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EXTENSIONS OF THE HHT-a METHOD TO DIFFERENTIAL-ALGEBRAIC
EQUATIONS IN MECHANICS*
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Abstract. We present second order extensions of the Hilber-Hughes-Taylor-a (HHT-a) method for systems of
overdetermined differential-algebraic equations (ODAEs) arising, for example, in mechanics. A detailed analysis
of extensions of the HHT-oe method is given. In particular a local and global error analysis is presented. Second
order convergence is theoretically demonstrated and practically illustrated by numerical experiments. A new variable
stepsize formula is proposed which preserves the second order of the method.
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1. Introduction. The Hilber-Hughes-Taylor-a (HHT-&¢) method [6, 7] and its general-
izations, such as the generalized-a method [3, 4], are widely used in structural and flexible
multibody dynamics. This paper is concerned with extending the HHT-a method to sys-
tems of overdetermined differential-algebraic equations (ODAEs) with index 3 constraints
and their underlying index 2 constraints, e.g., to systems in mechanics having holonomic
constraints. An extension of the HHT-a method to index 2 DAEs, e.g., to systems in mechan-
ics with nonholonomic constraints, is briefly discussed as well. We have found extensions of
the HHT-a method preserving its second order convergence. Our extensions are indirect in
the sense that we make use of the partitioned and additive structures of the ODAEs. Detailed
mathematical proofs of second order convergence of extensions of the HHT-a method to the
systems of ODAESs considered are given. A new variable stepsize formula is proposed which
preserves the second order of the method. Second order convergence of these extensions is
numerically illustrated on two test problems.

For DAEs global error estimates generally do not follow directly from local error esti-
mates. The error propagation mechanism of a method for DAEs is usually more complicated
than for ordinary differential equations (ODEs). In particular, for DAEs one cannot gener-
ally infer a global order of convergence directly from its local error estimates, as an order
reduction may occur due to error propagation [1]. Analysis of the direct extension of the
HHT-a method to linear DAEs was performed in [2]. It was shown that for semi-explicit
index 3 linear DAEs the direct application of the HHT-a method is inconsistent and suffers
from instabilities, but that it may still converge when applied with constant stepsize, simi-
larly to BDF methods [1]. A first order extension of the HHT-a method to holonomically
constrained mechanical systems was proposed in [12] and is based on projecting the solution
of the underlying ODEs onto the constraints after each step. In [11] the direct application of
the HHT-a method to index 3 holonomically constrained mechanical systems is considered,
but no convergence result is given. The extensions of the HHT-a method that we present in
this paper have second order convergence without relying on underlying ODEs and they also
directly preserve the underlying index 2 constraints.

This paper is organized as follows. In Section 2 we describe the original HHT-ow method
for second order systems of ODEs and we propose a new variable stepsize formula preserving
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the second order of the method. In Section 3 we present extensions of the HHT-a method to
systems of ODAEs with index 3 constraints and underlying index 2 constraints. In Section 4
we give a detailed analysis of extensions of the HHT-a method to these systems of ODAE:s.
In particular, we show existence and uniqueness of the numerical solution, we analyze the
local error of the method, its stability with respect to consistent perturbations in the initial
values, and prove its global second order convergence. In Section 5 we illustrate the second
order convergence of an extended HHT-a method on two test problems. In Section 6 we
propose an extension of the HHT-a method for index 2 DAEs. A short conclusion is given in
Section 7.

2. The HHT-a method for second order systems of ODEs. Second order systems of
ODEs y" = f(t,y,y') are equivalent to

2.1) vy =2 2Z=a a=f(ty,2).

In mechanics, y represents generalized coordinates, 2z represents the corresponding velocities,
a represents the corresponding accelerations, f(t,y,z) = M ~'F(t,y,z) where M is the
mass matrix and F'(t,y, z) represents external forces. The HHT-a method for the system of
equations (2.1) can be expressed as an implicit non-standard one-step method

(Y1, 21,01) = @1 (Yo, 20, a0)

as follows [6, 7]

h2
(2.2a) y1=yo + hzo + > (1 =2B)ag + 2Pay) ,
(2.2b) z1=20 + h((1 —7)ap +~va1),
(22(:) ai :(]‘ + a)f(t17y17 2’1) - af(t()vyOazO)a

where h is the stepsize and t1 := o + h. For the HHT-a method (2.2) the coefficients a, 3,y
are chosen according to
1 (1—a)? 1
a€|:—§,0:|, ﬂ—T, ’)’—5—04.

