A NOTE ON THE SHARPNESS OF THE REMEZ-TYPE INEQUALITY FOR HOMOGENEOUS POLYNOMIALS ON THE SPHERE*

M. YATTSELEV[†]

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. Remez-type inequalities provide upper bounds for the uniform norms of polynomials p on given compact sets K, provided that $|p(x)| \leq 1$ for every $x \in K \setminus E$, where E is a subset of K of small measure. In this note we obtain an asymptotically sharp Remez-type inequality for homogeneous polynomials on the unit sphere in \mathbb{R}^d .

Key words. Remez-type inequalities, homogeneous polynomials

AMS subject classification. 41A17

1. Introduction. For any $d, n \in \mathbb{N}$ define the space of homogeneous polynomials as

$$H_n^d := \left\{ \sum_{|\mathbf{k}|_1 = n} a_\mathbf{k} \mathbf{x}^\mathbf{k}, \ a_\mathbf{k} \in \mathbb{R}, \ \mathbf{x} \in \mathbb{R}^d
ight\},$$

where $|\cdot|_1$ stands for the ℓ_1 -norm of $\mathbf{k} \in \mathbb{Z}_+^d$.

Denote by

$$R_{n,d}(\delta) := \sup \left\{ \frac{\|h\|_{S^{d-1}}}{\|h\|_{S^{d-1}\setminus E}} : h \in H_n^d, E \subset S^{d-1}, s_{d-1}(E) \le \delta^{d-1} \right\},\,$$

where $S^{d-1}:=\{\mathbf{x}\in\mathbb{R}^d: |\mathbf{x}|=1\}$ is the unit sphere in \mathbb{R}^d (with respect to the usual ℓ_2 -norm, $|\cdot|$), $||f||_K:=\max_{\mathbf{x}\in K}|f(\mathbf{x})|$ for any continuous function f on an arbitrary compact set K, and $s_{d-1}(\cdot)$ stands for the Lebesgue surface measure in \mathbb{R}^d .

The classical inequality of Remez [4] (see also [2]) was generalized in numerous ways during the past decades. In particular, in the recent paper by A. Kroó, E. B. Saff, and the author [3] a result for homogeneous polynomials on star-like domains was obtained. Roughly speaking, a simply connected compact set K in \mathbb{R}^d is a *star-like* α -smooth $(0 < \alpha \le 2)$ domain if its boundary is given by an even mapping of S^{d-1} which is Lipschitz continuous of order α . Then, by the result mentioned above, for any $0 < \delta < 1/2$ and any $h \in H_n^d$ such that

$$s_{d-1}\left(\left\{\mathbf{x} \in \partial K : |h(\mathbf{x})| > 1\right\}\right) \le \delta^{d-1}$$

we have

$$\frac{1}{n}\log ||h||_K \le c(K)\varphi_\alpha(\delta),$$

where

$$\varphi_{\alpha}(\delta) := \left\{ \begin{array}{ll} \delta^{\alpha}, & 0 < \alpha < 1 \\ \delta \log \frac{1}{\delta}, & \alpha = 1 \\ \delta, & 1 < \alpha \leq 2. \end{array} \right.$$

^{*}Received June 9, 2005. Accepted for publication October 20, 2005. Recommended by D. Lubinsky.

[†]Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, Tennessee, 37240 (maxym.l.yattselev@vanderbilt.edu)

ETNA Kent State University etna@mcs.kent.edu

For instance, in the case of the unit sphere, it follows that

$$\frac{1}{n}\log R_{n,d}(\delta) \le c(S^{d-1})\delta.$$

The goal of this note is to obtain asymptotically sharp expression for the constant $c(S^{d-1})$ in the previous inequality.

THEOREM 1.1. Let $\{\delta_n\}_{n=1}^{\infty}$ be a sequence of positive numbers tending to zero such that

$$\lim_{n\to\infty} n\delta_n = \infty$$

and $\Gamma(\cdot)$ stand for the Gamma function. Then for any integer $d \geq 2$ we have

(1.1)
$$\lim_{n \to \infty} \frac{\log R_{n,d}(\delta_n)}{n\delta_n} = \kappa_d,$$

where

(1.2)
$$\kappa_d := \frac{1}{\sqrt{\pi}} \left(\frac{d-1}{4} \Gamma\left(\frac{d-1}{2}\right) \right)^{1/(d-1)}.$$

