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A BDDC ALGORITHM FOR FLOW IN POROUS MEDIA
WITH A HYBRID FINITE ELEMENT DISCRETIZATION*

XUEMIN TU'

Abstract. The BDDC (balancing domain decomposition by constraints) methods have been applied successfully
to solve the large sparse linear algebraic systems arising from conforming finite element discretizations of elliptic
boundary value problems. In this paper, the scalar elliptic problems for flow in porous media are discretized by a
hybrid finite element method which is equivalent to a nonconforming finite element method. The BDDC algorithm
is extended to these problems which originate as saddle point problems. Edge/face average constraints are enforced
across the interface and the same rate of convergence is obtained as in conforming cases. The condition number of
the preconditioned system is estimated and numerical experiments are discussed.
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1. Introduction. Mixed formulations of elliptic problems (see [3]) have many applica-
tions, e.g., for flow in porous media, for which a good approximation to the velocity, which
involves derivatives of the solution of the differential equations, is required. These discretiza-
tions lead to large, sparse, symmetric, indefinite linear systems.

In our recent paper [24], we extended the BDDC algorithm to this mixed formulation of
elliptic problems. The BDDC algorithms are nonoverlapping domain decomposition meth-
ods, introduced by Dohrmann [6] and further analyzed in [15, 16], and are similar to the
balancing Neumann-Neumann algorithms; see [14, 7]. However, the BDDC methods have
different coarse components which are formed by a small number of continuity constraints
enforced across the interface throughout the iterations. An important advantage of using such
coarse problems is that the Schur complements and all other matrices that arise in the com-
putation will be invertible.

In [24], the original saddle point problem is reduced to finding a correction pair which
stays in the divergence free, benign subspace, as in [8, 17, 18, 19]. Then the BDDC method,
with edge/face constraints, is applied to the reduced system. This method is similar to the
BDDC algorithm proposed for the Stokes case in [12]. The analysis of this approach is
focused on estimating the norm of an averaging operator. Several useful technical tools for the
Raviart-Thomas finite elements, originally given in [29, 22, 28], are used and the algorithm
converges at a rate similar to that of simple elliptic cases.

The hybrid finite element discretization is equivalent to a nonconforming finite element
method. Two-level domain decomposition methods have been developed for a nonconform-
ing approximation in [21, 20]. The condition number bounds are independent of the jumps
in the coefficients of the original equations and grow only logarithmically with the number of
degrees of freedom in each subdomain, a result which is the same as for a conforming case.

A non-overlapping domain decomposition algorithm for the hybrid formulation, called
Method II, was proposed already in [10]. It is an unpreconditioned conjugate gradient method
for certain interface variables. The rate of convergence is independent of the coefficients, but
depends mildly on the number of degrees of freedom in the subdomains. Problems related
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to singular local Neumann problems arising in the preconditioners were also addressed in
[10]. In addition, other non-overlapping domain decomposition methods were proposed with
improved rates of convergence in [9] and [5].

A Balancing Neumann-Neumann (BNN) method was extended and analyzed in [4] for
Method II of [ 10], see also [21] for a nonconforming case. A similar rate of convergence was
obtained as for the conforming case. We will extend the BDDC algorithm to Method II of
[10] in this paper. In contrast to [4], we need not solve any singular systems when using the
BDDC algorithm.

The method proposed here differs from the one in [24]. In this paper, we reduce the
original saddle point problem to a positive definite system for the pressure by introducing
Lagrange multipliers on the interface of the subdomains and eliminating the velocity in each
subdomain. Thus, we need not find a velocity that satisfies the divergence constraint at the
beginning of the computation and then restrict the iterates to the divergence free, benign
subspace. Our approach is quite similar to the work on the FETI-DP methods as described
in [23, Chapter 6]. We use the BDDC preconditioner to solve the interface problem for a
set of Lagrange multipliers, which can be interpreted as an approximation to the trace of the
pressure. By enforcing a suitable set of constraints, we obtain a similar convergence rate as
for a conforming finite element case. As in other studies of BDDC, our analysis will focus
on the estimate of the norm of an averaging operator. However, we cannot use properties of
the Raviart-Thomas finite elements directly since we work with Lagrange multipliers. The
technical tools, originally given in [21, 20, 4], are needed to make a connection between the
hybrid finite element method and a conforming finite element method.