The free coefficient « is a damping parameter. Notice that the notation for a¢ and a; may
be misleading. These values are not really approximations of a(tg) and a(t;) respectively,
but of a(to + ah) and a(ty + ah). The coefficient v = % — a is determined such that
the method is of local order 2 in z when ag — a(ty + ah) = O(h?). When ag — a(to +
ah) = O(h), e.g., when ap = a(tg) = f(to,Yo,20) the method is only of local order
1 in z for the first step, i.e., z1 — 2(to + h) = O(h?). However, in this situation since
a1 — a(t1 + ah) = O(h?) the next step (y2, 22, a2) has nevertheless an error estimate in z
of the form z3 — 2(¢; + h) = O(h®). The HHT-a method is thus self-correcting, explaining
in part its global second order convergence even when ag is taken as ag = f (o, %o, 20). The
HHT-a method is generally applied with constant stepsize in order to keep its second order
accuracy. For qg (ﬁ) coming from the previous step with stepsize 7L, by changing the stepsize
from h to h # h, ay is no more an approximation of local order 1 to a(t; + ah), i.e., it
does not satisfy a; — a(t; + ah) = O(h?). Hence, without any modification the HHT-«
method reduces to a first order method for all variables. To reestablish global second order
convergence while still allowing stepsize changes using ao(ﬁ) from the previous step taken
with stepsize h, one can replace the definition of ag for the current step by

23) ao = £(to,yo, 20) + %(Go(h) — F(toryo, 20)).
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Simply taking ag := af(t1,y1,21) + (1 — @) f (to, Yo, 20) analogously to (2.2¢) leads to the
expression 21 = 29 + h (% f(to, 0, 20) + 5 f(t1,y1,21)) which corresponds to the trape-
zoidal rule which has no damping parameter « and is thus not recommended.

3. Extensions of the HHT-o method to ODAEs. We consider semi-explicit index 3
DAEs of the form

(3.12) y'=z,

(3.1b) Z'=a+r(ty, ),
(3.1¢) a=f(t,y,2),
(3.1d) 0=g(t,y),

where we assume that g, (¢, y)r(¢,y, A) is invertible in the region of interest. In mechanics
(3.1d) represents holonomic constraints, A represents Lagrange multipliers, and r(t,y, A) =
—M1gl'(t,y) X where M is the mass matrix and —g.f (t, y) A represents reaction forces com-
ing from the constraints [1]. Differentiating (3.1d) once with respect to £, we obtain additional
constraints

(3.1e) 0=g:(t,y) +gy(t, )z

The whole system of ODAEs (3.1) is of index 2. One more differentiation of (3.1e) with
respect to ¢ leads to

(3.2) 0= gult,y) + 29y (t,y)z + 94y (t,y) (2, 2) + 94 (£, ) (f(t, ¥, 2) +7(t,y,N)).

We will not make a direct use of these additional constraints (3.2) in the numerical scheme
(3.4) below. Nevertheless, it will be useful to consider them in the analysis of the method.
From the constraints (3.2), one more differentiation gives an expression for A’,

33) N= (—gyr)\)—l (gttt + 391y 2 + 39tyy (2, 2) + Gyyy(2,2,2) + 39ey (f + 1)
+39yy(5, f 1) + gy (fu+ foz + Fo(f 1) 410 +12))

where we have not written explicitly the arguments (¢, y, z, A) for f,7, g, fy,7y, gy. etc.

We propose a new generalization of the HHT-a method for the system (3.1). Although
different in essence our approach is reminiscent of the GGL/stabilized index 2 formulation
[5]. Here, instead of artificially introducing additional new algebraic variables in (3.1a), we
consider directly the systems of ODAEs (3.1). Given (yo, 20, a0) we define the extended
HHT-a method for (3.1) as follows

h? h?
(3.4a) Y1 =%Yo + hzg + ? ((1 - 2,8)(10 -+ 2,3(11) + 7((1 - b)RO + le),

(3.4b) z1=20 +h((1=7%)ag +va1) + g (Ro + Ry),

(3.4¢) a1 =(1+a)f(t1,y1,21) — af(to, Yo, 20),

where b # 1/2 is a free coefficient,

(3.4d) Ro :=r(to,y0,Mo),  Ri:=r(ty,y1, A1),

and Ay is not a value A9 coming from the previous step, but Ag and A; are locally determined
by the two sets of constraints

