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Abstract. Some new properties of kernels of modified Kontorovitch-Lebedev integral transforms — modified
Bessel functions of the second kind with complex order K 1 +ig (z) are presented. Inequalities giving estimations for
2

these functions with argument  and parameter 3 are obtained. The polynomial approximations of these functions
as a solutions of linear differential equations with polynomial coefficients and their systems are proposed.
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1. Some properties of the functions ReK1_ ;5(z) and ImK | ;5(x). In this section
new properties of the kernels of modified Kontorovitch-Lebedev integral transforms are de-
duced, and some of their known properties are collected, which are necessary later on.

It is possible to write the kernels of these transforms in the form

Ki, g(zx)+ Ki_z5(x K1 a(z) = Ki_.alz
RGK%HB(:L'): 2+zﬁ( )2 3 zﬂ() and ImK%HB(m): 2+z,6’( )Qi i zﬂ( )7

where K, (z) is the modified Bessel function of the second kind (also called MacDonald
function).
The functions ReK 1 ;5(z) and ImK 1 ;5(x) have integral representations [8]

2

(1.1) ReK1,5(x) = / e~ T osht cogh % cos(ft)dt,
0

o0
t
(1.2) ImK; 1 5(x) z/ e_wCOShtsinhisin(,Ht)dt.
0

The vector-function (y1(z), y2(z)) with the components y1(z) = ReK 1, 5(2),
y2(z) = ImKy_;5(z) is the solution of the system of differential equations

d*y | ldy i— P B
S 2o (il Loy =0
dz? + z dz + z2 hit 22 ’

dy, 1dy. B i - B2
Sy B B 1+ )=
dx? + zdr 22 o + 2 Y2

The functions ReK1 | ;3(z) and ImK 1 ;3(x) are even and odd functions, respectively
of the variable 3,

ReK1,5(x) = ReKy_;5(),
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ImKy,5(x) = —ImKy_;5().
The functions ReK 1 ;5 (z) and ImK 1 +ip () are related to the modified Bessel func-

tions of the first kind I, (z) as follows,

w  Rel_i_;5(x) — Rely ;5(2)

2

(1.3) ReK ) i5(z) =

cosh(w3) 2 |
T ImI_é—iB(m) - ImI%_H@(w)
(1.4) ImKy yi5(z) = cosh(mf3) 2 |

The expansion of I 1448 (z) in ascending powers of x has the form

(15) X Z m = Z(ak + ibk),

where ay, and by, satisfy the following recurrence relations:

. z\3 cos (BIng) +isin (BIn)
ap +ibp = (= 2 : 27,
oo (2) T (2 +4B)
_p ks 2 8
mg = 2 ) Ng =T N2 ’
ak ((k+13)" +p2) ak ((k+13)"+52)
ar = ap—1Mmy + bp_1ng, b = bp_1myp — Qp_1Mk-

The expansion of I —1-ip (z) in ascending powers of z has the form

Ty is@) = (£) 77 (cos (10 2) —isin (510 )
() ¢

(1.6) xS N N (g +idy),
;k!r(m%—zﬂ) k:Ok k

where ¢y, and dj, satisfy the following recurrence relations:

. (z\~/2cos(BIn%) —isin(BIn%)
+idy = (3) T (1=if) ’
2 k_% _ 2 B

=T ’ e =T )
2 2
4k (k- 3)"+52) 1k ((k - 3)* +52)
Ck = Ck—1Pk — A1k, dy = dg—1pk + Ck—1Gk-
The expansions (1.5) and (1.6) converge forall 0 < z < co and 0 < 8 < oo.

It follows from (1.1)=(1.2) that it is possible to write ReK +ig(x) in the form of the
Fourier cosinus-transform

™ % _ ht t
(1.7 ReKyyi5@) = (5) Fo [e 7Ot gogh ¢ /3],
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and ImK 11 (x) in the form of the Fourier sinus-transform

T2 —zecosht + 1 b
(1.8) ImK%+iﬁ(:1:) = (5) Fg [e T Cosht ginh §;t - B .
The inversion formulas have the respective forms

1
3 t
F¢ [ReK%HB(:U);,B — t] = (g) *emweoshi pogh ~ ,

2
Fs [ImK%HB(x);,B - t] = (g)é e @cosht sinh%

or, in integral form,
(1.9) /000 ReKy ;5(z) cos(tB)dpB = ge*““ht cosh % ,
(1.10) /OOo ImKy () sin(tf)dp = ge—wmsht Sinh% _