The rest of the paper is organized as follows. The mixed formulation for the elliptic
problem and its hybrid finite element discretization are described in Section 2. In Section 3,
we reduce our problem to a symmetric positive definite interface problem. We introduce the
BDDC preconditioner for the interface system in Section 4 and give some auxiliary results
in Section 5. In Section 6, we provide an estimate of the condition number for the system
with the BDDC preconditioner which is of the form C (1 + log %) 2, where H and h are the
diameters of the subdomains and elements, respectively. Finally, some computational results
are presented in Section 7.

2. An elliptic problem and its discretization by hybrid finite elements. We consider
the following elliptic problem on a bounded polygonal domain €2, in two or three dimensions,
with a Dirichlet boundary condition:

=V-(pVp)=f in Q,
2D { p=g on 01,

where p is a positive definite matrix function with entries in L°°(2) satisfying
' p(x)€ > allg]®, forae xe€Q,

for some positive constant a; f € L2(R2) and g € H/2(Q).

The equation (2.1) has a unique solution p. Without loss of generality, we assume that
g = 0. We use the Dirichlet boundary condition for convenience. The algorithm can also be
extended to other boundary conditions.

We assume that we are interested in computing —pVp directly as often required in flow
in porous media. We therefore introduce the velocity u:

u=—pVp.
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We obtain the following system for the velocity u and the pressure p:

u=-—pVp in
2.2) V-u=f in 9,
p=0 in 0.

Let ¢(x) = p(x)~! and define a Hilbert space by
H(div,Q) = {v € L*(Q)? or L?(Q)%; V - v € L}(Q)},
with the norm

||v||%l(div,9) = ||V||%2(Q) +(IV- V||2L2(Q)-
The weak form of (2.2) is as follows: find u € H(div, ) and p € L?(Q) such that

{ a(u,v) +b(v,p) = 0, Vv € H(div,Q),
b(ll, q) - fQ fq dX, Vq € L? (Q);

where a(u,v) = [, u’¢(x)v dx and b(u, ¢q) = — [,(V - u)q dx.

We decompose {2 into N nonoverlapping subdomains ); with diameters H;,
t=1,---,N, and set H = max; H;. We assume that each subdomain is a union of shape-
regular coarse triangles/tetrahedra and that the number of such triangles/tetrahedra forming
an individual subdomain is uniformly bounded. We also assume p(x), the coefficient of (2.1),
is constant in each subdomain. We note that our algorithm is equally well defined for a more
general situation; the assumptions just formulated make our analysis possible.

Let 7 be a triangulation of  and 7(€2;) is the restriction of this triangulation to ;.
Let W be the lowest order Raviart-Thomas finite element space defined in (2.3) (also see
[3, Chapter I11, 3]) and let () be the space of piecewise constants, which are finite dimensional
subspaces of H(div, Q) and L?(f2), respectively. The pair W and @ satisfies a uniform inf-
sup condition; see [3, Chapter IV, 1.2].

We have

(2.3) W = {v € H(div,Q);v|r =ar + crx VT € T},

where a7 € R? or R?, ey € R We note that a piecewise polynomial v € H (div, ) if and
only if the continuity of the normal components of v across 7 holds. We can specify the
degrees of freedom ar and ¢ in each element T' by the normal components of v on 9T and
take the midpoints of the edges/faces of T as the nodes.

The finite element discrete problem is: find u, € W and pr € @ such that

(2.4) { a(up,vp) +b(vh,pn) = 0, Vv, € V/‘\’,
b(up, qn) = —[ofandx, Y, €Q.

Let V/V(") be the lowest order Raviart-Thomas finite element space on 25, i.e.,
WO = {v € H(div,%); v|r = ar + crx VT € T(Q)},

wherear € RZ or R, cr € R . .