(3.4e) 0=g(ti,y), 0=g:(t1,y1) + gy(t1,y1)21.
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This determination of Ag and A4 is an important point. The numerical solution (y1, 21) thus
satisfies both constraints (3.1d)-(3.1e) at each timestep. We propose the simple choice b = 0.
For b = 0 and a = 0 the method is an additive combination of the 2-stage Lobatto ITIA and
Lobatto IIIB implicit Runge-Kutta coefficients, and is known to be of second order for all
variables [9] (note that it is not the combination of Lobatto IITA and Lobatto IIIB coefficients
given in [8] since for unconstrained problems the HHT-a method is simply equivalent to the
trapezoidal rule, the 2-stage Lobatto IIIA method). To make the method less implicit, one can
replace Ry in (3.4d) by Ry := r(t1, %1, A1) where

3.5) Y1 := yo + hzo.

Another possibility is to take b = 0 and to replace the expression (Rg + R1)/2 in (3.4b) by
the midpoint approximation

h +

and also with y; replaced by (3.5). The results given in this paper remain valid with these sim-
plifications under some minor modifications. In particular, second order global convergence
as shown in Theorem 4.5 also holds.

4. Analysis of the extended HHT-a method for ODAEs. First we show existence and
uniqueness of the numerical solution of the extended HHT-a method (3.4).

THEOREM 4.1. Consider the overdetermined system of DAEs (3.1) with initial condi-
tions (Yo, 20, a0) = (Yo(h), z0(h), ag(h)) depending on h and satisfying

g(to,y0) = O(K?),  g¢(to,y0) + gy(to,y0)20 = O(h*), ao — a(te + ah) = O(h).

Then for 0 < h < hq there exists a unique solution (y1, z1, a1, Ao, A1) depending on h to the
system of equations (3.4) in a neighborhood of (yo, 20, o, Ao, Ao) where Ag = Ao (h) satisfies

ge(to, yo) + 294y (to, yo)zo + gyy (to, yo)(20, 20)
+ gy (to,40) (f(to, yo, 20) + r(to, Yo, Ao)) = O(h).

Moreover, we have the estimates

(4.1a) Y1 — Yo = O(h), 1 — R = O(h), a; —ag = O(h),
(4.1b) Ao —Xo =O(h), Ay —2Xo=0(h).

REMARK 4.2. Note that the numerical solution (y1, 21, a1, Ag, A1) is functionnally inde-
pendent of Ag. The value Ag only indicates a solution branch to which the numerical solution
is close. Varying slightly A\g to Ag + § with a small perturbation § = o(1) does not change
the numerical solution (y1, 21, a1, Ag, A1).

Proof. The proof of this theorem can be made by application of the implicit function
theorem. We first introduce directly the definition (3.4d) of Ry, R; into (3.4a) and (3.4b).
Then we also replace partially some expressions for y; and 2; explicitly in (3.4e). Multiplying
the two equations of (3.4€) by 2/h? and 1/h respectively, we obtain the equivalent system of
equations

h2
O=y1 - (yo + hzo + 7((1 —2B)ao + 2Ba1 + (1 — b)r(to, yo, Ao) + br(thyl,/\l))),
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1 1
0=2 — (zo +h((1 = 7)ao + yar + 57 (t0, 90, Ao) + §T(t1ay1aA1)))’

0=a1 — (1 +a)f(t1,91,21) — af (to, 40, ) )
2

2 h
0= mg(tl,yo + hzo + 7((1 —2B)ag + 2Ba1 + (1 — b)r(to,yo, Ao) + br(tlaylaAl)))a

1
= — t
0 hgt( 1,91)

1 1 1
+Egy(t1,y1) (Zo + h((1 = 7)ao + va1 + ir(to,yo,/\o) + 57‘(751,91,1\1))) .

Replacing a; by its expression (3.4c) in the last two equations and then expanding in A around
(to,yo, 20) We obtain

(9¢(to, yo) + gy (%o, yo0)20)

S o

2
Ozﬁg(to,yo) +
+gy(to, yo) ((1 —2B)ao + 2B f(to, Yo, 20) + (1 — b)7(to, Y0, Ao) + br(to, yo, Al))
+9::(to, yo) + 29ty (to, Yo) 20 + gyy(to, yo) (20, 20) + O(h),
)

1
0= E(gt(tO:yo + gy (to, y0)20) + et (to, Yo) + 29¢y(to, Y0)20 + gyy(to, yo) (20, 20)

1 1
+gy(t0,yo)<(1 —¥)ao + v f(to,yo, 20) + §T(toay0,Ao) + iT(toaymAl)) +O(h).

