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FOURIER-BESSEL FUNCTIONS OF SINGULAR CONTINUOUS MEASURES
AND THEIR MANY ASYMPTOTICS*

GIORGIO MANTICA'

Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. We study the Fourier transform of polynomials in an orthogonal family, taken with respect to the or-
thogonality measure. Mastering the asymptotic properties of these transforms, that we call Fourier—Bessel functions,
in the argument, the order, and in certain combinations of the two is required to solve a number of problems arising
in quantum mechanics. We discuss known results, new approaches and open conjectures, hoping to justify our belief
that these investigations may involve interesting discoveries, well beyond the quantum mechanical applications.
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1. Introduction and examples. Let p be a positive measure, for which the moment
problem is determined, and let {p, (; $) }nen be its orthogonal polynomials. The Fourier-
Bessel functions (F-B. for short) J,, (p; t) are the Fourier transforms of p,, (115 s) with respect
to u:

(1.1) jn(,u’; t) = /d,u(s) pn(p,;g) e_its_

This nomenclature follows—for lack of better candidates—from the simple observation that
when g is the continuous measure with density du(s) = m/%, and therefore p,, (u; s) are
the (properly normalized) Chebyshev polynomials, the F-B. functions are the usual integer
order Bessel functions: 7, (u;t) = (—i)"J,(t). When the measure is symmetrical with
respect to the origin, as in this case, the F-B. functions are either real, or purely imaginary. A
graph of the first few F-B. functions, multiplied by ", is displayed in Figure 1.1 for a singular
continuous measure supported on a real Julia set (to be introduced in the following). Notice
the joyful oscillations that these F-B. functions feature, as opposed to the more disciplined,
and in the end boring attitude of the .J,,’s. This paper wants to be an ode to the fascinating
properties of F-B. functions of singular continuous measures, that in my opinion are still
largely unexplored: I shall present a few results, but mostly open problems. The style of this
paper will be suggestive of possible developments, rather than assertive of formal results, and
at times I shall gladly renounce to rigor in favor of intuition, hoping with confidence that
others will take up where I have left, and complete the picture. In this way, I believe to be
correctly interpreting Ed’s attitude towards mathematics as a communal endeavor, and it is
not only a pleasure for me, but an honor, to dedicate to him these notes.

The asymptotic of F-B. functions for large values of the argument, ¢, is a classical theme
of investigation, especially when n = 0, since Jo (u; t) is the Fourier transform of the measure
w[40, 41,42, 28, 27]. In this study, the nature of the orthogonality measure yx plays a major
role. In fact, it is in the realm of singular, multi-fractal measures that the most interesting
phenomena appear. First of all, at difference with the usual Bessel case, convergence of
Jn(1;t) to zero is not to be expected, and indeed in Figure 1.2, that depicts a much larger
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FIG. 1.1. F-B. functions i" Jn(p; t), n = 0, 1,2, 3, for a Julia set measure with A = 2.9. Different curves
can be distinguished from the behavior at the origin: Jn(u;t) ~ t™, as in the Bessel case.

argument range than Figure 1.1, this time for a measure associated with a linear Iterated
Function System, bursts of “activity” of Jo(u;t) are observed, amidst zones of quiescence.
Because of similarities with the theory of turbulence, I have termed this phenomenon and its
consequences quantum intermittency [16, 30, 31].
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FIG. 1.2. F-B. function Jo(u; t) for an LE.S. measure, over a larger t-scale than in Figure 1.1.
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A common technique to cope with these bursts is to take suitable time averages, like
Cesaro’s. After averaging, decay of J,(u;t) to zero actually takes place, according to an
algebraic law. Now, two main problems can be investigated: the decay of the averaged F-B.
functions themselves, and that of their (averaged) square moduli, this second problem having
received larger attention than the first. In two recent papers [35, 36] we have collected known
and new results on these questions, under the unifying theme of Mellin transforms. The
following scheme is encountered in these theorems, under very broad hypotheses (typically,
the existence of orthogonal polynomials): for any z less than the divergence abscissa of a
potential theoretic function, the Cesaro average of F-B. functions (or of their square moduli)
decays faster than t~®. The divergence abscissas entering these theorems are identified as
the local dimension of the measure at zero in the first case, and as the correlation dimension
of the measure in the second. The appearance of dimensional quantities of the orthogonality
measure is not accidental: indeed, they play a major role in the asymptotics of F-B. functions,
as it will become apparent in the following.

Quite different is the asymptotic behavior for large values of the order, and fixed argu-
ment. A general result can be obtained on the basis of a Chebyshev expansion of the matrix
exponential [33]: this theorem states that under the sole hypothesis that the support of yu is
bounded, at fixed time ¢, for any a > 0, there exist a constant C, so that the F-B. functions
Jn(;t) decay faster than exponentially in n:

(1.2) [Tn(p;t)] < Coe™*" forall n.

The need to refine this estimate will become apparent in Sect. 8.

So far we have described asymptotic questions of a quite conventional kinship. The best
way to introduce and motivate the new questions that we would like to answer, is to outline a
quantum mechanical interpretation of the F-B. functions. An alternative physical interpreta-
tion, that considers the propagation of excitations in chains of classical linear oscillators, can
be found in [31].