Differentiating equations (1.9) and (1.10) with respect to ¢, we obtain
= : m : t : t —z cosht
ﬂReK%Hﬂ(x) sin(t8)dS = B z sinh ¢ cosh 3 sinh 7)€ ,
0

(1.11) /00o BImK i5(x) cos(tB)dB =

t t
g (cosh 3% sinh ¢ sinh 5) g @cosht

It follows from (1.9) that
o T
/0 ReK, ;5(z)dB = ) e ?,
and from (1.11) that
> T
/0 BImK 1y i5(x)dB = 5 e ”.
Differentiating (1.9) and (1.10) 2n times with respect to ¢, we obtain

/ BZ"ReK%HB(x) cos(tB)dB = =(—1)"D?" (e‘“"Shtcosh %) ,
0

ISR

/°° B ImK 3 yip() sin(tB)dp =

t
(-1)"D" (e‘“OSht sinh —> ,
0

2

from which there follows, for ¢ = 0,
oo 2n m nn2n —x cosht t
B"ReK1 5(x)df = - (—1)"D;" | e cosh = .
0 2 2 2),—0
Differentiating (1.9) and (1.10) 2n + 1 times with respect to ¢, we obtain

/ /32"+1R6K1/2+iﬁ($) sin(tB)dB = (—1)n+1Dt2"+1 <e“°ShtCOSh E) )
0

2

TSI

oo t
/ B ImKy 2445(x) cos(tf)df = (—1)"Di"* <e—“°sht sinh 5) :
0
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whence, fort = 0,
o T t
/ 52”+1ImK1/2+,-5($)d6 — 5(_1)nDt2n+1 <eac cosht sinh 5) .
0 t=0

For the computation of certain integrals of the functions ReK 1, ;5(z) and ImK; ,;5(z),
integral identities are useful. They reduce this problem to the computation of some other
integrals of elementary functions.

PROPOSITION 1.1. If f is absolutely integrable on [0, 00), then the following identities
hold,

1
2

(112) /oo ReK%_'_zB(fE)f(ﬂ)dﬁ = (g) /oo e_-TCOSht cosh %Fc(t)dt,
0 0

1

s [ —xzcosht . i
e sinh EFS(t)dt,
0

(1.13) /00o ImKyi5(x)f(B)df = (g)

where F(t) is the Fourier cosinus-transform of (), and Fs(t) the Fourier sinus-transform
of 1(8).

Proof. Multiplying both sides of the equalities (1.7) and (1.8) by f(§), integrating with
respect to 3 from 0 to oo, and applying Fubini’s theorem for singular integrals with parameter
[22], we obtain (1.12) and (1.13). a

PROPOSITION 1.2. If f is absolutely integrable on [0, 00), then the following identities
hold

ol 3

3 [ t
) / e~2cosht cosh §f(t)dt,
0

1
2

(1.14) /OOO ReKy 5(z)Fo(B)dB = (

I8
SN———

(1.15) / - ImK ) 5(2)Fs(8)df = ( / % mwcosht g % o).
0 0

Proof. This follows from (1.9)—(1.10) and from Fubini’s theorem [22]. a
The equations (1.12)—(1.15) are useful for the simplification and the calculation of dif-
ferent integrals containing ReK /24.i5(x) and ImK /o 4;5(x).

For example, let f(3) = e~ %, then F(t) = \/g%_‘_ﬁ, Fs(t) = \/goﬂ;—i-ﬁ and
o0 o0 t
/ ReK%HB(a:)e_aﬁdﬂ = a/ (@® + t?)Lem=cosht cogh idt’
0 0
* 1 T [ _at—zcosht t
A ReK%_HB(m)mdﬂ = %/0 e~ TS cogh 5dt7

> > . . t
/ ImK; ;5 (z)e *Pdp = / t(a? + %) le eoshiginh §dt’
0 0

OOI K I8 d _T = —at—z cosht htdt
) m %+lﬁ($)m 5—5 ) € sin 5 .