By using the hypotheses of the theorem all equations are satisfied at h = 0 by

(¥1(0), 21(0), a1(0), Ao (0), A1(0)) := (y0(0), 20(0), a0(0), 20(0), X0 (0))-

The Jacobian at h = 0 of the above equations with respect to (y1, 21, a1, Ag, A1) is given by

I O O (0] 0]
O I O (0] 0]
* x ] 0] 0]
x x x (1—bMy bMy
% % % %Mo %Mo

where Mo := gy (to,y0)ra(to, Yo, Ao) is invertible. Since

(1 -b)My bM, ]z [ (1;1))
2

b
Mo Mo e

2

the Jacobian at h = 0 is invertible provided b # 1/2. The conclusion and the estimates (4.1)
now follow by application of the implicit function theorem. [0

We now consider local error estimates:

THEOREM 4.3. Consider the overdetermined system of DAEs (3.1) with initial condi-
tions (Yo, 20, Gg) at to satisfying

g(to,y0) =0, g¢(to,yo) + gy(to,%0)20 =0, ao — a(te + ah) = O(h),
and let \g be such that

et (to, o) +2gty (to, o) 20+ 7yy (to, Yo) (20, 20) +9y (to, Yo) (f (to, Yo, 20) +7(to, Yo, Xo)) = 0.
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Then for 0 < h < hg the numerical solution (y1,2z1,a1) at ty = to + h to the system of
equations (3.4) satisfies

(42) Y1 — y(tl) = O(h?’), zZ1 — Z(tl) = 0(h2), ay — a(t1 + Oéh) = O(hz),

where (y(t),z(t)) is the exact solution to (3.1) at t passing through (yo, z0) at to. If in
addition we assume that

(4.3) ao — a(to + ah) = O(h?)
then
4.4) 21 — 2(t1) = O(h%).

Proof. The Taylor series of the exact solution (y(%), z(t)) at t; = to + h satisfies

2
y(t1) = yo + hzo + % (fo+10) + O(R?), z(t1) = 2o + h(fo + ro) + O(h?),

where fo := f(to, Yo, 20) and ro := r(tg, Yo, o). We know from Theorem 4.1 that Ag(h) —
Ao = O(h) and A1 (h) — Ao = O(h). For the numerical solution (yi, z1) we have by direct
application of the estimates (4.1) in the definition (3.4a)-(3.4b)

h2
Y1 =yo + hzo + ?(fo +19) +O(h*), 21 =20+ h(fo+r0)+O(h?).

Hence, we obtain y; —y(t1) = O(h?®) and 21 — 2(¢1) = O(h?). From (2.1) and (3.4c¢) for a;
we have

a(ty + ah) = fo+ (L + a)h(feo + fyg2o + fz0(fo +10)) + O(R?)
and
a1 = fo+ (1 + a)h(fio + fyozo + fzo(fo +10)) + O(hz)-

A direct consequence is the estimate a; — a(t; + ah) = O(h?). It remains to show (4.4)
when (4.3) holds. The condition ag — a(tg + ah) = O(h?) is equivalent to

ao = fo + ha(fig + fygzo + fz0(fo +10)) + O(h?).

The Taylor series of z(t1) at to satisfies

h2
2(t1) = Zo+h(f0+7‘o)+7 (fro + fyo20 + Fz0(fo +10) + Teg + Tyg20 + TagAy) +O(h®)

where Aj, corresponds to the expression (3.3) evaluated at (¢o, yo, 20, Ao ). Since y = 1/2 — «
we get

(3+a) a0+ (5—) a1 =fo+ 5o+ funia + Feolfa + 7o) + 00,

We also have

Ro = 1o + hragAy(0) + O(h?), Ri =g + h(ryg + ryg2o + raoA1(0)) + O(R?).
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Putting all previous estimates together we obtain

2
21=20 + h(fo + 7o) + % (fto + fyo2o + fzo(fo +10) + 710
+ Tyg20 + Tao(A5(0) + 41(0))) + O(?).

