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ON ONE QUESTION OF ED SAFF
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Dedicated to Ed Saff on the occasion of his 60th birthday

Abstract. In relation to Fourier-Padé approximation, Ed Saff observed that Taylor and Lagrange interpolation
projections satisfy the following property:�������
	������������������������	����
��������� 	����!���#"
We classify all projections that satisfy this property, thus answering a question of Saff. Some error formulas for
approximation with the above-mentioned projections are also produced.
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1. Preface. Ages ago, Ed Saff [8] asked me the following question:
PROBLEM 1.1. What are projections $ onto the space of polynomials %'& of degree at

most ( , that have the property that

(1.1) $*),+�-/.0$*)21 -�34%�&*5768$*),+9.:1;-<5=$*)>+�-/.0$*)21 -@?
He observed that this property holds for both, Lagrange interpolating projections and

Taylor projections, and is used in the study of Padé-Fourier approximation. I promised Ed an
answer. Now, years later, it is time to fulfill that pledge.

Actually, the property (1.1) in greater generality is equivalent to an “ideal property” of
projection $ as defined by G. Birkhoff [2]. In the next section we will prove that equiva-
lence and give a complete self-contained proof that projections in A�B C�D that satisfy (1.1) are
precisely the Hermite interpolation projections. In the last section we present some “Error
formulas” for these projections.

Here are some notations. Let E stands for a field of real or complex numbers. Let E7B C�D
denotes the space of polynomials in the indeterminate C with coefficients in E . We will use
the word projection to mean a linear idempotent mapping on EFB C�D .

DEFINITION 1.2. A projection $HGI5KJ*L�M N is called a Hermite projection if there exists a
finite set of distinct points OP5RQSC�TVU0W�W0W:UXC�Y[Z]\^E and a set of integers _P5`Q�(�T�U�W0W�W0U�(7Y[Z]\a

such that for every +b3cEFB C�D and every de5�fgU0W0W�W:U�h :

(1.2) )iJjL�M Nk+�-ml!nmo�)iC0p�-<5q+ l!nmo )iC0p�-srute5Kv;U�W0W�W:U�(wpkxyfgU
and

(1.3) z {| Im JjL�M N}5 Y~p@��T )2(wp�xyfS-wW
REMARK 1.3. Observe that in the case (�p*5�f for all d , the Hermite projector J*L�M N

is an interpolating projector. In the case h�5�f , the Hermite projection J9L�M N is the Taylor
projection.

Notice that here as well as in the rest of the paper no assumptions on the range of the
projection is made.�
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2. Algebra of Ideal Projections.
DEFINITION 2.1 (cf. [2]). A projection $ on E�B C�D is called an ideal projection if �����
$

is an ideal in EFB C�D .
In the next proposition we collect a few properties of ideal projections:
PROPOSITION 2.2. The following are equivalent
1) A projection $ on EFB C�D is ideal.
2) A projection $ on EFB C�D satisfies

(2.1) $*),+c.m1;-<5�$*)>+�.0$*)21 -@-mU���+wU�1�3cEFB C�D#W
3) A projection $ on EFB C�D satisfies

(2.2) $*),+9.m1;-<5�$*),$*),+�-�.�$*)21 -@-mU���+wU�1�3cEFB C�D#W
4) A projection $ has the property

(2.3) $*)>+�-/.0$*)21 -�3 Im $�576�$*)>+c.m1 -<5K$*),+�-�.�$*)�1;-mW
Proof. 1) 576 2): Suppose that �g�0�
$ is an ideal. Since 1�x�$*)21 -^3��g�0�
$ , we have+9.g)�1�x�$*)21 -@-�3��g�0�;$ . Hence $*),+c.m1[x�+�.�$*)�1;-�-<5Kv , which implies (2.1).
2) 576 3). Is easily obtained by using (2.1) twice.
3) 576 4). Follows from the idempotence of $ :$*),+�-�.�$*)�1;-�3 Im $�5F68$*)i$*)>+�-/.0$*)�1;-�-<5K$*),+�-�.0$*)�1;-mW
4) 576 1). Suppose $ satisfies (2.3) and +b3������
$ . Thenv[5K$*),+�-<5�$*),+�-/.0$*)21 -�3 Im $

and by (2.3): $*)>+�.01 -<5�v[576�+9.m193������
$�W
Hence �g�0�
$ is an ideal.