If f(B) =T(; + )T(3 — &), then Fo(t) = 22— and

0 1 i1 QB
/0 ReKy yi5(@)0(; + S)T(; = 5)df =
t

o0 cosh m T
= \/271'71'/ e weosht — 2 gy — n /e 2 Ko(=).
0 vcosht v 0(2)
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_ inh(273) 1 — h(ot)
If f(B) = Cosh(;”ﬂ)+cos(zwa), |Rea| < %, then Fs(t) = j;si;‘h% and
% ImK () sinh(27B) 1 [ 1
2 dg = = —x cosht hiat)dt = — K .
/0 cosh(273) + cos(2ma) p 2/0 ¢ cosh(at) 2 a(2)

REMARK 1.3. All formulas of the present paragraph remain valid if x is changed to z
lying in the right-hand half-plane.

L1. The Laplace transform of ReK, , ;s (z) and ImKy s (z).

The Laplace transform of K;5(x) is computed in [21]. We use the representation (1.1) for the
evaluation of the Laplace transformation of ReK 1448 (x). We have

oo t o ]
L [ReK%_i_w(x);ﬂ] :/0 cos(fBt) cosh§/0 e~ (Preosh)e g gy

 cos(Bt) cosh £
/0 cosht + cosh« (p = cosha)

_ [T cosh _ 7 cos(af)
“V 279\ cosht +cosha/  2cosh 2 cosh(rf)’
Equivalently, we can write
_1 |cos(Beosh™'p) |  ymy-1
2

2
For the evaluation of the Laplace transform of ImK 14ip (x) we utilize the representation
(1.2). We have

p sinh ¢ m  sin(aB)
L|{ImKi, 5();p| =4/=Fs | ——2 | = c— o
[ ME3+is (:E),p] 2% (cosht + cosh a) 2 cosh(m3) sinh §”
or, equivalently,

_, | sin(B cosh™ p) T
LTS =[5 cosh(nB) TmK i ().
2
We note that these equations can also be obtained directly from the formula for the Laplace
transforms of K, (x) by separating real and imaginary parts.

1.2. The asymptotic behavior of ReK 1, ;5(z) and ImK; | ;5(z) forz — 0,z — oo

and # — oo. For ReK ;5(z) and ImK | ;5(z) the following asymptotic formulas for
B — oo are valid [8],

E)%e*% cos (ﬂlnﬂ—ﬂ—ﬂln;)a

ReK 1 ;5(z) ~ (x

TmKy () ~ (g) ? 4 gin (ﬂlnﬂ —B—pBn g) ,

where z is a fixed positive number.



ETNA

Kent State University
etna@mcs.kent.edu

MODIFIED BESSEL FUNCTIONS 459

It follows immediately from (1.3)—(1.6) that for x — 0 we have

Ky yi5(2) ~ 1 (m)*% cos (BInZ) —isin (BInE)

212 r(3—if) ’
whence
ReKi (7)) ~ o (ReI‘ —+ 25 cos (,3 In g)
+ImT (% + iﬂ) sin (/3 In ;)) )
ImKy i5(z) ~ _% (ImF 2t Zﬂ €08 (ﬂln ;)

—Rel’ ( + zﬁ) sin (,Bln g)) ,

For large values x the following asymptotic expansion is valid [9]
T3 /1
Kl-i—zB( ) (%) e—wz (5 +7'Bak> (Qm)_ka

where

(42 = 12) (02 = 8) - (0 — (k= 1)%)

(V7 k) = 22kk'

In particular, therefore,

N

ReK, ;5(z) ~ (l)

(%)
2z 2z
i)~ (55) (g0 ) = () e

1.3. The series expansions in powers of 3. The solutions of problems in mathemat-
ical physics connected with the use of the Kontorovitch-Lebedev integral transforms are
often expressed as integrals with respect to 3 of the functions Kis(z), ReK) ,3(z) and
ImK 1B (z). Both the asymptotic expansions of these integrals for large values 3, and the
expansions of these functions in powers of /3, are of interest for the analysis of the behavior
of these integrals.