In particular, in the case of the unit circle we obtain COROLLARY 1.2. Let $\{\delta_n\}_{n=1}^{\infty}$ be as above. Then

$$\lim_{n \to \infty} \frac{\log R_{n,2}(\delta_n)}{n\delta_n} = \frac{1}{4}.$$

2. Proofs. The proof of Theorem 1.1 explores a connection between the restriction of H_n^2 to the unit sphere in \mathbb{R}^2 , $H_n^2(S^1)$, and $P_{2n}(\mathbb{T})$, the space of complex polynomials of degree at most 2n restricted to the unit circle. Namely, for any $h(x,y) \in H_n^2(S^1)$, there exists $q(z) \in P_{2n}(\mathbb{T})$ such that

$$|h(x,y)| = |q(z)|$$
, for any $z = x + iy \in \mathbb{T}$.

It will allow us to use the known Remez inequality for polynomials in $P_{2n}(\mathbb{T})$. The following result that we shall apply later is due to V. Andrievskii and can be found in [1].

THEOREM 2.1. Let $n \in \mathbb{N}$, $\delta \geq 0$, and $q \in P_n(\mathbb{T})$ be such that

$$s_1 \{ z \in \mathbb{T} : |q(z)| \ge 1 \} \le \delta.$$

Then

$$||q||_{\mathbb{T}} \le \left(\frac{1+\sin(\delta/4)}{\cos(\delta/4)}\right)^n.$$

This estimate is sharp in the asymptotic sense. Namely, let $\{q_n\}$ be a sequence of normalized Fekete polynomials for the set

$$\mathcal{C}_{\delta} := \left\{ z = e^{i\phi} \in \mathbb{T} : \ \phi \in [-\pi, -\delta/2] \cap [\delta/2, \pi] \right\},\,$$

where normalization means that $||q_n||_{\mathcal{C}_{\delta}} = 1$. Then

$$\lim_{n \to \infty} |q_n(1)|^{1/n} = \frac{1 + \sin(\delta/4)}{\cos(\delta/4)}.$$

280 M. YATTSELEV

Next we shall need an auxiliary lemma which will reduce the problem to the two-

Let $S^{d-1}_+:=\{\mathbf{x}=(x_1,\ldots,x_d)\in\mathbb{R}^d: |\mathbf{x}|=1, x_d\geq 0\}$ denote the upper halfsphere. Any two-dimensional plane containing the line $\{x_1 = \cdots = x_{d-1} = 0\}$ can be described as follows:

$$L_{\overline{\phi}} = \{ \gamma \cdot \mathbf{u} + \beta \cdot \mathbf{e}_d : \ \gamma, \beta \in \mathbb{R} \},\$$

where $\overline{\phi} \in T^{d-2} := [0,\pi] \times [-\pi/2,\pi/2]^{d-3}$, $\mathbf{e}_d := (0,\dots,0,1) \in \mathbb{R}^d$, and $\mathbf{u} = (u_1,\dots,u_{d-1}) \in S^{d-2}$ which can be represented in the spherical coordinates of \mathbb{R}^{d-1} as $(1,\overline{\phi})$ or $(-1,\overline{\phi})$. LEMMA 2.2. Let $\epsilon > 0$ and $d \in \mathbb{N}$ be fixed. Further, let $E \subset S^{d-1}_+$ be such that $\mathbf{e}_d \in E$

and $s_{d-1}(E) = \epsilon^{d-1}$. Then

$$(2.1) \quad \inf\left\{s_1\left(L_{\overline{\phi}}\cap E\right): \ \overline{\phi}\in T^{d-2}\right\} \le 2^{d/(d-1)}\kappa_d\epsilon + o(\epsilon), \quad as \quad \epsilon\to 0,$$

where κ_d is defined by (1.2).

Proof. Define a projection $P_d: \mathbb{R}^d \to \mathbb{R}^{d-1}$ by the rule

$$P_d(x_1,\ldots,x_{d-1},x_d) := (x_1,\ldots,x_{d-1}).$$

For any r > 0 denote by

$$A_r := P_d^{-1}(B_r^{d-1}) \cap S_+^{d-1}$$

a spherical cap around point \mathbf{e}_d on the unit sphere which is the preimage of the ball B_r^{d-1} under the projection P_d , where $B_r^{d-1} := \{ \mathbf{x} \in \mathbb{R}^{d-1} : |\mathbf{x}| \leq r \}$. Let $r(\epsilon)$ be chosen in such a way that $s_{d-1}(A_{r(\epsilon)}) = \epsilon^{d-1}$. Denote by

$$E_{\overline{\phi}} = \left\{ \rho \in [-1, 1] : (\rho, \overline{\phi}) \in P_d(E) \right\},$$

where $(\rho, \overline{\phi}) \in \mathbb{R} \times T^{d-2}$ are spherical coordinates in \mathbb{R}^{d-1} .

