proof of Theorem 2.1. A major part of the proof of Theorem 2.1 can be carried out
in a very abstract setting. The following Theorem 4.1 estimates the difference between the
norms of the operators based on certain kernels constructed from orthogonal systems with
respect to different measures. Let (2, u) be a finite measure space, {fx}5, C L*(p;€2) N
L% (u; Q) be an orthonormal set of functions:

/ fifidu =060y kj=0,1,--.
Q
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TABLE 3.1
Global error in approximation of f} by Un (f}), i =1,---,5.

n_| Er(fl') Err(f>) Err(fs) Err(f) Err(fs)
16 | 6.9389¢-17 | 1.7390e-01 | 9.7269e-02 | 2.9174e-02 | 1.0066e-01
32 | 4.6621e-18 | 3.0945e-02 | 3.9318e-02 | 2.5249¢-02 | 1.2674e-02
64 | 6.2968e-14 | 2.3181e-03 | 2.5230e-02 | 1.0341e-02 | 3.2474e-03
128 | 2.7311e-13 | 9.3681e-06 | 1.4340e-02 | 6.9765e-03 | 1.0170e-03
256 | 4.0804e-21 | 1.1054e-09 | 8.0303e-03 | 3.8792e-03 | 2.5965e-04
512 | 1.4811e-40 | 7.1924e-12 | 2.7159e-03 | 2.4981e-03 | 3.7007e-05

TABLE 3.2
Local error in approximation of non-smooth f* by Un(f}), i = 3,4, 5.

n | Err(f3)° | Err(f1)° | Err(fs)loc
16 | 5.0579e-03 | 4.5752e-03 | 6.6953e-02
32 | 1.1327e-03 | 4.4026e-04 | 4.0600e-03
64 | 2.4900e-04 | 1.5809e-04 | 5.3541e-04
128 | 1.7856e-05 | 6.8432e-05 | 3.0011e-05
256 | 4.4250e-06 | 7.6379e-06 | 2.4601e-06
512 | 4.2287e-07 | 2.0442e-06 | 3.6010e-07

For integer n > 0, let V,, = span{fo, - -, f»}. In this section, let n > 1 be a fixed integer.
Let 0 < € < 1/2 and v be a positive measure on 2 such that

“.D 1Pl = P2 < ellPlfs, P € Va

Let { fk}ﬁzo be an orthonormal set with respect to v, such that for each integerm =0, - - -, n,

Vm = Span{f07 o me} = Span{f07 o me}

THEOREM 4.1. Let {hy} be a nonincreasing sequence of nonnegative numbers with

hy=0ifk>n+1. Forx € (),
E h fr(x d —
ke fr(x) fr ()| du(t) /

n 1/2
< (GN(Q)h0€)1/2 {Z hmfm(m)2} .

m=0

du(t)

> hifi(@) fi(t)
k=0

REMARK 1. In the case when §) is a real interval, [, |t|"du(t) < oo for all integer n >
0, and p has infinitely many points of increase, we may choose fy, to be the orthonormalized
polynomial of degree k on Q) with respect to p. During the 1970’s G. Freud initiated a
theory of strong (C, 1) summability of orthogonal polynomial expansions, based only the
estimates ony . _o fm(2)? (cf. [12, Chapter 3]). In light of Lemma 4.2 below, this approach
has an advantage that if one knows the strong (C, 1) summability of orthogonal polynomial
expansions with respect to one measure i, one can immediately conclude the same about
orthogonal polynomial expansions with respect to another measure v that is equivalent to [
in the sense that ||P|| 4,2 ~ ||P||v;2 for all polynomials. The same ideas were used in [18] to
construct quasi-interpolatory operators using generalized Jacobi polynomials. To the best of
our knowledge, there is no such general theory governing the higher order Cesaro means for
orthogonal polynomial expansions. Nevertheless, Theorem 4.1 provides a way to obtain the
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summability of orthogonal expansions with respect to one measure from that with respect to
another measure.

The proof of this theorem relies upon the following extremal property, analogous to that
for orthogonal polynomials [12, Theorem 1.3.2].