We also define W and W& which are similar to W and W(i), respectively. However,
they are not required to be the subspaces of H (div, Q) or H(div, §2;). Equivalently, there are
no continuity constraints on the normal components of the functions, i.e.,

W ={veL*(2)?or L*(Q)%v|r =ar +crx VT € T},
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and
WO = {v e L2(Q;)? or L*()%;v|r = ar + erx VT € T(Q)},

where ar € R%2 or R® and ¢ € R.

We relax the continuity of the normal components on the element interface in W and
W@, Instead, we will introduce Lagrange multipliers to enforce this continuity of the
Raviart-Thomas space. The goal of introducing Lagrange multipliers is to make it possi-
ble to reduce the saddle point problem (2.4) to a positive definite problem by eliminating the
velocity. Without Lagrange multipliers, we would have to eliminate the velocity globally on
the whole computational domain which would be very expensive. After relaxing the conti-
nuity of the normal components of the velocity on each element interface, we can eliminate
the velocity on each element. In practice, we can afford to eliminate the velocity in each
subdomain. In fact, as in [10, 4], in an implementation, we only need to use inter-element
Lagrange multiplier on the subdomain interfaces.

Let F denote the set of edges/faces in 7 and F? be the subset of F which contains
the edges/faces on 9. Then the Lagrange multiplier space A is the set of functions on
F\F 9 which take constant values on individual edges/faces of F and vanish on F 9. see [3,
Section V1.2]. R

We can then reformulate the mixed problem (2.4) as follows: find (u,p,A) € Wx @ x A
such that for all (v, g, 1) € W x Q x A

Srer (uev dx = [V vpdx+ fpp v nrds) = 0,
(2.5) —Yrer JraV -udx = —Jo fadx,
rer Jor #1- 07 ds =0

The additional function A is naturally interpreted as an approximation to the trace of p on the
boundary of the elements. A proof of the equivalence of (2.4) and (2.5) can be found in [, 2].
Correspondingly, the matrix form of (2.5) is

A BT BT u 0
(2.6) B, 0 0 p|=1| F
B, 0 0 A 0

3. The problem reduced to the subdomain interface. We denote the discrete space
of nodal values of  x A by P. Here we use the center points of the elements as the nodes
for () and the midpoints of the element edges/faces as the nodes for A. We note that P has
the natural interpretation as the space of values of the pressure p in the interior and on the
edges/faces of the elements. By this definition, P is isomorphic to @ x A; we can then write
an element of P as p = [p, A].

Let T" be the interface between the subdomains. The set of the interface nodes T'j, is
defined as T'y, = (U;09; 1) \ 0Qp, where 02, , is the set of nodes on 0Q; and 9%, is the set
of nodes on 9f2. R

We can write the discrete pressure spaces P as

P=Q@PA

The space @ is a direct sum of subdomain interior pressure spaces Q ¥, i.e.,

N .
Q=P
i=1
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The elements of Q(?) are the restrictions of the elements in Q to ;.
We can further decompose A into

KZAI@KF,

where Ar denotes the set of degrees of freedom associated with T' and Aj is a direct sum of
subdomain interior degrees of freedom, i.e,

N .
Ar=EPAY.
i=1

We denote the subdomain interface pressure space by Ag ) and the associated product space
by Ar = @il A{j ), Rl(j) is the operator which maps functions in the continuous interface
pressure space Ar to their subdomain components in the space A(Fi ). The direct sum of the
Rl(j ) is denoted by Rr.