First we are going to show that

(2.2)
$$\inf \left\{ s_1 \left(L_{\overline{\phi}} \cap E \right) : \overline{\phi} \in T^{d-2} \right\} \le 2 \arcsin(r(\epsilon)).$$

Suppose (2.2) is false, i.e., for any $\overline{\phi} \in T^{d-2}$ we have that

$$s_1\left(L_{\overline{\phi}} \cap E\right) > 2\arcsin(r(\epsilon)).$$

The last claim can be restated as

$$\int_{E_{\overline{x}}} \frac{d\rho}{\sqrt{1-\rho^2}} > \int_{-r(\epsilon)}^{r(\epsilon)} \frac{d\rho}{\sqrt{1-\rho^2}}, \quad \text{ for all } \overline{\phi} \in T^{d-2},$$

which can be written in the following form

$$(2.3) \qquad \int_{E_{\overline{\phi}} \setminus [-r(\epsilon), r(\epsilon)]} \frac{d\rho}{\sqrt{1 - \rho^2}} > \int_{[-r(\epsilon), r(\epsilon)] \setminus E_{\overline{\phi}}} \frac{d\rho}{\sqrt{1 - \rho^2}}, \quad \text{for all } \overline{\phi} \in T^{d-2}.$$

Since

$$\rho_1 := \min_{E_{\overline{\phi}} \setminus [-r(\epsilon), r(\epsilon)]} |\rho|^{d-2} \ge \max_{[-r(\epsilon), r(\epsilon)] \setminus E_{\overline{\phi}}} |\rho|^{d-2} =: \rho_2,$$

ETNA Kent State University etna@mcs.kent.edu

inequality (2.3) implies that

$$\begin{split} \int_{E_{\overline{\phi}}\backslash[-r(\epsilon),r(\epsilon)]} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^2}} d\rho &\geq \int_{E_{\overline{\phi}}\backslash[-r(\epsilon),r(\epsilon)]} \frac{\rho_1^{d-2}}{\sqrt{1-\rho^2}} d\rho \\ &> \int_{[-r(\epsilon),r(\epsilon)]\backslash E_{\overline{\phi}}} \frac{\rho_2^{d-2}}{\sqrt{1-\rho^2}} d\rho \geq \int_{[-r(\epsilon),r(\epsilon)]\backslash E_{\overline{\phi}}} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^2}} d\rho \end{split}$$

and consequently

$$\int_{E_{\overline{h}}} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^2}} d\rho > \int_{-r(\epsilon)}^{r(\epsilon)} \frac{|\rho|^{d-2}}{\sqrt{1-\rho^2}} d\rho$$

for all $\overline{\phi} \in T^{d-2}$. Then

$$\epsilon^{d-1} = s_{d-1}(E) = \int_{P_d(E)} \left(1 - \sum_{k=1}^{d-1} x_k^2 \right)^{-1/2} d\mathbf{x} = \int_{T^{d-2}} J(\overline{\phi}) \int_{E_{\overline{\phi}}} \frac{|\rho|^{d-2}}{\sqrt{1 - \rho^2}} d\rho \, d\overline{\phi}
> \int_{T^{d-2}} J(\overline{\phi}) \int_{-r(\epsilon)}^{r(\epsilon)} \frac{|\rho|^{d-2}}{\sqrt{1 - \rho^2}} d\rho \, d\overline{\phi} = \int_{B_{r(\epsilon)}^{d-1}} \left(1 - \sum_{k=1}^{d-1} x_k^2 \right)^{-1/2} d\mathbf{x}
= s_{d-1} \left(A_{r(\epsilon)} \right) = \epsilon^{d-1},$$

where $|\rho|^{d-2}J(\overline{\phi})$ is the Jacobian of the spherical transformation in \mathbb{R}^{d-1} . Thus, we have obtained a contradiction.