LEMMA 4.2. Let 0 < m < n be an integer. Fory € (),

4.2) mayx PO _ fij(y) Zf
' pev P2, ~ &KW R ||P||2 *

Moreover, if (4.1) holds for some €, 0 < € < 1, then

m m

D W) =) fi

k=0 k=0

4.3)

e 2 W)

k=0

Proof. Let P(y) = > ¢k fe(y). Using the Schwarz inequality followed by the Parse-
val identity, we deduce that

> {z} {2 f,3<y>} LIPS £ )
k=0 k=0 k=0

The equality is attained for P = Y} | fx(y) f. This proves the first equation in (4.2). The
second equation is proved in the same way. In view of (4.1),

1 1+¢€ 1+¢€
< ., PevV,\{0}.
PR, < PR, < GT=alPE, oY
Therefore, (4.2) implies that
m m N 1 + m
4.4) Y RS0+ Ry <1 > f).
k=0 k=0 k=0
Therefore,
SR =Y R <Y Ry <= ),
k=0 k=0 k=0 k=0
and
SR =Y R < Y RW)
k=0 k=0 k=0

This proves (4.3). O
Proof of Theorem 4.1. In this proof only, let, form =0,---,n, z,t € (Q,
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Since for each & € Q, K, (2,0), Kpn(x,0) € Vi, it follows that

[ K@ 7du(t) = Kn(a,2), [ Kn(a,tfdo(t) = Kn(o,2),
Q Q
and
| Enl@ ) Ron(a,)ut) = Fon(o.2).
Q
Therefore, using (4.1), we obtain
/ (Kl t) ~ Kn(e.t)) du(t
Q
=/9Km(x,t) du(t)—?/Km(x,t) (z,t)du(t) /K z,t)2du(t)

—e/K (z,t)%dv(t)
).

< Kn(z,2) — 2Kn

4.5) =Kpy(z,x)— Km(x,w) T

In view of (4.3), K (2, 2)— K (2, 2) < €Ky (2, 2) /(1—€), and in view of (4.4), K, (z, z) <
K, (z,2)/(1 —€). Thus, (4.5) implies that

/Q(Km(x,t)—fzm(x,t))Qdu(t) < [1+ 1;] Kp(z, ).

Since 0 < € <1/2,1/(1 —€) < 2, and we obtain

. 2
/ (Km(a,1) ~ En(2,0)) du(t) < 6eKon(, 2)
Q
Therefore, Holder’s inequality implies that
| 1) = oo 0ldte)

(4.6) <{6u(Q)eKpn(z,x)}?, € m=0,--,n

Now, we write K_1(z,t) := K_1(2,t) := 0 and g, := hy — hymy1, and recall that ki, =
0. Then

zn:hmfm( Fim( ZhK (z,1) Zh Kp_1(z,1)
=Y hKon(s thHK (z,1) ng

m=0 m=0
and similarly, >7 _o A, fe@) fm(t) = S o 9mEm(z,t). Since hy is a nonincreasing
sequence, each g,, > 0. Therefore, (4.6) implies that

D b fu(@) fu (@) du(t) = [ D heful@) fiu ()| dult)
2 k=0 2 k=0
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m () fm () — Z hon i (%) frn (8) | dpa(2)

"
= /Q = Z gm

<3 on /Q Ko (2, 1) — Ko (2, )| dut)

t)| du(t)

< Z Gm {61(Q)eK (3, )}/
m=0 N 1/2 n 12
N (Z gm) {Z ngm(m,m)}
m=0 =

n 1/2
= (6p()hoe)'/? { > hmfm(m)2} .
m=0

This completes the proof. O

In light of Theorem 4.1, we may prove Theorem 2.1 by first showing an estimate of the
form (4.1), where y is the Lebesgue measure on [0, 27), and v is a discrete measure. Towards
this end, we first prove the following lemma (cf. [19, Lemma 3.1]).