The expansions of these functions in powers of 3 are deduced from their integral repre-
sentations (1.1)—(1.2). Substituting in them cos(3t) and sin(8t) by their series expansions
and interchanging the order of the summation and integration, we obtain

K (JI) _ i ﬂQk Oot2kefzcoshtdt _
BT L @R g B

2
(1.16) =K0(.’L') /g' / t2 7zcoshtdt+ /i‘ t4efwcoshtdt_+____,
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— B [ ht t
— — COS —
ReK%_H-B(x) = g 28 /0 t*"e cosh idt =
— 52 * 2 _—xzcosht t
= K% (.’L’) — ? ) te COSh idt
B4 [e%s) 4 b t
(1.17) +—/ tremTcosht cosh —dt + - - -,
41 Jo 2
- ﬂ2k+1 > 2k+1 ht t
— —T oS : ¢ —
ImK%HB(a:) —k_o (2k+1)!/0 t e 51nh2dt
3
t
(1.18) :ﬂ/ te—®ooshtginh — dt—y/ t3e wcoshtginh 5dt+---.
0

These functions are entire functions in the variable 3, and therefore the series converge
for all real values of B. From these expansions it is possible to obtain the series for the
derivatives and for the integrals of these functions with respect to the variable 3, which will
converge for all real 3 also. Similar integrals for the spherical functions are stated in [23].

It’s possible to rewrite the expansions (1.16)—(1.18) in terms of Laplace transforms as
follows,

= h%* y+1) B2k
11 Kig(z)=e™ ™) (-1)*L M
(1.19) s(z) =e g( ) B | G
20) Rekyyp(o) = e S (1P [+ D),
(1.20) ReKy,5(z) =e ;( ) NeT = |
oo [ h2k+1 (y + 1) ﬂ2k+1
121 ImK:1, . — T _1F arccos ‘ g
(121) ImK; 5(z) =e ;( ) _ 5512 Y = S

This form of writing may be more convenient since it is possible to use numerical methods
for evaluating Laplace transforms.

The expansions (1.19)—(1.21) are convenient for the calculation of the kernels of Konto-
rovitch-Lebedev integral transforms for small values 3.

2. Inequalities for the MacDonald functions K ;5(x), Re K 14 (z) and ImK 148 (z).
It follows from (1.1) that for all 8 € [0, 00)

Il
/\
[\&]
¥l
SN———

N[
®
8

|ReK 1 5(x)| < Ky(x)

and it follows from (1.2) that for all 3 € [0, 00)

1 —
T = T

t 3 1 e
—xcosht _: - — x _ 2
|ImK%_H~5($)| S/o e sinh 2dt = (2$) e [1 ¢((2z)2)| < B .

where B is some positive constant [10],[11].
In [4], for arbitrary v = o + i3, 0 > 0, the following inequality is derived

L (z)| < ™ 1, ().

Taking advantage of the formula [4]
181

K, (@)| < (Ci(,0) + Ca, 0Bl F) =7,
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we obtain that beginning with some T, |3| > T,

K34 i5(0)| < Cla)e ™.

But this inequality is too rough and may be insufficient for conducting various proofs. To
obtain more refined inequalities, we use [5]

Bl

€ 2,

Blm

@.1) |Kig(x)| < Az~
where A is some positive constant, and the representations [8]
ReKyo(0) = (Z)F —2
| -
§+iB\T 2x/ cosh(wf)
+ﬁtanh(7rﬂ) /z [e(””y) B e~ (@ty)
(27) 2 o LVT—Y z3
Btanh(rf) [ e~ "tV Kig(y)
- 1 1 dya
@2mz o 2

T2 Y
L _ ﬂem e szﬂ( )
ImKEHﬂ(fU) = (21)% /z y(y — ) dy.

Kisg(y)dy

(2.2)

LEMMA 2.1. The following inequalities hold for x > 0

3

1
x 9\ 2
|R6K%+i,3(1')| < C|,3|ei lf‘,z'fz + (%) efzef7l'|ﬁ|,
_=Bl _3
ImK 1 5(x)| < colBle™ 2 271,

where co and c are some positive constants.
Proof. We estimate the second additive term in (2.2), using the inequality (2.1),

ﬂtanh(ﬂﬂ) /w [e—(z—y) e_($+y):| Kzﬁ(y)dy|
0 Y

(2m) (z-y)? ot
eY y
2 — —e
2.3) < A|Ble="7E V7 gy < AlBle P et
vz y
0
We next estimate the third additive term,
tanh = K, v e
Btenh(mf) [ e oW gy < il H - [ evytay
27 T \/_ Yy \/E T
2.4) < Blfle”F e 2071,

Combining the first term and estimates (2.3) and (2.4), we obtain the required inequality.
Furthermore, we obtain

Be® [ e Kiﬁ( ) |
VemJo  yVY =

5
LI fty e_yy 1

<c¢olBle" 2 € =7
€T

ImKy 5(z) <|

Bw

——dy < ¢|Ble” =4
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For future use, an analysis of the behavior of the modified Bessel function K, ;g (z) for large
values of (3 is necessary. O
LEMMA 2.2. For0 <o < 3

> 1,z > x¢ > 1, the following inequality holds,

Korip(@)] < (c10” % +eaat o|gl7 ) 2,

where ¢; > 0, co > 0, ¢1, ¢2, Bo, Lo are some constants.
Proof. We use the formula [6]

Ku(m) = .