Thus, it remains to show that A{(0) + A](0) = Aj. This expression can be obtained by
expanding

1
4.5) 0=12 (ge(t1,y1) + gy(t1, 1) 21)
around (%o, 4o, 20, o) into h-powers and then letting h — 0. First, we write y; = yo + ¢
with & := hzg + h?/2(fo + 10) + O(h®) = O(h) and we expand in h and §

1
ge(to + h,yo + 6) = gig + Getoh + Giyod + 3 (geet0h® + 2011y hS + Gty (8,6)) + O(R®),

1 .
9y (tO + h,yo + 6) =0yo T+ gtyoh + gyyo‘s + D) (gttyoh2 + 2gtyy0h6 + gyyyo((sa 6)) + O(h3)
Expanding (4.5) in h-powers, grouping the terms, and letting h — O we finally obtain

0=gt1t0 + 3Gttyg20 + 3Gtyyo (205 20) + Gyyyo (20, 20, 20) + 3Gty (fo + o)
+39yy0 (20, fo + 10) + 9yo (fro + fygz0 + f20(fo +r0) + T80 + ry020)
+9y9T20(Ag(0) + A1(0)).
From (3.3) this leads to the desired result A(0) + A} (0) = A{ and therefore 21 — z(t1) =
O(h3).0
To analyze the error propagation we introduce the projectors

Q(tv Y, )‘) = T)\(ta Y, )‘)(gy(ta y)n(t, Y, )‘))_lgy(tv y): P(t7 Y, )‘) =1 Q(ta Y, )‘)
They have the properties

Q(ta Y, A)Tk(ta Y, )‘) = T/\(ta Y, ’\)7 9y (ta y)Q(tJ Y, )‘) = gy(ta y):

P(t,y, ra(t,y,A) =0, 9y(t,y)P(t,y,A) = 0.
Before proving global convergence, we need to study changes in the numerical solution with
respect to perturbations in consistent initial conditions:

THEOREM 4.4. Consider (§i, 2k, ) (Uk, 2k, k) at ty satisfying the constraints (3.1d)
and (3.1¢e). Let Ayy, := U, — Uk, Dzg 1= 2k — 2k, Day := Gy — ay, satisfying

Ayk = O(h), Azk = O(h), Aak = O(h),

and let (Yk+1, Zk+1, Akt1) and (Yr+1,2k+1,ax+1) be the corresponding HHT-ov solutions
(3.4). Then we have
Pry1Ayp1 = PyAyy, + hPy Az + (1/2 — B) h* P Aay,
+O(h|| Py Aygl| + h?|| Pr Az + h||Aaxl]),
hPyy1Azpy1 =hPpAzy, + (1 — ) B> Py Aay,
+O(h*|| PeAyg| + B?[| PrAzg|| + h®[| Aay])),
h?Aayy1=O0(h?||PyAyg|| + h?|| Py Az|| + h*|| Aag]),
Qr+1AYk+1 = O(|| Pet1Ayk41 ),
Qr+1A2k+1=O(||Pot1 Ayt | + || Pet1 Azi1]]),



ETNA

Kent State University
etna@mcs.kent.edu

EXTENSIONS OF THE HHT-a METHOD TO DAES IN MECHANICS 197

where Py, 1= P(tk,ﬂk,xk), Piyq = P(tk+1,gk+1,ik+1), and Xk,XkH are such that the
constraints (3.2) are satisfied for (i, %k, M) and (Jes1, Zea1, Ars1) respectively.

Proof. Let A be such that the constraints (3.2) are satisfied for Uk, 2, Xk) and satisfying
e — A = O(h). By Theorem 4.1 we have

Ykt1 — Gk = O(h),  Zkt1 — 2z, = O(h), apt1 —ax = O(h),
Aro =X = O(h),  Kp1 =X = O(h),
Ukt1 — Uk = O(h), Zkt1 — 2z = O(h), Q41 —ap = O(h),
Reo =Xk = O(h),  Kpa =X = O(h).