A nice characterization (2.1) of ideal projections is due to Carl de Boor [4].
For the record, we now give a complete characterization of ideal projections. This is

certainly not new, since the various generalizations to several variables are discussed in [6].
THEOREM 2.3. A projection $ on A�B C�D is ideal if and only if $�5�J�L�M N is a Hermite

projection for some O and _ .
In particular every ideal projection has a finite-dimensional range.
Proof. Let $ be an ideal projection. Since �����
$ is an ideal in A�B C�D and since every ideal

in A�B C�D is a principal ideal (cf. [1]), it implies that there exists a polynomial

(2.4) ��)iC�-<5 Y�p@�7� ),C]x�C:p�- l &V�m�7T o
such that �g�0�
$`5����w��G�5�Q�1 .��4GV1�34A�B C�D>ZgW
Since +�x�$*),+�-�3��g�0�
$ for every +^34A¡B C�D , we conclude that

(2.5) +/),C�-�x�$*),+�-0)iC�-<5}1�)iC�-�. Y�p@��� )>C'x�C p - l &V�m�7T o
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for some 193�A�B C�D . It is easy to deduce from (2.5) that),$ +�- l!n:o )iC p -¢5�+ l!n:o )iC p -
just as (1.2) requires. Next observe that z ��£F��5 Y¤p@�¥T )i(wp�x}f�- and denote this degree as)2(9¦�f�- . Then every non-zero polynomial 193������
$�5`Q01�.��4GV1934A�B C�D>Z is a polynomial of
degree )2(�¦=fS- or higher and hence %§&'¨9�g�0�
$`5`Q�v Z�W
Finally since the ideal �����;$ contains a polynomial � of exact degree )i(�¦qf�- , we conclude
that

(2.6) % & © �g�0�;$`5�A�B C�D
and therefore

z {|ª%§&�5K«:¬Vg®>hq�����;$�5Kz {!| Im $�5�)2(9¦=fS-<5 Y~p@�¥T )i(wp�xyfS-
which proves (1.3).

Conversely suppose that $�5KJ*L�M N as defined by (1.2) and (1.3). Then it follows easily
from (1.2) and the Leibniz rule for derivatives that)�1[.�)iJjL�M Nk+�-�- l!nmo ),C:p�-<5�),+9.:1;- l�nmo )iC0p�-mr¯t*5Kv;U�W0W0W0U�(wpkxyfgr°de5�v
U0W�W0W:U@(cx}f�W
Hence JjL�M N'),+c.0JjL�M N')�1;-�-¡5�JjL�M N'),+9.:1;-
implies (2.1), which proves the theorem.

REMARK 2.4. It is interesting to observe that (2.6) and the Theorem 2.3 immediately
implies that the Hermite interpolation problem always has unique solution in the space of
polynomials % & . In fact (cf. [10]) the space % & is a unique subspace in A�B C�D that has this
property. Moreover, the space % & is a unique Chebyshev subspace in A�B C�D .

The real version of the Theorem 2.3 no longer holds as stated.
EXAMPLE 2.5. Define a mapping $HGV±�B ²
D�³8% T 5q´@�¶µ�(/QgfgU�²FZ as follows:

$R·>² p�¸ 5
¹ººº» ººº¼
f if d�5Kv
)�|j½�zs¾�-² if d�5�fg)�|j½�zs¾�-x]f if d�5q¿;)�|j½�zs¾�-xk² if d�5KÀ
)�|j½�zs¾�-

for all de5�v
U0fgU0W0W�W and extend it by linearity to ±�B ²;D . Clearly $ is a linear mapping onto % T
and $*)�f�-<5�fgUÁ$*)2²s-¢5ª²¥W
Therefore $ is a projection. Next observe that²wÂkx�$ · ²¶Â ¸ 5�²¶Â¡¦�fjÃ5=v
W
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Consequently, the projection $ does not interpolate +/)2²w-�5�² Â and hence is not a Hermite
projection.

However for every finite sum +�5 ¤ µ n ² n with real coefficients, the expression+/)>Ä�®�-�GI5 ~ µ n )>Ä�®�- n
is a well-defined (complex) scalar, and it is easy to see that$ +/)#Ä�®�-<5�+/)>Ä�®�-
since it is so for every monomial. In particular $ satisfies (2.3).