QST(ﬂ'p,)(I_”(w) - I(z), p=o0+ip.

1. We first estimate sin(mwp). It is possible to show that for |3| > ,8(()1) > 0, ,881) some
constant, the following inequality is valid

(2.5) ae™ Pl < |sin(mp)| < ase™ Bl

where a; > 0, as > 0, a1, as are some constants.
2. We next estimate I,,(z), p = 0 + i3, 0 > 0. The following inequality is derived for
o > 0in [4]
18]

L@l < o T

It follows from the asymptotics of Io(z) [10] for large z that for z > x((]l) > 0, x(()l) some
constant,

(2.6) |L,(z)| < aza”~3e”+ 3"
where az > 0, ag some constant.

3. We finally estimate I_,,(z), p = o + 8, 0 > 0. Proceeding analogously [4], we can
rewrite I, () in the form

Lulo) = (o),
where
Yz, p) =1+ (5"

I (—u+ k)

Then [k —p|=/(k—0)?+ B2 >k—1for0<o <% k=2,3,...,and
V(1 —0)? +,B2_5,ﬂarb1trary. Therefore,l—[k:1 (k—a)2+B22@.We obtain,

after some calculations, that

( )23

< sl(s—1)! —

¢(xu)<1+2z 2<1+ Lz ))

Using for |8| > ﬂ(()2) >1,0<0< %, the expansion of the gamma-function from [5]

and the asymptotics [6] for I (x) we obtain that beginning with some x(()z), T > x((]2) > 1, the
following estimation holds,

@D [ u(@)] < a2 |Bl7 Fem 75
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ag > 0, as some constant.
Combining the estimations (2.5)—(2.7), we obtain that for 0 < ¢ < %, 1Bl > Bo > 1,
x>z 21,50 = max(ﬂél), ((]2)), xo = max(m((,l),x((]2)) the following inequality is valid,

il

K@) < g ™I () = Lu(@)| < 5= (ag” b + szt || 3) e 7F
1

a -
Denoting ¢; = ﬁa;;, Cco = ﬁazi, we obtain the statement of the lemma. a

The properties of the modified Kontorovitch-Lebedev integral transforms are considered
in [7]-[15].

3. Tau method approximation for modified Bessel function of imaginary order.
Several approaches for the evaluation of the modified Bessel functions are elaborated in [1]-
[2]. The Tau method [3] realization, with minimal residue choice for the determination of the
polynomial approximations of the solutions of the second order differential equations with
polynomial coefficients [16] of the following form

(a0y® + asy)v" (y) + (a1y + a2)v' (y) + asv(y) =0, v(0) = as, y € [0,1],

is supposed. An n-th approximation of the solution is sought in the form of the n-th degree
polynomial v, (y), which is the solution of the equation

Yy
(bo + bsy)u(y) = / (b1 + bay + bs)o(@)de + bay + Tnga T al(1 = nr2)y + amsal,
0

where the coefficients a;, ¢ = 0,...,5, may be expressed by coefficients b;, 1 = 0,...,5,
Qnga = sin® 4(n’r—+2) — the leftmost root of the shifted Chebyshev polynomial of the n 4 2-th
degree T}y, ,(y) in the interval [0, 1], 75,42 — undefined coefficient.

The problem about determination of the polynomial Py, (y) = >_j_, pky*, which is the
least deviated from zero on the interval [0, 1] among all n-th degree polynomials, satisfying
the pair of linear correlations on the coefficients pg = 0, >, cgn)
The following theorem is proved [16]:

THEOREM 3.1. If the sequence of numbers cgn), t = 1,...,n, is alternating, then the
polynomial T, Tx[(1 — apn)y + ] is the polynomial least deviating from zero in the uniform
metric on [0,1] among all polynomials of degree n, satisfying the indicated pair of linear
relations.

On the basis of this theorem it’s shown (as suggested by us) in the Tau method residue, in
a number of significant cases, is a minimal in the uniform metric on [0, 1], among all possible
polynomial residues permitting the Volterra integral equations solution.