LEMMA 4.3. Let M > 1 be a positive integer, and for j = 1,---, M, ¢; € [2(j —
V) /M, 2jm[M]. If F is any absolutely continuous, 2m—periodic function, then

0

27 2 2 ,
(4.7) ‘/ (t)|dt — = Z |F(y;)|| < Mﬂ |F' (u)|du.

In particular, if T € H,,, then

2 2 27
) |- Z rw)l| <57 [l
and
2 47T’I'L 27 )
4.9) ‘/ ®)2dt — 2T Z ()] < / T () 2dt.
0

PVOOf. Leth = [2(.7 - 1)7T/M,2j7T/M]FOl'] = 1,"',M,

‘ | Pl S7irG,)

< [ 1 - Pl
' _ 27 /
5/1,. j |F(u)|dudt_M/Ij \F ()| ds.

Therefore,

2
/0 \F(t)|dt — 2T 2 P()]| < Z

. el e
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2w
< —

K
|F' (u)|du.
0
This proves (4.7). If T' € H,, the Bernstein inequality may be used to arrive at the estimates
(4.8). The estimates (4.9) are obtained by using (4.8) with |T'(0)|? € H,, in place of T'. O
Our next lemma follows from [19, Proposition 2.1(b)].
LEMMA 4.4. Let h : R — [0, 00) be an even function, nonincreasing on [0, 00) that can

be expressed as an indefinite integral of a function with bounded variation on R. We assume
further that h(t) =1 if0 <t < 1/2 and h(t) = 0 ift > 1. For integern > 1,

27
‘/0

Proof of Theorem 2.1. Let v be the measure that associates the mass 7/N with each
of the points §;, j = 1,---,2N. Letn < N — 3 be an integer, H, (respectively H) be
the class of all even (respectively, odd) trigonometric polynomials of order at most n. Then
{tk(cos 0)}p_, (respectively, {sin Ouy(cos@)}?=,) is an orthonormal basis for H¢, (respec-
tively, HC ) with respect to dv. Taking p to be the Lebesgue measure on [0, 2], (4.9) with
M = 2N shows that (4.1) holds for both H, and H?, with € = 27n/N. Next, we take

fe=1/2n),  f£0) =72 cos kb,
(4.10) 200 =nY?sin(k +1)0, k=0,---,n

1 n
5T ;h(k/(n + 1)) coskb| df < c.

Since hy, , <1 for all k, it is clear that

> henfi(@)? < en, > hisinf@)? < en.
k=0 k=0

n

Hence (4.10), (2.1). and Theorem 4.1 imply that
Z hi,ntr(cos )ty (cos 6)

/27r
0 k=0
2n | N
@4.11) < /
0 fr=0

du()

> hin fE () £(6)| du(®) + ev/n?/N,

and
2 |n—1
/ Z hi+1,n sin Quy, (cos 0) sin uy (cos ) | du(8)
0 k=0
27 [n—1
“.12) < / S hisr SR F(6) | du(®) + ey/n?]N.
k=0
Since
thnfk = (1/2n) thn[cosk 6) + cos k(v + 6)],
k=0
Z hii,n SR SE0) = (1/27) Y hgn [cos k(1 — 8) — cos k(v +6)],

k=0
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we deduce from Lemma 4.4, (4.11), and (4.12) that

/Ozr i hintr(cos )t (cos8)| du(f) < e(1 + /n2/N),

k=0

21 [n—1
/ Z hit1,n sin Qug (cos 0) sin ug (cos ¥) | du(d) < ¢(1 + y/n2/N).
0

k=0

Further, in view of (4.8) and the fact that n < IV, we have

/Ozﬂ ihk,ntk(cos V)t (cos )| dv(8) < ¢(1 + +/n2/N),

k=0

27 [n—1
(4.13) / Z hit1,n sin Bug(cos 0) sin ug(cos ) | dv(0) < ¢(1 + /n2/N).
0 Jk=0

The estimates (4.13) imply (2.4). It is clear from (2.2) and the fact that h(k/(n+1)) =1
if k < (n+1)/2that T;, y(P) = P if P € H(;,41)/2. Hence, (2.4) leads to (2.5). O
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