Recall that the orthogonal polynomials {py,(1; s) }nen satisfy a recursion relation that
can be written in vector form as

(1.3) s p(p;s) = J.p(u; 8),

where p(p; s) is the infinite vector of orthogonal polynomials evaluated at position s, and
J, is the Jacobi matrix uniquely associated with y (in the case when the moment problem is
determined, of course). We can formally think of J,, as a self-adjoint operator acting in the
space of square summable sequences, I5(Z. ) (for the precise treatment of this part see [36]),
and consider the evolution that it generates via Schrodinger equation:

d

(1.4) i

P(t) = Ju(t)-

In this equation, 9 (t) is the wave-function, a vector that evolves in the space I3(Zy) and
defines the state of the quantum system. At any time ¢, we can compute the projection of
1(t) on ey, the n-th vector of the canonical basis of I2(Z.):

(1.5) Pn(t) == (¥(t),en),

where (-, -) denotes the scalar product in I3 (Z ).
The initial state of the evolution, ¢(0), can be chosen freely. Letting it coincide with
the first basis vector, eg, leads to the conclusion [36] that vy, (¢), the projection of the time
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evolution on the n-th basis state, can be precisely identified with Jp,(u;t), the n-th F-B.

function:

(1.6) Yn(t) = Tn(pst).

The physical amplitudes of the quantum motion are the square moduli of the projections
of the wave-function on the basis states of Hilbert space, [1,,(t)|?. They are interpreted as
the quantum probability to find the system in the state e,, at the time ¢. As such, they can be
used to define the expected values of dynamical operators. Unitarity of the quantum evolution

—itJ

operator, e "+, implies the probability conservation formula
o0

(1.7) D T t)” = 1,
n=0

valid for all times ¢. This formula gives a new meaning to the analogous one already known

for integer order Bessel functions.

Think now of n as labelling the position in a regular one-dimensional lattice. Then,
1(0) = eg describes a quantum system initially localized in the origin of this lattice, and

consequently |1, (¢)|?

describes the spreading of the quantum wave over this space. Fig-

ure 1.3 shows the initial part of the evolution in the case of the usual Bessel functions (for
which the measure p is absolutely continuous), and Figure 1.4 displays the same informa-
tion in the case of a singular continuous Julia set measure. Differences between the two are

apparent.
wave
1 -
09 |-
0.8
0.7
0.5 ==
- ==
o4k ‘ = =
= =
03 N> ——————
- AN \\\ =
0.1 \\ _a— . = - - = = >
. R e eSS
0 - - 50
= =
= = - - = - = — =
= =V ——||S--S 4
- - - - - - - >
= 40
=
\\%%\\%\\\\%\\ 35
_—
o === 30
B 25 .
20 time

space

FIG. 1.3. F-B. functions | T (u;t)|? versus time t and space n + 1, for du(s) =

three—dimensional graphs are zoomable for better viewing.

To gauge this spreading we utilize the moments of the position n,

(1.8) va(t) :i= D nYa(®)* = Y n|Tnlust) .
n=0 n=0

ds __  This, and all

wy/1—s2
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FIG. 1.4. F-B. functions | Ty, (u; t)|? versus time t and space n + 1, for a Julia set measure with A = 2.9.

Here, the index « takes all positive real values. For & = 0, vg(t) = 1 is the normalization
condition (1.7). For negative values of o we can still define moments by letting the summation
in eq. (1.8) start from n = 1. These moments are of interest when completing the analogy
with theory of the generalized dimension of singular measures.

As it happens, for the singular measures that we are interested in, the asymptotic behavior
of the position moments v, (t) is power-law, with non—trivial exponents: we therefore define
the growth exponents 3% (a) via the upper and lower limits

+ _ 1 . sup log Vy (t)
(19) F¥(@) =  Jim (i) 25,
The functions 3 () are also called the quantum intermittency functions.

In the setting so defined, trivially 3% (a) < 1, and 8*(a) = 1 in the Bessel case.
For singular measures, bounds related to dimensional characteristics become of importance
[17]: under the sole request of existence of the orthogonal polynomials of y, it is proven that
B~ (a) > dimp (p1), where dimg (1) is the Hausdorff dimension of y, and 8 (o) > dim,(g),
the last quantity being the packing (or Tricot) fractal dimension. Indeed, these theorems are
even more general than required for our purpose: they apply to any quantum evolution in a
separable Hilbert space, see the original references for details.

Notice that the above bounds do not depend upon the index «.. According to my defini-
tion, quantum intermittency is present when 3% () are not constant functions of the argument
a. However strange it might seem at first, this case is typical of singular continuous measures
supported on Cantor sets. The name of the game of much recent theoretical research has
therefore been to study these functions, and to track the origin of their behavior in the prop-
erties of the measure u, and of its orthogonal polynomials. This is the problem that will be
discussed in this paper.

2. Kinematics, and expansion in orthogonal polynomials. The quantities described
in the Introduction can be obviously expressed in terms of orthogonal polynomials. In fact,
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the position moments v, (t) can be written as

1) valt) = - 0% [ [ du(e)u(r)e = pu i ) i)
n=0

We are therefore confronted with the highly singular kernel

(2.2) Kg(r,s) ==Y npn(; $)pn ;7).

n=0

When a = 0, we obtain the reproducing kernel of the orthogonal polynomials of p: K 2 (r,s) =
Ou(r —s).