The global saddle point problem (2.6) is assembled from subdomain problems

A6 " Bgf)IT Béf)FT ald 0
B 0o 0 o0 pt) FY
@ (o | = :
BY) 0 0 0 A 0
N K3
B{L 0 0 0 Ar 0

where (u(®, p(8)| )\Y), /\g)) e (W@, Q) Agi), Al(j)). We note that A® is block diagonal,
with each block corresponding to an element T C T (£2;).
As we mentioned before, in practice, for each subdomain 2;, we only need to use the

inter-element multipliers on the interface of the subdomains. In that case, let (u(i) ,p@, )\1@ )) €
(W Q) A;’ )} and we obtain the following subdomain problems

f‘i(f) BY" Bg‘)FT ul® 0
(32) B o 0 p% | =| FY
B 0 0 AP 0

We note that we can obtain A from A® by assembling. Therefore A® js no longer block
diagonal by element.

We define the subdomain Schur complement Sy) by solving a Dirichlet problem in the
variational form: find {u;, p;} € W@ x Q@ such that

/ uichidX —/ V. vidx = —/ )\l(f)v, . IldS, Vv; € {J\V(Z)7
Q; o7 80:\6Q

i

(3.3) / V-uwgi =0, Vg€,
Q;

then set Sl(f) )\(Fi ) = —Bé’}ui. We note that these Dirichlet problems are always well posed
and that Sl(j) is symmetric and positive definite. We also can write (3.3) in matrix form as:
given A € ALY determine SYAY such that
Ao BO" BET T T u® 0

0 p» | =10
B o o J Ll L -soap
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We note that, to obtain the subdomain Schur complement Sy) for )\g ) from (3.1), we can first

eliminate the velocity u() in each element and obtain a system for the p(i), )\gi), and /\g ). We
then eliminate the remaining degrees of freedom interior to the subdomain, i.e., the p(i) and
)\y). However, from (3.2), we cannot eliminate the velocity u® in each element since A®
is no longer block diagonal by element. But we still can eliminate the velocity u(® and the
pressure p(?) locally in each subdomain.

We denote the direct sum of the Sl(j) by Sr, i.e.,

s
St =
s

Given the definition of Sl(j) , the subdomain problem (3.2) corresponds to the subdomain
interface problem

Slg))‘i"z) — gI(‘i)’ 1=12,..,N,

0
FY |

The global interface problem is assembled from the subdomain interface problems, and
can be written as: find Ar € Ar, such that

where

A Bfi)T B

gg) == [Béz)r O] Bii) 0

(3.4) SrAr = gr,

where gr = Ziil Rl(j)Tgl(j) and

N
Sr=RISrRr =Y RY SPRY.

=1

Thus, §1“ is a symmetric, positive definite operator defined on the interface space Kp. We will
propose a BDDC preconditioner for solving (3.4) with a preconditioned conjugate gradient
method.

4. The BDDC preconditioner and a change of variables. In Section 3, the original
saddle point problem (2.6) was reduced to a positive definite problem (3.4) for the interface
pressure (or Lagrange multipliers). It has a similar algebraic structure as the system which
the original BDDC method was derived for. The difference is that the degrees of freedom in
our case are the midpoints of the element edges/faces on the subdomain interface. It is nature
to use the edge/face average primal constraints. _

We introduce a partially assembled interface pressure space Ar by

N
Ar=AnPAr=Au P (HAQ) .
=1

Here, A is the coarse level, primal interface pressure space which is spanned by subdo-
main interface edge/face basis functions with constant values at the nodes of the subdomain
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edges/faces for two/three dimensions, respectively. We change the variables so that the de-
gree of freedom of each primal constraint is explicit; see the last part of this section and also
[13, 11]. The dual space A is the direct sum of the AX), which are spanned by the remain-
ing interface pressure degrees of freedom with a zero average over each edge/face. In the
space Ar, we relax most continuity constraints on the pressure across the interface but retain
all primal continuity constraints, which makes all the linear systems nonsingular. This is the
main difference from the BNN method in [4], where we encounter singular local problems.
We introduce two extension operators

KF E} jfip ﬁ) Ar.
We also define a positive scaling factor 63 (x) as follows: for vy € [1/2, 00),

,
St = =P 80, NT
z( ) Eje_/\/x p]’y(x) ,h h

where N is the set of indices j of the subdomains such that x € 9€2;. We note that 53 (x) is
constant on each edge/face, since we have assumed that the p;(x) is constant in each subdo-
main, and the nodes on each edge/face are shared by the same subdomains. Multiplying each
entry of Rr, which is for a dual variable in A and corresponds to a node x € 9€;, by (5;r (z)

givesus Rpr.
The interface Schur complement St is partially assembled from subdomain Schur com-
plements s9 e,

Sr = R} SrRr.