This example suggests an easy (although a bit awkward) modification of the Theorem
2.3 for the real case:

THEOREM 2.6. A projection $ on ±�B C�D is ideal if and only if there exists a finite sets
of distinct points OÅ5�Q�² T U�W0W�W:U�² Y Z�\�± , OeÆ�5�Q�C T U0W0W�W0UXCSÇ�Z�\�A<ÈV± and sets of integers_�5�Q0( T U0W0W�W0U@( Y Z�\ a

, _*É�5�Q�(7ÉT U�W0W0W�U�(7ÉÇ Z�\ a
such that for every +}3ÊEFB C�D and everyd�5�f�U�W0W�W:U�h :

(2.7) )i$ +�- l!nmo ),² p�-<5q+ l!nmo )2²;pS-sr¯t*5=v
U0W�W0W0U@(wp�x}f�U
for every Ë75`fgU0W�W0W:Uu´
(2.8) ),$ +�- l!nmo ),C�Ìi-<5q+ l!nmo )iC�Ìi-sr¯t*5Kv;U�W0W0W0U�( ÉÌ xyfgU
and

(2.9) z;{| Im $`5 Y~p@��T )i( p xyfS-7¦Í¿ Ç~ Ì �¥T ),( ÉÌ x}f�-�W
Proof. The proof is the same as that of the previous theorem, with one obvious modifi-

cation. This time the ideal ���0�¶$�5����w�kGI5�Q01[.��4G�193�A�B C�D>Z
is generated by the polynomial � of the form

(2.10) ��)iC�-<5ÏÎVÐ Yp@��� ),²*xÑ² p - l &V�m��T oÓÒ ÎSÐ ÇÌ ��� )@)i²*x�C�Ì,-�)i²�xKÔC�Ìi-@- ) & Æ Õ ��T - Ò W
Observe that (2.8) implies

(2.11) ),$ +�- l!nmo ):ÔC Ì -<5q+ l!nmo )mÔC Ì -sr¯t*5Kv;U�W0W0W0U�( ÉÌ xyfgW
The rest of the argument is the same as in the proof of the Theorem 2.3.

The Theorems 2.3 and 2.6 explain the special role that Taylor, Lagrange and, in full
generality, Hermite interpolation plays in Approximation Theory. The ideal property of these
interpolants allow us to view approximation as the process of division. For instance the kernel
of the Taylor projection Ö & onto % & is an ideal generated by polynomial C &�×¥T . The process
of division of + by C & :

(2.12) +�5�C &�×¥TuØ ),+�-¥¦�Ö�&s),+�-:W
Ironically it is the Taylor polynomial that is (in the language of algebra) the remainder of the
division, while the “remainder” in Taylor Theorem is the main part.
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Lagrange interpolation (that in full generality becomes Hermite interpolation and in-
cludes Taylor) also have this property. The kernel of Lagrange interpolating projector is also
an ideal of functions (polynomials) that vanish on a given set of points, hence it is also the
remainder of the division of + by a polynomial Ù§)2²s-¢5qÐ &p@�¥T )i²�xÑ²;p�- .

Now the equivalent properties (2.2) and (2.3), can be understood as a purely algebraic
fact: The remainder of the product is equal to the remainder of the product of the remainders.

3. Error Formulas. The plethora of forms for the error in Taylor, Lagrange and Her-
mite interpolation can also be understood from the ideal point-of-view. Here is the general
perspective.

Let $ be an ideal projection, and let the ideal ���0�¶$ be generated by a polynomial ÚÊ3EFB C�D : �g�0�
$�5�QVÚj.m19G�1939EFB C�D,Z�W
Since +�x�$ +b3������
$ , hence

(3.1) +�x�$ +c5qÚj.�Û�),+�-:W
It is easy to see that (3.1) defines a linear operator:

(3.2) Û�GVEFB C�D<³�E7B C�D
and

(3.3) �g�0�
ÛK5�������),Ü]x�$ -¡5 Im $�W
We claim that various factorizations of this operator Û give rise to the error formulas.