We have the following differential equation with polynomial coefficients for the approx-
imation and computing of the second kind modified Bessel function K;z(z):

p; = 1 was considered.

y?0" (y) + 2(y + D' (y) + (1/4 + B)o(y) =0,
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We obtain the following recurrence formulas for the coefficients of canonical polynomials
Qm(Y) = X1 qkmy” in this case:

2 2(k +2)

qoo=m; QOk=—k2+k+%+/BZCI0k—1, k=1,...

The minimality of the residue suggested by us follows from the Theorem 3.1 as \ng\ =
(-1)™, m=0,1,...

The advantages of this modification, as compared with usual and other tau-methods, is
shown.

4. Tau method approximation for modified Bessel function of complex order. A
new numerical scheme of the Tau method application is proposed for the solution of the sec-
ond order linear differential equations systems, with the second order polynomial coefficients
of the following kind:

(a§y® + aPy)oll( +Z[ (@$) 1y — a§)vi(y) + a$, viy)] = 0,

UJ(O) :a3k+2a .7 :1:'-'7k: /S [0, 1];

in the unknown vector-function v(y) = (v1(y),...,vk(y)). It is assumed to have only one
solution. Integrating twice and carrying an addition in the right part in the kind of the vector-
polynomial P, (y), we derive for the determination of the n-th approximation of the solution

v(y) = (v1(y),- - -, vk (y)) the system of Volterra integral equations with polynomial kernels
b8y +b{y) / [Z (05 12 + )y + b5, )oi(@)]de + Pinga (y),
j=1,... .k,

where the coefficients bgj) and agj),i =0,...,3k+2and 5 = 1,...,k, are connected in

a definite way and Pj,y2(y), j = 1,...,k, are n + 2-th degree polynomials. The different
variables of the vector residue choice and its minimization are analyzed. The recurrence
formulas for the canonical vector-polynomials coefficients convenient for the calculations are
given.

Consider the system of two second order differential equations (k = 2) in more detail.
This case is of particular interest for differential equations with complex coefficients.

The scheme of the integral form of the Tau Method described in this paper can be used for
deriving polynomial approximations of hypergeometric and confluent hypergeometric func-
tions of the first kind with complex parameters.

The modified Kontorovich-Lebedev integral transforms [7] with kernels

R6K1+zﬁ( T) = 1+’ﬁ(m)z poin®) andImKl_Hﬁ( x) = K1+’ﬁ(z) WE TS , where K ()
is MacDonald’s function, is of great importance in solving some problems of mathematlcal
physics, in particular mixed boundary value problems for the HELMHOLTZ equation in wedge
and cone domains. We find it necessary to compute

ReKy;5(z) and ImK 1 ;3(x) to use this transform in practice [13]. These functions also
oceur in solving some classes of dual integral equations with kernels which contain MacDon-
ald’s function of imaginary index K;g(z) [7]. Therefore, now we consider the second kind

modified Bessel function K1 , ;5() in more detail.
2
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We have a system of two second order differential equations

y?oi + 2(y + 1)v] + B2v1 + Buz =0,
y?vy + 2(y + L)vy — oy + vy =0,

1)1(0) = 1,'1)2(0) = 0,

or the system of Volterra integral equations

fm@w=A%@+ﬂ%x—@+B%»w@ﬂx+5£?w—ww@ww+%,

ﬁw@)=ﬂA?y—mm@Mx+A?@+ﬂ%x—@+ﬂ@»w@ﬂa

T |1 1 1

Kiy5(z) = (%)5671(01(5) +ivz(5), x> 1.

2

The following formulas for the coefficients of canonical vector-polynomials are derived [16]

1 _ (B2 +m(m+ 1))(m +1)(m +2) W ___ Bm+2)(m+1)
G =TT mm ) P T (B m(m 1P 4 5
dn=—dn,  an=dlh,

G _ 26+ DB +i6+1)aih, — Baih)
i B +iG+ D)+ 5 !

) _ 2+ DBl + (B + i+ 1))
8 (B i+ 1)) + 2 |

i=m-—1,...,0, j=1,2.

By means of computations is shown that the choice of the residue in the form Pj,12(y) =
Tint2Tnt2[(1— @ny2)y+anyal], j = 1,2, is optimal as compared with other known variants
in this case too.

The applications for the numerical solution of boundary value problems in wedge do-
mains are given in [18],[19].
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