We can also obtain §p, introduced in (3.4), from §1“ by assembling the dual interface
pressure part on the subdomain interface, i.e.,

§I‘ = ﬁggréf
The BDDC preconditioner for solving the global interface problem (3.4) is
M~ =R}, St 'Rpr.

see [0, 15, 16, 13, 12] for the details. R
The preconditioned BDDC algorithm is then of the form: find Ap € Ar, such that

Mﬁlgr)\r = Eg,pgflﬁp,rgr)\r = Egrgflﬁp’rgr.
This preconditioned operator is the product of two symmetric positive definite matrices and
we can use the preconditioned conjugate gradient method.
Finally, we provide some details about changing variables to make the primal variables
(edge/face average) explicit. We follow the notations in [13].
We denote the nodal degrees of freedom in a given edge by (w1, ,Um, - ,u;). We

can choose any node on this edge as m. The other unknowns are denoted by ur. We are given
a linear system written as

r T T TIr b - .
A Ay - App o A ur 1
Air ann - am o an U1 f1
.1 : : . : . : : _
AmI Am1 o Amm e Ami Um fm
| A oan - apm - ag || w | i
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Define al x [ sparse matrix T as follows:

1 1
-1 1 -1,
1 1
T _ S S A \T
and let (g, ,Um, - ,u)" =Tg(Gy, -+, bm, - ,U)" . We have
U1 1}1 1 ﬁl
Um =Tg | tm = 1 | am+ _al_"'_ﬁm—l_ﬁm—i-l_"'_ﬂl
Uy ﬁl 1 ’lll
Here, the columns of T'g are the new basis of the edge variables and (G, -+ , U, -+ 5 U)

are the new coordinates in the new basis. The basis function corresponding to %, is constant
on the edge and 4., represents the edge average. The others have zero edge average.
Let

I
r=[" 4]
Then, (4.1) can be transformed into

[ A AT, o AT, o A ] T our ] Cfr ]

Ay ann -0 a0 ay Uy f

TT T| . =717
AmI Am1 " Amm " Al Um fm
L Ay an - am 0 ag | | W L i

Since the changing variables for each edge is a local procedure, we can do this transformation
edge by edge in each subdomain.

5. Some auxiliary results. In this section, we will collect a number of results which are
needed in our theory.

In order to connect our hybrid finite element discretization to a conforming finite element
method, we need to introduce a new mesh on each subdomain. The idea follows [20, 21, 4].
In order to be complete and for the readers unfamiliar with these technical tools, we give
the construction of the new mesh, the definitions of two important maps, and some useful
lemmas, which were originally given in [4, 20, 21].

Given an element 7 € T, let 7 be a subtriangulation of 7 which includes the vertices
of 7 and the nodal points in 7 for the degrees of the freedom of () x A. We then obtain a
quasi-uniform sub-triangulation 7. We partition the vertices in the new mesh 7 into two sets.
The nodes in 7" are called primary and the rest are called secondary. We say that two vertices
in the triangulation 7 are adjacent if there is an edge of 7 between them.
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Let Up, () be the continuous piecewise linear finite element function space with respect
to the new triangulation 7. For a subdomain ;, Uy (£2;) and U} (02;) are defined by restric-
tions:

Un(%;) = {ulq, : v e Up(Q)}, Up(0€%;) = {ulaq, : w e Up()}.

Define a mapping [ ,? from any function ¢ defined at the primary vertices in §2; to Uy (€;) by

( ¢(x), if x is a primary vertex;

the average of all adjacent primary vertices on 0€;,
if x is a secondary vertex on 9€2;;

Q; —
I p(x) = S the average of all adjacent primary vertices,
if x is a secondary vertex in the interior of €2;;

the linear interpolation of the vertex values,
if x is not a vertex of T .