The behavior of individual F-B. functions can be rather erratic. The common procedure
is then to perform a time average. Cesaro averaging is a common choice, but other forms of
averaging work as well. For instance, Gaussian averaging,

2.3) Ag(f)(t) = # [ e~ f(s)ds,

where f is either v, (t), or J,,(u; ), has the advantage of a better regularity in the windowing
function: we have in fact

2.4) Ac(va)(t) =) n® / dp(s)dp(r)x1 /e (r — 8)pn (s 8)pn(p57),
n=0

&)

where x,(u) = e~ w? is a smooth analogue of the characteristic function of the interval
[—w, w]. For ease of notation, we use the convention w := ¢ =1 throughout this paper.

3. Distribution functions and lower bounds to the growth exponents. In the study of
the general problem (1.9) the consideration of a finite truncation of the & = 0 moment, turns
out to be useful. Define

N
G.1) o (V.0) = [ [ ) du(ryr = 9) D paliss) (i)

n=0

This is the Gaussian time average, up to time ¢ = w™", of the sum of the squares of the first
N + 1 F-B. functions. Gaussian averaging is not as mandatory here as it is in the study of
individual F-B. functions, since its regulating role can be also supplied by the summation
over n, and yet I am not aware of any rigorous treatment involving only the Fourier kernel
Xo(r —s) = e~#r=3)/« 1In any case, we shall maintain this ambiguity offering theoretical
results that require averaging, and—at times—experimental results showing that averaging
can be disposed of.

In physical language, the discrete probability distribution |, (¢)|?> = |Tn(p;t)|? (recall
the normalization condition (1.7)) is called the wave—packet, and therefore vo(N,w) is the
distribution function of the Gaussian averaged wave—packet. It therefore contains all the
information on this probability distribution, and a detailed control of this quantity, in NV and
w, extends to the growth exponents.

Typically, upper bounds on vg (N, w) have been found, yielding lower bounds on growth
exponents for positive . This can be easily seen by remembering that the quantum probabil-
ity distribution |1, (¢)|? is normalized by eq. (1.7):
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limpy 00 ¥o(IV,w) = 1 for all w; therefore, squeezing the head of the distribution fatten its
tail. The original result is Guarneri’s inequality 8~ (a) > D;(u), extended by Combes [1]
to many-dimensional Schrédinger operators, further refined by Guarneri and Schulz-Baldes
[18], and by Tcheremchantsev et al. [2, 43] to a moment-dependent bound, in the form

(3.2) 87(a) = Dityay1 (1)-

In the above, D, (1) are the generalized dimensions of the measure y, of index g, that we shall
define in Sect. 5. The original hypothesis [18] that these dimensions exist for all ¢ € R, and
are finite for some ¢ < 1 has been weakened [43] to cover the case of the most general positive
Borel measure p. Notice finally that these bounds involve generalized dimensions of positive
index, between zero and one. Inspection of the proofs reveals that this is a limitation of the
technique, that deals rather crudely with the role of the orthogonal polynomials p,, (u; x).

0.1

0.01

FIG. 4.1. Truncated, averaged moment vo(N,w) for a Julia set measure with A = 2.9. To the left of the
figure, the region where the ansatz (4.1) is well verified. The flat plateau to the right, at vo(N,w) = 1, stretches
over all values of N that at time t = w™" have not yet been reached by the propagating wave.

4. Further lower bounds to the growth exponents. An improvement of these esti-
mates is obtained if one controls the growth rate of orthogonal polynomials. The first attempt
in this direction has been the renormalization theory of orthogonal polynomials of IFS mea-
sures [30, 31] that we shall meet in the following. Successively, the imaginative formula for
the function vy (N, w) proposed by Ketzmerick et al. [23] opened a different perspective:

4.1) vo(N,w) ~ NP2
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where Do (p) is the correlation dimension of the measure u (see Sect. 5) and d is a suitable
constant that depends on properties of the orthogonal polynomials of yg. In ref. [23], the
quantity d is improperly called the correlation dimension of the eigenfunctions, a name that in
the physical literature denotes a different quantity, whose value is not universal, as it depends
on the eigenfunction under investigation. It must also be remarked that the authors of [23] deal
with proper eigenfunctions, since they consider finite truncations of the Jacobi Hamiltonian
J ., that obviously have pure point spectrum. The theory of Gaussian integration shows that
this is an approximation of our general formalism.

Formula (4.1) can obviously be valid only for 1 « N <« w~—P2()/4_ [t predicts a scaling
form, both in time and space, of the wave—packet. Pictorially, the authors of [23] say that,
at fixed time, the initial part of the wave-packet decays with n as n4~!. In Figure 4.1 the
function v (N, w) is plotted versus w and N, in the case of Figures 1.1 and 1.4. We observe
that the scaling (4.1) is well verified, in the region in space—time that corresponds to the decay
of excitations, behind the wave—front.