Now, to prove (2.1) we need to get an upper estimate for $r(\epsilon)$. Since

$$\mu_{d-1}\left(B_{r(\epsilon)}^{d-1}\right) \le s_{d-1}\left(A_{r(\epsilon)}\right) \le (1+r^2(\epsilon)/2)\mu_{d-1}\left(B_{r(\epsilon)}^{d-1}\right),$$

we have

$$\epsilon^{d-1} + o(\epsilon^{d-1}) = \mu_{d-1} \left(B_{r(\epsilon)}^{d-1} \right) = \mu_{d-1} \left(B_1^{d-1} \right) r^{d-1}(\epsilon) = \frac{1}{2} \left(\frac{r(\epsilon)}{\kappa_d} \right)^{d-1},$$

where $\mu_{d-1}(\cdot)$ stands for the usual Lebesgue measure in \mathbb{R}^{d-1} . From the above we obtain that

$$r(\epsilon) = 2^{1/(d-1)} \kappa_d \epsilon + o(\epsilon),$$

which completes the proof. \Box

Proof of Theorem 1.1. We start by showing the upper estimate for the limit in (1.1). Let $h \in H_n^d$ and $E \subset S^{d-1}$ with $s_{d-1}(E) \leq \delta_n^{d-1}$. Without loss of generality we may assume that $\|h\|_{S^{d-1}\setminus E}=1$ and h attains maximum of its modulus at $\mathbf{e}_d\in E$. Then the auxiliary lemma ensures that there exists a one-dimensional sphere S^1 which goes through the \mathbf{e}_d with the property

$$s_1(E \cap S^1) \le 4\kappa_d \delta_n + o(\delta_n),$$

where $o(\delta_n)$ is understood in the following sense

$$\lim_{n \to \infty} o(\delta_n) \cdot \delta_n^{-1} = 0.$$

282 M. YATTSELEV

Since h restricted to S^1 is a homogeneous polynomial of two variables, problem can be reduced to the two-dimensional case.

The unit sphere in \mathbb{R}^2 can be viewed as the unit circle \mathbb{T} in the complex plane \mathbb{C} , which allows us to establish a relationship between homogeneous polynomials on S^1 and polynomials with complex coefficients on \mathbb{T} .

$$h(x,y) = \sum_{j=0}^{n} h_j x^j y^{n-j} = \sum_{j=0}^{n} h_j \left(\frac{z^2+1}{2z}\right)^j \left(\frac{z^2-1}{2iz}\right)^{n-j} = \frac{q_h(z^2)}{z^n},$$

where z = x + iy and $q_h \in P_n(\mathbb{T})$. Moreover

$$|h(x,y)| = |q_h(z^2)|, \quad z = x + iy \in \mathbb{T}.$$

Which, in particular, means

$$|h(\cos\phi,\sin\phi)| = |h(\cos(\pi+\phi),\sin(\pi+\phi))| = |q_h(e^{2i\phi})|$$

for any $\phi \in [0, \pi]$. Since

$$s_1 \{z = x + iy \in \mathbb{T} : |h(x,y)| > 1\} = 2\mu_1 \{\phi \in [0,\pi] : |h(\cos\phi,\sin\phi)| > 1\}$$

 $\leq 4\kappa_d \delta_n + o(\delta_n),$

we obtain

$$s_1 \{ z \in \mathbb{T} : |q_h(z)| > 1 \} = \mu_1 \{ \phi \in [0, 2\pi] : |q_h(e^{i\phi})| > 1 \}$$
$$= 2\mu_1 \{ \phi \in [0, \pi] : |q_h(e^{2i\phi})| > 1 \} \le 4\kappa_d \delta_n + o(\delta_n)$$

Thus we can apply Theorem 2.1, which yields

$$||h||_{S^{d-1}} = ||h||_{S^1} = ||q_h||_{\mathbb{T}} \le \left(\frac{1 + \sin(\kappa_d \delta_n + o(\delta_n))}{\cos(\kappa_d \delta_n + o(\delta_n))}\right)^n.$$

The last inequality implies

$$\frac{1}{n}\log R_{n,d}(\delta_n) \le \log\left(1 + \sin(\kappa_d \delta_n + o(\delta_n))\right) - \log\cos(\kappa_d \delta_n + o(\delta_n)) = \kappa_d \delta_n + o(\delta_n),$$

which gives us the desired upper bound for the limit in (1.1).