\

We note that I,?" defines a map from Q(£2;) x A(Q;) to Ux(£2;) and also a map from
Un(§2:) to Un(€).

Let I, ,‘?Q" be the mapping from a function ¢, defined at the primary vertices on 0€;, to
U, (09;) and defined by I,‘?Q"qb = (I,?"ﬁ)|39i, where p is any functions in Q(;) x A(Q;)
such that p|aq; = ¢. The map is well defined since the boundary values of T ,? p only depend
on the boundary values of p.

Let

Un(Q) ={=1}"¢, ¢ € Un(Q)} and Tn(0) = {¢lon, ¥ € Un()}.

We list some useful lemmas from [4].
LEMMA 5.1. There exists a constant C' > 0 independent of h and |Q;| such that

I bl i) < Clolmias), Yo € Un(),

1L bl r2(as) < Clldllrzan, Yo € Un(€).

Proof: See [4, Lemma 6.1]. O
LEMMA 5.2. For ¢ € Up(05Y;), there exist two positive constants Cy and Cs, indepen-
dent of h and |Q;|, such that

Cilldllzrzonny < _ inf  [|8llare) < Colldllarrzaq);
9EUL(Q:)D|og; =9

Cil¢lmireon,y < inf Bl (9 < Coldlmaaay-
PEUR () dloa; =¢

Proof: See [4, Lemma 6.2]. O
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LEMMA 5.3. There exists a constant C > 0 independent of h and |$2;| such that

||Il?Qi‘£||H1/2(BQ;) < C||(£||H1/2(8§2,-) V § € Un(0%).

Proof: See [4, Lemma 6.3]. O
LEMMA 5.4. There exist positive constants C1 and Cy independent of H, h, and the

coefficient of (2.1), such that for all \; € Ag),

PiCLI Y X320, < il < piCal I Nil32 (60,

Proof: See [4, Theorem 6.5]. 0O
We define the interface averaging operator Ep, by

Ep = RrRp

which computes a weighted average across the subdomain interface I" and then distributes the
averages to the boundary points of the subdomain.

The interface averaging operator Ep satisfies the following bound:

LEMMA 5.5.

2 H ? 2
|EDAI‘|§F SC 1+10gﬁ |AF|§1",

for any A\r € Ar, where C'is a positive constant independent of H, h, and the coefficient of
(2.1), B
Proof: Given any Ar € Ar, we have

EpAcly, <2 (1Acl}, + Ae = EpAcly,)
<2 (|)\1“|2§r + |Br (\r — EpAr) |25r)
N
(5.1) =2 <|)\r|?§r + Z | (Ar — EpAr); |§1(_‘z)> )
i=1

where (Ar — EpAr) ; is the restriction of Ar — EpAr to the subdomain €);. Also let A; be
the restriction of Ar to the subdomain 2; and set

(52 wi(x) = (v — EpAr)i(x) = Y 61(Ai(x) — A;(x)), x€0QiNT.
JENK

Here N is the set of indices of the subdomains that have x on their boundaries. Since a fine
edge/face only belongs to exactly two subdomains, we have, for an edge/face F% C 99; that
is also shared by 1,

(53) V; = 6;/\, —5;-)\]', on ]ﬂj
We note that the simple inequality
12 :
szsj S mln(pia p]);

holds for v € [1/2, c0).
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Given a subdomain 2;, we define partition of unity functions associated with its edges/faces.
Let ( be the characteristic function of F, i.e., the function that is identically one on F and
zero on 0Q;\F. We clearly have

Z (r(x) =1, almost everywhere on 9€2;\092.
FCoQ;

We also need the partition of unity functions associated with the edges/faces for a function in
the space Uy (€);), denoted by ¥+, which is defined in [23, Lemma 4.23].
We have

(54) oil%0 <C Y [ruvilin-
r L r
FrICoQ;

By Lemma 5.4, with X; 7i; the average over F%,
|Cfijvi|§£i) < Copi |17 (C]—‘ifvi)ﬁ{l/Z(BQ,-)
= Copi| I} (CP’J‘ stx - )\j)) |12 (002
= C2Pi5;2|1}?m (CFis (M — A7) |%11/2(asz,-)
< 20291'5;[2 (II,?Q" (Cris (i = Xi7i3)) 312 002
(5.5) S N (S OVIEDVP=I) |fql/2(asz,-)) .