Starting from formula (4.1) Ketzmerick et al. have derived a lower bound to the growth
exponents in the form S(a) > Da(u)/d. This result can be put on rigorous footing recalling
the observation that the square moduli of all F-B. functions decay as ¢ ~P2(#) [35]. Therefore
vo(N,w) w™P2() is a bounded function of w. If in addition there exist y and ¢ larger than
zero such that

4.2) vo(N,w) < eNTwP2 (1)
for all N and w, we can conclude that

(43) g(a) > 22
v

for all positive values of a. In Sect. 9 we shall comment on the effectiveness of this bound in
an exactly computable situation. Notice that our definition of -y over-estimates the parameter
d in Ketzmerick et al. surmise (4.1), and eq. (4.2) may be too crude of an estimate. Yet, in
certain cases, numerical experiments as that of Figure 4.1 show that in a region of space—time
the surmise is a good description of the function v (N, w), and d is a good approximation of
~. As a matter of facts, the exponent d has a dimensional flavor, which mixes the asymptotic
properties of the orthogonal polynomials p,, (u; ) and the local properties of the measure .
To see this, it is now time to briefly introduce the generalized dimensions of a measure p.

5. Generalized dimensions of the orthogonality measure. The spectrum of general-
ized dimensions D, (u) of a positive measure y is given, for real ¢ # 1, by the law

(5.1) /du(r) (W(Boy (r)) 7" ~ w(t=DPalk)

The scaling law is made precise by taking superior and inferior limits, when w tends to zero,
of the logarithm of the Lh.s. integral over the logarithm of w. Of course, an appropriate
formula exists also for ¢ = 1. A thorough study of generalized dimensions is to be found in
(371, [3].

We mention now for future reference an alternative approach to the evaluation of the
scaling law (5.1). Think of covering the support of y by a family ¥ of disjoint intervals I,
of length I, and measure 7, := pu(I,). Then, D, (u) is defined as the divergence abscissa of
H(z,3),

(5.2) H(z,%) =Y xd1=07,
cEY
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when the generalized limit of finer and finer coverings is taken.
We can now understand why the correlation dimension have a r6le in our problem [24].
Let us start from the expansion

(5.3) A (| T 1)]?) / dp(8)dp(r)xw (r — 8)pn(p; 8)pn(p; 1),

and observe that, when w < 1/n, the variation of p, (u; s) over B,,(r), the ball of radius w
centered at 7, is negligible, so that p,, (u; s) ~ p,(u;7) and

(5.4) Ac (| Tnps; t) /du r)pp (T /du $)Xw(r — s)

~ / dp(r)p2 (s P (B ().

Now, the correlation dimension D5 () is obtained setting ¢ = 2 in eq. (5.1). It so happens that
the function p2 (u; ) does not alter the asymptotic behavior of the last integral in eq. (5.4),
and therefore D2 () governs the asymptotic decay of the averaged square moduli of F-B.
functions. Of course, this is not a substitute for a rigorous proof, that has been obtained in a
variety of ways in the literature, as explained in [35].

6. Asymptotics of the orthogonal polynomials and growth exponents. We can now
return to the wave—propagation problem, and apply the same approximation as in eq. (5.4) to
vo(N,w), to get

N
6.1) (V) = [dun(Ba) 3 pi 1)
n=0

Suppose now that the orthogonal polynomials verify a scaling relation of the kind

(6.2) Z pi(p;r) ~ g(r)N4m,

for large N, with local dimension d(r), and a smooth function g(r) (where smooth is intended
as a subleading behavior). Then one meets the problem, familiar in dimension theory, of
determining the exponent d(w), defined by

6.3) / dou(r)g(r)N¥™ ~ Nd),

in terms of the measures dg,, (1) := u(B,, (r))du(r). Suppose now that there exists constants
C and + such that

N
(6.4) > pi(ws ) < CNY

for any « in the support of u, then Ketzmerick et al. surmise holds. A more refined analysis
[18, 43] can be carried on restricting the integral with respect to p to appropriate subsets 2 of
the support of u, so to obtain lower bounds to 1 — vo(N,w). This analysis shows that indeed
under the above hypothesis 6.4 the following lower bound holds:

1
(6.5) /B_(a) 2 ;D(l—a/'y)(u)'
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Two comments are in order: the first, is that eq. (6.5) is a better bound than D5 (1) /7. The
second, that generalized dimensions of argument less than one appear. We shall soon return
to this fact.

In the same line is the local result [25]: suppose that there exists a Borel set S of positive
measure, so that the restriction of y to this set is a-continuous (it gives zero weight to any set
of null a-dimensional Hausdorff measure) and so that there exists « such that for any z € S
(6.4) is verified, then
(6.6) B () 2

@
5
Further lower bounds are described in [4], [43].

7. Upper bounds to the quantum intermittency function. Lower bounds on vy (N, w)
do not lead to upper bounds on B(«) [25], that are therefore much harder to find [31, 19, 5,
14], also because the strategy of restricting the consideration to a subset {2 of the support of
1 is not sufficient here.