We start with the following general lemma:
LEMMA 3.1. Let Û`G�ÝÅ³8Þ and ßPG�Ýà³âá be two linear operators. Then

(3.4) ÛK5qã'ß
for some linear operator ã if and only if

(3.5) ���0�¶ßP\y�g�0�;Û W
Proof. The necessity is obvious. For sufficiency, define a linear operatorä G�Ý9å������;ß�³�Ý9å������ Û

that maps an equivalence class B +¶D2æª3�Ý�å/���0�;ß into the equivalence class B +¶D�çÍ3cÝ9å��g�0�;Û .
Assume that 1�3ÊB +¶D�æ . Then ),+9xÑ1;-�34�g�0�
ß and by (3.5), we conclude that ),+cxÑ1 -�3�����
Û . Hence the operator

ä
is well-defined and the diagram:Ýè^é=ê�ëÝ9å������ Ûªì9xí Ý9å��g�0�;ß

commutes. Here è and ë are the canonical embeddings.
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Consider the following diagram:Þ çì9xîÝ æx¶³ Im ßP\yáïñð è4é�ê�ë�òcóÊé�ò ��TÝ�å������;Ûâì�xí Ý9å������;ß
with

ð
and ò defined as natural injections. Since ò is also onto, it has an inverse mappingò ��T .

This diagram is commutative since every triangular diagram in it is commutative. ThusÛK5�· ð ä ò ��T0¸ ß
which proves the lemma.

In particular, if the interpolation projection has %'& as its range then for all t�ô`(�¦�f ,
the operators

(3.6) ß n GI5  n�C n GVEFB C�D/³8E7B C�D
have ���0�;ß n \Í%�& . Thus, by (3.3)�����
ÛK5 Im $�5K% &9õ �����
ß
and by Lemma 3.1 we have:

(3.7) +9x�$ +�5KÚ*.�ã n Î + l�nmo Ò W
Usually the operator ã in (3.7) has an integral form. For instance in the real case (cf.

[3]) of Lagrange interpolation J L with O�5�Q�C T U0W�W0W�U@C Y Z \}± , the kernel of J L is an ideal
generated by polynomial ÚF),C�-<5RÐ Yp@��T )iC x�C p -

+/)iC�-¥x�JjLk+/)iC�-<5KÐ Yp@�¥T ),C'x�C0p�-/.�öø÷�L�)iùmU@C�-�+ l Y o )iù�-�gùmU
where ÷9L�)iùmU@C�- is a B-spline at the nodes OjÉ¶5`Q�C�TSU�W0W0W�U@CSY UXC;Z . In the complex case various
integral representations are described in [5], [9] and [7]. We will now extend these results to
the ideal projections with an arbitrary range.

DEFINITION 3.2. Define A�BB C�DD to be the ring of all formal power series in C with coeffi-
cients in A .

THEOREM 3.3. Let $ be an ideal projection with �g�0�
$`5�ú}Ú�û . Let ß be an operator
on A�B C�D such that

(3.8) ���0�¶ßP\ Im $�W
Then there exists an operator ã defined on A�B C�D such that

(3.9) +�x�$ +c5qÚj.Sãj)iß�+�-:W
More over the operator ã can be written as an integral operator

(3.10) ã�1s),C�-<5 öü ýSü � ü þSü ×¥T ÷y)iC¶UXÿg-#1�),ÿ�-��ÿ
with ÷Í)iC¶UXÿg-¡3�A�B!B ÿ ��T D!D for every C .
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Proof. The existence of operator ã follows directly from (3.8) and Lemma 3.1, since�g�0�
ßP\ Im $`5=�g�0��)iÜ x�$ -mW
It remains to prove (3.10). Let � n be a polynomial defined by� n 5�$ · C n ¸ U
then

ã����~n ��� µ n C n�� 5��~n �7� µ n � n W
Letting +/)iC�-<5 ¤ � n ��� µ n C n , we have

µ n 5 f¿���® öü ýSü � ü þSü ×¥T +/),ÿg-ÿ n ×�T �ÿ
and hence

(3.11) ã]+/)iC�-<5 öü ýSü � ü þSü ×¥T +/),ÿg-
	 f¿���®�~n ��� � n )iC�-ÿ n ×¥T�� �ÿ;W
Setting

÷y)iC¶UXÿ�-�5 f¿���®��~n ��� � n )iC�-ÿ n ×�T
we obtain the desired conclusion. Notice that while ÷Í),C
Uuÿ�- is only a formal power series
in ÿ ��T , for every polynomial + only finitely many terms in (3.11) are non-zero. Thus (3.11)
indeed defines a linear mapping on A�B C�D .

Acknowledgments. I am grateful to Professor Rakhmanov for suggesting the elegant
proof of the last theorem.
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