We estimate these two terms in (5.5) separately.
The first term is estimated as follows:

2 ) — ) ) -
piST |7 (Cris(Ni = Xi49)) ooy < ilIR (19?1'1‘1;?9’ (Ai — )‘i,f”)) [12(00,)

< pilld 7 I (N = X i) 372 002

< pill 9 i (TP N — (I;?Qi)\i)fff)||§fééz(f;j)

H\? a0
(5.6) < Cp; (1 + log ﬁ) |II?Q’)‘i|le/2(aQ,-)’

where we use (5.3) and the definition of 1 ,‘? 2 for the first inequality. Using Lemma 5.3, we

obtain the second inequality. We use }f i (Xz-, Fii) = ( II‘?Q" ;) Fis and [23, Lemma 4.26] for
the penultimate and final inequalities.
For the second term in (5.5), similarly as for the first term, we have,

2 . ~ . 89; -
pid§ 1Y (s g = Nr0)) Bnra oy < PR (ﬁfﬁfh (N - )‘j,fff)) |21/2(50:)

0 ~
<pilldFad, " (A — Aj,f“)'lfv{éé?(]:ij)
oQ; 09
< palldris (2 = (IR0 ) Py s
H\? 50,
(5.7 < Cp;j (1 + log F) II,?QJ /\jlfm/z(aszj):

where we use (5.3) and the definition of I;?Q" and I,?Qj for the first inequality. Using

Lemma 5.3, we obtain the second inequality. We use I,‘?Q" AjFi) = (I ,‘?Qj Aj) i and
[23, Lemma 4.26] for the penultimate and final inequalities.
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Combining (5.6), (5.7), (5.5), and (5.4), we have

H\? . Q;
|Uz'|i,§i> < CCy (1 + log E) (pz‘u}?m)‘iﬁp/?(agi) + il J/\j|%11/2(agj))

Cs H\® 2 2
(5.8) SCE 1+log — <|)\i|slgi)+|)‘j|slgj))a

where we use Lemma 5.4 again for the final inequality.

. . 2
Using (5.1), (5.2), and (5.8), we obtain |ED)\F|%F <C(1+logi) |>\p|2§F. 0

6. Condition number estimate for BDDC preconditioner. We are now ready to for-
mulate and prove our main result; it follows as in the proof of [ 12, Theorem 1] using Lemma 5.5.
Also see the proof of [16, Theorem 25], [27, Lemma 4.6], [25, Lemma 4.7], and [26, Theo-
rem 2.8].

THEOREM 6.1. The condition number of the preconditioned operator M —1 §r‘ is bounded
by C(1 + log %)2, where C'is a constant which is independent of h, H, and the coefficients

pof(2.1)
Proof: 1t is enough to prove that, for any Ar € Ar,

MMM < MSpAr < C (1+ log(H/R))? MM,
Lower bound: Let
T d-1p -1 n
(6.1) wr = (RD,I‘SIT RD,F) Ar € Ar.