The last quoted reference describes a rather interesting situation that is worth presenting
in some detail, also because the techniques on which it is based might find wider applicability.
One starts from the Jacobi matrices Jg ; introduced in [22] and defined by

(7.1) xpr(x; ) = (Vi (k) + 00,1)pr (25 1) + Pr—1(25 1) + Prya (@5 1)

labelled by the real parameters 8 € [0y, 601], 0 < 6y < 61 < oo and 5y € (0, 00). The structure
of the recurrence relation renders Jy , a discrete Schrodinger operator, with potential V;, (k).
This is chosen to be null, except on a set B of selected barrier locations, B = {L,,n € Z"}:
Vo (k) = xB(k) k7. The exponent 7 links location and height of the barrier. The limit ) = oo
corresponds to a Dirichlet condition at each L, that clearly means no propagation and pure
point spectrum. On the other hand, = 0 gives barriers of constant height, and generically
absolutely continuous spectrum if these are sparse enough. Sparseness is a convenient request
for analysis: assume that for somea > landalln € Z L, 41 > aL,. Under these conditions
one can prove [ 14] that for all o, 0 < a < 2, and almost all § one has that

_ a+1
(7.2) B (a) < mtatl’

while 81 (a) = 1: there is a part of the wave-packet that moves linearly in time (one says

ballistically, in the usual jargon) while the main body follows at a slower pace. We refer to
[14] for the detailed analysis and illustrative pictures.

8. Wave—front propagation: unsolved asymptotics. The previous sections have dealt
with the shape of the wave—packet behind the wave—front. This implies that time, the argu-
ment of the F-B. functions, is much larger than space, the order. To complete the picture
we must take into account what happens in the opposite limit, and, more importantly for our
goals, in the region of the wave—front. This will explain our remark of Sect. 3, on the fact that
lower bounds on vo(N,w) in the first region do not yield control of 3(c).

A sequence of snapshots illustrating the wave-packet at exponentially spaced times is
shown in Figure 8.1. Over the time—span of the figure, the wave enlarges its size by more
than two orders of magnitude. Two characteristics are to be remarked: the decay of the
wave—packet is clearly consistent with eq. (1.2), but in addition it takes place rather abruptly
past a wave—front position. The motion of this point, on the other hand, appears in Figure 8.1
to follow an algebraic law, with exponent 7. These two characteristics combined imply an
upper bound to the growth exponents, 3+ (a) <, for all positive values of a.
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100000

FIG. 8.1. Snapshots of |t (tr)|? at exponentially spaced times ty, k = 1,...,6, versus N and k for an
LES. measure, described in Sect. 12. At the bottom of the graph, the fitting line for the wave—front indicates the law
n ~ t", with n = 0.84165.

In the usual Bessel case, it is well known that n = 1 (Bessel functions decay abruptly
when the order exceeds the exponent), and that the wave is propagating linearly, so that a
speed of propagation can be defined. It is interesting to remark that Newton’s determination
of the speed of sound ultimately relies on these properties [13],[31]. In the singular measure
case, a speed cannot be defined, and we are forced to introduce the intermittency function 3 of
the moment order . In view of this, and of our previous remark on the difficulty of obtaining
upper bounds to the growth exponents, it is of crucial relevance to develop techniques to
control this particular asymptotics of the F-B. functions, so to enable us, for instance, to
characterize the exponent 77 observed in Figure 8.1.

9. Julia Set Measures: renormalization equations. We now discuss an example that
can be worked out exactly to a large extent. We choose for p the balanced measure supported
on a real Julia set, generated by the quadratic map z — 22 — X, for A > 2 [8, 9]. The inverses
of this map,

©.1) $i(s) =7 Vs+A

with j = =1, can be seen as the non-linear maps of an Iterated Function System. The
invariant measure of this I.E.S. is defined via the equation

©2) [ 1@du@) =3 ¥ [0 0 @duta),

j==%1
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valid for any continuous function f. When A = 2, we obtain the orthogonality measure of
the Chebyshev polynomials, suitably rescaled. When A > 2, the support of 4 is a real Cantor
set. In the graphs displayed in this paper, we have chosen A = 2.9 for no particular reason.

The hierarchical structure of the support of p is brought to evidence by iterating the
LES. maps k times: to keep the notation compact it is useful to define the index vector
o = (01,...,0x), with o; € {+1, -1}, of length |o| = k, and the associated composition
maps ¢y = @y, © Py, 0+ -0y, . Let now Iy be the convex hull of the support of the measure
u, Ip = [—A, A], where A is the fixed point of ¢. At hierarchical order k = |o|, the support
of  is covered by the intervals I,

9.3) I; = ¢G(I@)'

The following remarkable property holds for the orthogonal polynomials of this measure
[39, 8]:

(9.4) Pan(11; 95(8)) = pu (i 8),

for j = +1. Applying this property, and the balance equation (9.2) to the Gaussian time
averaged wave-function projections, Ag (|7, (11; t)|?), that we denote for short ¢ (), we
get:

9.5 Y5 42 / / dp(s) dp(r) Xw(Se(r) — G0 (5))Pn (k5 7)pn (155 5)-

Iterating the renormalization procedure & times, we obtain the wave-function average projec-
tion at site N = n2*, with n and k integers, in the form:

00 W0 = 3 [ [ 40 du(r) xe60(5) = 611 (5) s ) 1)

lo| = Ivl—k

The non-diagonal contributions, ¢ # o', in the balance equation (9.6) have a fast time
decay and can be neglected. In addition, in the diagonal terms, the non-linear maps ¢, can
be replaced by a linearized version: for any o, let now

9.7) Io(s) :==d,5+ 6,

be the linear map, with coefficients d, and ,, that takes [, the convex hull of the support
of the measure y, exactly onto I,. In other words, I, = ¢,(Ip) = l,(Iy), and the length of
this cylinder is consequently proportional to d,: |1, | = 20,A. Usage of linear maps in the
argument of x,, has the effect of dividing w by d,, so that

1

(9.8) YR () = o

> YS(tse) + E(k,n,t),

os.t. |o|=k

where E(k,n, t) is the error involved in the approximations we have made. The related error
estimates are rather involved, and aim to show that £(k,n,t) is negligible, in appropriate
asymptotic expansions. We shall boldly do this in the following.