Now we turn our attention to the lower estimate. For $0 < \epsilon < 1$ consider the n-th Chebyshev polynomials for the interval $[-1 + \epsilon, 1 - \epsilon]$, i.e.

$$T_n^{\epsilon}(x) := T_n\left(\frac{x}{1-\epsilon}\right),$$

where $T_n(x) = \{(x+\sqrt{x^2-1})^n + (x-\sqrt{x^2-1})^n\}/2$ is the classical n-th Chebyshev polynomial. It satisfies

(i)
$$|T_n^{\epsilon}(x)| \le 1$$
 for $x \in [-1 + \epsilon, 1 - \epsilon]$;

(ii)
$$\max_{x \in [-1,1]} |T_n^{\epsilon}(x)| = |T_n^{\epsilon}(1)| = \left|T_n\left(\frac{1}{1-\epsilon}\right)\right|$$
. Due to the symmetry of $[-1+\epsilon,1-\epsilon]$ we can write $T_n^{\epsilon}(x)$ in the next form:

$$T_n^{\epsilon}(x) = \begin{cases} k_n \prod_{j=1}^m (x^2 - t_j^2), & n = 2m; \\ k_n x \prod_{j=1}^m (x^2 - t_j^2), & n = 2m + 1. \end{cases}$$

ETNA Kent State University etna@mcs.kent.edu

This leads to the following homogeneous polynomials of degree n:

$$h_n^{\epsilon}(\mathbf{x}) = \begin{cases} k_n \prod_{j=1}^m \left((1 - t_j^2) x_d^2 - t_j^2 (x_1^2 + \dots + x_{d-1}^2) \right), & n = 2m; \\ k_n x_d \prod_{j=1}^m \left((1 - t_j^2) x_d^2 - t_j^2 (x_1^2 + \dots + x_{d-1}^2) \right), & n = 2m + 1; \end{cases}$$

which enjoys the property

$$h_n^{\epsilon}(\mathbf{x})|_{S^{d-1}} = T_n^{\epsilon}(x_d),$$

and consequently

$$||h_n^{\epsilon}||_{S^{d-1}} = |T_n^{\epsilon}(1)|.$$

Then the exceptional set E_ϵ (i.e. $E_\epsilon:=\{\mathbf{x}\in S^{d-1}:\ |h_n^\epsilon(\mathbf{x})|\geq 1\}$) can be described as

$$E_{\epsilon} = \left\{ \mathbf{x} \in S^{d-1} : |x_d| \ge 1 - \epsilon \right\}.$$

Thus, $E_{\epsilon} = P_d^{-1}\left(B_{r(\epsilon)}^{d-1}\right)$, where P_d is the orthogonal projection from Lemma 2.2 and $r(\epsilon) = \sqrt{\epsilon(2+\epsilon)}$. We choose ϵ in such a way that $s_{d-1}(E_{\epsilon}) = \delta_n^{d-1}$. As was shown before

$$\sqrt{2\epsilon(\delta_n) + \epsilon^2(\delta_n)} = \kappa_d \delta_n + o(\delta_n),$$

where κ_d is defined by (1.2). So, we get

$$\frac{1}{n}\log R_{n,d}(\delta_n) \ge \frac{1}{n}\log \left\|h_n^{\epsilon(\delta_n)}\right\| = \frac{1}{n}\log \left|T_n\left(\frac{1}{1-\epsilon(\delta_n)}\right)\right|
\ge \log \left(\frac{1}{1-\epsilon(\delta_n)} + \sqrt{\frac{2\epsilon(\delta_n) + \epsilon^2(\delta_n)}{(1-\epsilon(\delta_n))^2}}\right) + \frac{1}{n}\log \frac{1}{2}
= \frac{1}{n}\log \frac{1}{2} + \sqrt{2\epsilon(\delta_n) + \epsilon^2(\delta_n)} + o\left(\sqrt{\epsilon(\delta_n)}\right)
= \frac{1}{n}\log \frac{1}{2} + \kappa_d \delta_n + o(\delta_n).$$

We complete the proof by dividing the both sides of the inequality above by δ_n and taking the limit when $n \to \infty$.

REFERENCES

- [1] V. Andrievskii, A note on a Remez-type inequality for trigonometric polynomials, J. Approx. Theory, 116 (2002), pp. 416–424.
- [2] P. BORWEIN AND T. ERDÉLYI, Polynomials ans Polynomial Inequalities, Springer-Verlag, New-York, 1995.
- [3] A. KROÓ, E. B. SAFF, AND M. YATTSELEV, A Remez-type theorem for homogeneous polynomials, J. London Math. Soc., 73 (2006), pp. 783–796.
- [4] E. J. REMEZ, Sur une properiété des polynômes de Tchebycheff, Comm. Inst. Sci. Kharkov, 13 (1936), pp. 93–95.