Using the properties ﬁi‘f I:BD,F = é{,,rér = I and (6.1), we have

~ ~ ~ 1
AT MAr = AT (R{,,FSF—IRD,F) Ar = Mwr
= Agéggrgflﬁp’rwr =< EI‘/\F, gflﬁp,rwl“ >§r

<< ﬁr)\r,ér)\r >%ﬁ2< §;1§D,rwr,§;lépyr’wr >1/2

Sr
e~ 1/2 e e e 1/2
= </\17:R1TS1“R1“/\1“) (ngg’FS;lerElRD,rwr)
e~ 1/2
_ (,\%R%’SFRFAF) (M) 2.
We obtain
M MAr < ATSpAr,

by canceling a common factor and squaring.
Upper bound: Using the definition of wr in (6.1), the Cauchy-Schwarz inequality, and
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Lemma 5.5, we obtain the upper bound:

M SrAr = \LRI St RrRY, 1S5 Rp rwr
= < Rrr, EpSp ' Rprur >3,
< < Rer, Rer >1§/:

< C < Redr, Bode >Y? (1 +log(H/) S5 Rp,rurls,

o—1D o—1pD 1/2
< EDSF IRD,FU}F, EDSF IRD,FUJF >§i

e ~ 1/2 e e e~ 1/2
= C(1+1log(H/h)) (A%’ RT SFRFAF) (wE RE,FSEISFS;IRDIwF)

~ 1/2
= C'(1+1log(H/h)) (A%’SFAF) (M)

Thus, ALSrAr < C (1 +log(H/h))> XEMAp. O

7. Numerical experiments. We have applied our BDDC algorithms to the model prob-
lem (2.1), where Q = [0, 1]2. We decompose the unit square into \/N X \/N subdomains with
the sidelength H = 1/ VN. Equation (2.1) is discretized, in each subdomain, by the lowest
order Raviart-Thomas finite elements and the space of piecewise constants with a finite ele-
ment diameter h, for the velocity and pressure, respectively. The preconditioned conjugate
gradient iteration is stopped when the l2-norm of the residual has been reduced by a factor of
10-S.

We have carried out two different sets of experiments to obtain iteration counts and con-
dition number estimates. All the experimental results are fully consistent with our theory.

TABLE 7.1

Condition number estimates and iteration counts for the operator with the BDDC preconditioner with a change

of the number of subdomains. % =8andp=1.

Number of Subdomains | Iterations Condition number
4x4 7 2.53
8 x8 10 3.01
12 x 12 10 3.06
16 x 16 10 3.06
20 x 20 10 3.06

In the first set of experiments, we take the coefficient p = 1. Table 7.1 gives the iteration
counts and the estimates of the condition numbers, with a change of the number of subdo-
mains. We find that the condition numbers are independent of the number of subdomains.
Table 7.2 gives results with a change of the size of the subdomain problems.

TABLE 7.2
Condition number estimates and iteration counts for the operator with the BDDC preconditioner with a change
of the size of the subdomain problems. 8 X 8 subdomains and p = 1.

% Iterations Condition number
4 8 2.23
8 10 3.01
12 11 3.54
16 11 3.95
20 11 4.29
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TABLE 7.3
Condition number estimates and iteration counts for the operator with the BDDC preconditioner with a change
of the number of subdomains. % = 8 and p in a checkerboard pattern.
p=1orp=100 p=1orp=10000
Number of Subdomains | Iterations Condition number | Iterations Condition number
4x4 8 2.98 7 2.99
8% 8 10 2.97 10 2.99
12 x 12 11 2.98 10 2.99
16 x 16 11 2.98 10 2.99
20 x 20 10 2.98 10 2.99
TABLE 7.4

Condition number estimates and iteration counts for the operator with the BDDC preconditioner with a change

of the size of the subdomain problems. 8 x 8 subdomains and p in a checkerboard pattern.

p:

p=1orp=100 p = 1or p=10000
% Iterations Condition number | Iterations Condition number
4 9 2.19 9 2.20
8 10 2.97 10 2.99
12 11 3.51 11 3.52
16 12 3.92 11 3.94
20 13 4.26 11 4.27

In the second set of experiments, we take the coefficient p = 1 in half the subdomains and

100 or p = 10000 in the neighboring subdomains in a checkerboard pattern. Table 7.3

gives the iteration counts and condition number estimates with a change of the number of sub-
domains. We find that the condition numbers are independent of the number of subdomains.
Table 7.4 gives results with a change of the size of the subdomain problems.
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