Equation (9.8) is a renormalization equation, that links the wave-function projection at
site IV and time ¢ to those at site n and earlier times. As opposed to simple estimates of
vo(w, N), this equation offers us a means of controlling the growth exponents. We have
developed this idea in [30, 31] and in the more rigorous, yet less noticed ref. [32].
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10. Julia set measures: analysis behind the wave front. We now employ the renor-
malization analysis, eq. (9.8), to compute exactly the behavior of vo(IN,w) in the region
behind the wave front:

n—1
10.1)  n(N,w) ~ Y 2k (w™)
Jj=0

~ Z izik@bf((sgw_l): Z %Vo(naw/‘sa)-

os.t. |o|=k j=0 os.t. |o|=k
The form vo(N,w) ~ N7 w P2 solves eq. (10.1); upon setting 7, := 2%, we get

(10.2) Z T D2

os.t. |o|=k

that implicitly determines ~y. This determination is indeed transparent: comparing eq. (10.2)
with the discrete evaluation of the generalized dimensions, eq. (5.2), we immediately obtain

(10.3) Da(n) = 7 D1 ()

and therefore
(10.4) ~v=1.

Figure 10.1 shows the function Bg(w, N) := N~lw=P2(My(N, w), whose flat left
piece confirms the validity of the scaling (4.1), and of the value v = 1.

According to Sect. 4, a consequence of this calculation is a lower bound on the positive
exponents: S(a) > Ds(u). Notice that since Do(u) < Dy (u) this bound is weaker that the
original Guarneri’s inequality 3(a) > D; (). This fact is by no means accidental: infor-
mation of the kind (4.1), and more general, on the vy (N, w) for small N (with respect to an
appropriate power of w) is not sufficient to control the growth exponents.

In ref. [23], various examples are exhibited for which the bound D2 () /d is significantly
better than D (). Yet, the (incorrect) statement is made that D2 (u)/d is an upper bound to
B(a) for all negative values of a. Where this to be true, it would imply that Dy (p) /d = 5(0),
where the latter quantity can be defined by a limiting procedure, when () is continuous.
To the contrary, in the next Section we show a case where 3(0) = D1 () > D2(p)/d.

11. Surfing the Intermittent Quantum Wave. A treatment quite analogous to that of
the previous section can be carried out for all truncated moments of order o > 0:

N
(11.1) va(N,w) := > n*Ac(|Tn(p; )]?)

n=0

N
= [ [ o) dutry = ) S 1) i)

n=0

Using the renormalization eq. (9.8) in the new situation leads to the result
(11.2) Va(N,w) ~ N+ D)

valid in the regime of decaying F-B. functions, in the leftmost part of Figure 11.1, where this
behavior is clearly observed.
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FIG. 10.1. Bo(w, N) := N~1w=P2()yo(N, w) for the Julia set measure of Figure 4.1.

Notice that a new scaling region appears now to the right of the figure, ahead of the
wave front, replacing the plateau that was obtained for @ = 0: in fact, when the lattice site
N has not yet been reached by the wave, v, (N, w) is independent of N, and is equal to the
(Gaussian averaged) position moment of order .. Therefore, in such region,

(11.3) Vo(N,w) ~ NO oBe)

in which the intermittency function () explicitly appears. Of course, this is a trivial obser-
vation. It can be turned into a constructive theory only if we can stretch our approximations
to reach this region.

Pictorially, but appropriately, we can say that the lower bounds mentioned in the previous
sections have been obtained by floating safely in the calm waters behind the wave—front. To
the opposite, a complete theory of quantum intermittency can be obtained only if we are brave
enough to catch the wave, boldly surfing on our approximation board the roaming waters of
the F-B. wave—front, vividly depicted in Figure 1.4.

Achieving this goal is a rare accomplishment: the renormalization approach is the board
that has enabled us to do this for Julia set measures [30, 31, 32]. First,

oo

(11.4) va(t) ~ Y 26(j2) 2 (t).

=0
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FIG. 11.1. Gaussian averaged, truncated first moment vi(w, N) for the Julia set measure with A = 2.9.

Then, employing again the renormalization eq. (9.6), we obtain

(11.5) vat) ~ > 2K ey (5, 1) = 28N "y, (6,1)

os.t. |o|=k j=0 os.t. |o|=k
This relation has the scaling solution v (t) ~ t*2(®) whence by consistency

(11.6) Z 77(1,—0 5g6(a) ~1,

os.t. |o|=k

that unveils, by comparison with eq. (5.2), the fundamental Julia set relation

L7 B(a) = Di_a(p),

that links growth exponents and generalized dimensions.

We have verified numerically that this relation holds exactly even without time—averaging
[30, 31, 32]. Indeed, Figure 11.2 displays the truncated, instantaneous value of the first
moment versus w and N: as we have remarked previously, summation over n supplies the
regularizing effect.

In [38] a relation formally written as eq. (11.7), but different in meaning, has been
obtained by a renormalization procedure over Fibonacci Jacobi matrices. In such relation
B(a) are the growth exponents of moments averaged over initial sites (which mathematically
amounts to averaging over different Jacobi Hamiltonians), and D,, are the thermodynamical
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FIG. 11.2. Truncated first moment v1(w, N) for the Julia set measure with X = 2.9 without time—averaging.
Notice the decay of fluctuations with increasing values of N.

dimensions of the logarithmic potential equilibrium measure, that we shall also consider in
the next section. A proof of this result for a family of Jacobi matrices has been obtained
recently [10].

12. Linear LFE.S.: renormalization theory and a conjecture. The results obtained in
the previous three sections are certainly neat, but by no means universal. They stem from the
clean renormalization properties of Julia set orthogonal polynomials, eq. (9.4), in a situation
characterized by other remarkable symmetries, the most notable of which is perhaps the fact
that the measure of the zeros of p, (u; s), that is, the logarithmic potential equilibrium mea-
sure, coincides with g itself. In addition, it is clear that we cannot approximate an arbitrary
measure with Julia set measures.

To the contrary, linear iterated function systems [21, 7, 6, 15], in which we have at our
disposal an unlimited number of maps of the kind (9.7), l;(s) = d;s+6;, and associated prob-
abilities 7;, ¢ = 1,..., M can approximate arbitrarily well any measure with bounded support
[20]. These L.LE.S. define invariant measures g via the obvious generalization of eq. (9.2),

M
(12.1) / F@)duls) = 3 / (f o 1i)(s)du(s).

Moreover, linearity of the maps implies the renormalization equation

(12.2) Pa(p;li(s)) = D Tepk (3 ).
k=0
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FIG. 12.1. Distribution functions M(s) = f _Soo du(s") for three uniform Gibbs measures with the same
Dqy(p) = Do =1log2/(log 5 — log 2), as described in the text.

The coefficients I" have a profound meaning, as they are the Lanczos vectors associated with
a generalization of the Jacobi matrix J,, [29]. In ref. [31] I have employed eqs. (12.1),(12.2)
in a similar fashion than in Sect. 11, to study the intermittency function 8(«). It has not been
possible, though, to close the asymptotic relations exactly, but only to obtain a sequence of
approximation of the intermittency function. Nonetheless, this approximate renormalization
theory has shown that the key to the asymptotic behavior of the moments v, (t) lies in the
properties of the coefficients I'. Needless to say, these properties are rather elusive.

In closing this paper I want to discuss an additional piece of evidence from [30] that
might give us a clue on the general problem, and is still (to my knowledge) unexplained.
Consider the set of linear L.E.S. generated by just two maps, for which

(12.3) =060, i=1,2

where Dy is a real number between zero and one, that must obviously satisfy the probability
conservation equation

2 2
(12.4) 1= "m=>Y s
i=1 i=1

Because of the latter equality, Dy is the box-counting dimension of the support of x. Clearly,
because of eqgs. (12.3) and (12.4), only one parameter among the map weights and contraction
rates is left free, and can be put in one to one relation with Dy.

Moreover, the two affine constants €; play no r6le in determining the power—law behavior
of the moments v, (t), since we can translate and stretch linearly the support of p with the
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FIG. 12.2. Intermittency function B(c) for I.F.S. generated uniform Gibbs measures with the same spectrum of
generalized dimensions, Dgq(u) = Do = log2/(log 5 — log 2). Data plotted are for: two—maps LES. (three lower
coincident curves, crosses); a symmetrical three—maps I.F.S. (central curve, open squares), and an asymmetrical
three—maps 1.F.S. measure (top curve, filled squares).

only effect of multiplying the F-B. functions by a complex number of modulus one, and of
linearly rescaling their argument—except, of course, the case where the two I.E.S. maps have
the same common fixed point, that so becomes the degenerate support of x.

Notice finally that eq. (12.4) also implies that the I.E.S. is disconnected.

In conclusion, the family of two—maps linear IFS measures satisfying eq. (12.3) can be
partitioned into equivalence classes labelled by the box—counting dimension Do(u). The
distribution functions of three measures in the same equivalence class are displayed in Fig-
ure 12.1. These measures enjoy distinctive properties. First of all, they are uniform Gibbs
measures, according to the theory of Bowen [12]. Moreover, since eq. (5.2), with §; and 7; in
place of I, and 7, and H(z) = 1 instead of the asymptotic relation, defines the generalized
dimensions of linear L.E.S. measures exactly, one finds easily that D, (1) = Do() for all real
values of q.

Now, figure 12.2 shows the functions () extracted numerically for three L.ES. be-
longing to the same equivalence class Do(p) = mglg)%ligr The coincidence of the curves
(crosses) within numerical precision—that we have also verified for other values of Dy—Ilead
us to conjecture that the intermittency function B(«) is an invariant of the equivalence classes

defined above.

13. From linear LE.S. to potential theory: another conjecture. The conjecture just
proposed, even before a formal proof of its validity, leads to interesting speculations, and
raises intriguing questions. Clearly, the conjecture disproves any relation of the kind 8(a) =
D y(«)» With g a function of a, like in the bounds (3.2), or in the Julia set relation (11.7). This
is not necessarily bad news: it is just telling us once more that characteristics of the measure
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L other than the generalized dimensions determine the dynamics: a few of these have been
presented in this paper. How are the exponents d(r) and d(w) of egs. (6.2) and (6.3) related,
in and across the equivalence classes above? And the coefficients I' ? We can also ask how
curves with different values of Dy map among themselves. But mostly, since eq. (12.3) is
magnificent in its simplicity, is it there a simple argument to prove the conjecture?

M(s)

0 | | | | | | | | |

-1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
S

FIG. 13.1. Distribution functions M(s) := fjoo dv(s') where v are the equilibrium measures associated

with the three LF.S. measures of Figure 12.1.

En suite, notice that the extension of the conjecture to L.E.S. with three or more maps,
without further specifications, is not valid. In fact, an instructive counter—example is obtained
setting M = 3, and all contraction values and weights equal among themselves: §; = § < %,
T = %, for i = 1,2,3. In this case, out of the three affine constants 8;, two can be set
arbitrarily (for instance, to assure that [—1, 1] is the convex hull of the support of ), and one
is allowed to vary. This can be done so that the resulting I.E.S. is disconnected: its hierarchical
structure is then composed of the iteration of three bands, the position of the central of which
is variable. The one-parameter set of I.LE.S. measures so obtained is composed of uniform
Gibbs measures with Dy () = Do(u) = —log(d)/log(3). And yet, the functions §(a) are
not invariant in this set: see figure 12.2, where ¢ is chosen so to obtain the same Dy as in the
two—maps case.

We can try an explanation of this fact. These latter three—maps I.E.S. measures have
different quantum intermittency functions, even if they coincide “cylinderwise”, because their

logarithmic potential equilibrium measures are different, since gaps between covering sets I,



ETNA

Kent State University
etna@mcs.kent.edu

) G. MANTICA

0.8

ﬂ%u*ﬁﬂ(’ %'ﬁ\(*'*%w
o
T\%\\%\
K
K
K

0.75 -
07
[a)

0.65 |-

0.6 i | i

-4 2 0
q

F1G. 13.2. Generalized dimensions of the three I.F.S. measures of Figure 12.1 (squares, horizontal line) and
of the associated equilibrium distributions (stars) of Figure 13.1.

have different geometric ratios, and consequently, we expect different asymptotic behavior of
their orthogonal polynomials.

Having realized this, let us go back to the two—maps case. In what respect are then the
equilibrium measures within the two—maps equivalence classes defined above “equivalent”?
Direct inspection of their distribution functions, Figure 12.1, provides no clue. It is Fig-
ure 13.2 that contains the answer: the generalized dimensions of the equilibrium measures
of two—maps LF.S. in the same equivalence class are the same. One can therefore take the
risk of putting forward a bolder conjecture: the intermittency function of uniform Gibbs mea-
sures, whose equilibrium measures are characterized by the same spectrum of generalized
dimensions, are the same.

Notice that Gibbs uniformity is required in this conjecture. In fact, it is not enough
to require that measures be characterised by equilibrium measures with the same generalized
dimensions. In fact, choose any of the two—maps L.LE.S. of this section, and change the weights
m; while keeping the contraction rates fixed. Since the equilibrium measure depends only on
the support of y, it does not change in the process. To the contrary, as shown already in [16],
in these circumstances the intermittency functions are sensitive to the weights.

14. Conclusions. I have discussed in this paper a number of topics that have originally
been developed by mathematical physicists interested in quantum mechanics, as it appears
clearly from the list of references, but that would certainly profit a lot from the interest of
specialists in orthogonal polynomials, special functions, and potential theory. In fact, my
formulation via Fourier—Bessel functions, the original idea [11, 16] to study these problems
in relation with Jacobi matrices of Iterated Function Systems, and my introduction of the
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renormalization approach of orthogonal polynomials denote clearly how much I owe to the
community that has gathered for this conference, and that I had the fortune to meet back in
my postdoc years here in Atlanta.

I have presented novel results on the asymptotic properties of F-B. functions for Julia
set invariant measures, relating different asymptotics of the “wave—packets” v, (N, w) to the
properties of the invariant measure, and of its orthogonal polynomials. But mostly I have
put forward open problems, numerical results, and conjectures that indicate—I hope—where
to search for complete answers. How to turn this insight into a constructive technique for
determining the intermittency function is the job that stays ahead. Having so arrived at the
main topic of this conference, potential theory and its applications, I can certainly renew my
best wishes to Ed, and retire in order.

Appendix. In addition to standard procedures, the research described in this paper has
required novel numerical algorithms for two main problems: the construction of Jacobi ma-
trices of linear L.E.S., described in [29], [34], and the computation of the F-B. functions [33].
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