Hence, we also have
Ayryr = O(h), Azpy1 =O0(h), Aaryr = O(h), AAy =O(h), AAp =O0(h),

where AAyg = Kko — Ago, and AAg; = /A\kl — A1, Substracting (3.4abc) for (Y41, Zk+1,
Qp+1) from (3.4abc) for (Yg+1, Zk+1, ak+1) and linearizing around (¢, Y, 2k, ) We obtain

h2
(4.6a) Aypy1=Ayr +hAzp + > (1 =2B)Aar + 2BAak41)
h2

+? (1 =b)(ry xAyr + raxAAko) + b(Ty kbt 1AYkt1 + Trk+1AAk1))

+O(R*||Aykll* + P2[| Ay ” + B[ AAkol® + P [|AA [?),
(4.6b) Azpy1=Az +h((1—v)Aar +vAagy1)

h
3 (ry e Ayr + Ak ANk + 7y k41 AYkt1 + rx k1 AAR1)

+O(hl|Ayel® + Rl Ayriall® + R AAkol® + RlIAA ),
(4.6c) Aapr1=14+a) (fy,k+1AYk+1 + frp+1D%041) — @ (fy rDyr + f2,1A2k)
+O([|Aykl? + | Aykpa [I” + |A2:]17 + [|Azk4411%)
=0([|Aykll + |Ayk+1ll + |Azk || + | A2k ]])-

From

0= g(tk+1,Yr+1), 0= g(tes1,Yrr1),

we obtain by linearization around (¢g41, Jk+1)

4.7) 0 = gy k+1AYkt1 + O(|| Ayt |]?)-

Introducing the expression (4.6a) for Ayg41 we get

1
(4.8) 5 (1 = b)gy,kt172,5P* AAgo + bgy kr17x k41 h> Ak )

= Gy k+1A%k + hgy k102
h2
+ > (1 —2B)gy k+18ak + 289y k+1Aak+1)
2

h
+ > (1 =5)gyk+17yk AYk + bGy k+17y k+1 AYk+1)

+ O | Ayill® + [|Ayksa|® + b2 Aol * + B2 [ AL [[7).-
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From

0= g¢(tht1, Urt1) + 9y (ka1 Urt1)Zh4+15 0 = ge(tht1, Unt1) + 9y (tkt1, Unt1)Zht1,

we obtain by linearization around (¢g+1, Yk+1, 2k-+1)

4.9) 0= 9ty k+1AYk+1 + Gyy,k+1(Zht1, AYkt1) + Gy k+1 D241
+O(| Aygsa |I” + | Azk41]%)-

Introducing the expression for hAzg1 from (4.6b) we get

1 .
(4.10) ) (9y k17,2 Ao + gy ks17r k11 B2 AN L)

= hgty,k-+12Yk+1 + hgyy k+1(Zkt1, AYkt1) + hgy,k+122k

+ B* (1 = ) gy k+180% + Yy h+1Aak41)
2

h
+ 5 (Gy k+1Ty k AYk + Gy k+17yk+1AYk+1)
+ O(P? || Aykll® + Ml Aysall* + Bl Azgsa [P + B2 [ AAkol|* + P [|AAL1[?).

Since by assumption 0 = g(t, k) and 0 = g(tx,yr) We obtain by linearization around
(tk, Un)

(4.11) 0 = gy e Ayk + O(| Ayl ).
Therefore, we can estimate the term gy ;1 Ayy, in (4.8) by
9y k1831 = gy, Ay + O(hl|Aygl)) = O(hl|Aygll + [|Ayk|1?).
We can also estimate the term g, ;+1Az; in (4.8) and (4.10) by
Gy k+1A25 = gy kQrAzk + O(h[|Az|]).
We also have in (4.8) and (4.10)
gyk+18ag = gy kQrAar + O(hl|Aarll),  gyr+18ak11 = Gy rt1Qrr1Aax11-

For b # 1/2 and h sufficiently small the matrix

(1 =D)gyk+17ak  bGy k172 k+1
9y, k+1T )k 9y, k+1T X, k+1

is invertible and has a bounded inverse. Therefore, from (4.8) and (4.10) we obtain the fol-
lowing estimates for h?||AAgo|| and h2||AAg1]|,

(4.12a) h2||AAk0”=O(h||Ayk” + 1 Ayell? + Rl Ay |l + [ AYesal” + AllQr Azl
+ B?|| Az + Bl|Azgsa||* + B (|QrAag]| + 1P| PrAay ||
+ 12 Qi1 Akl + B2 ANk + B2 | Ak |1),

(4.12b) h2||AAk1||=O(h||Ayk|| + 1Ay ]1? + Bl AY k11 | + |AYk41[I” + BlIQr A2
+ 2| Azg|| + hllAzgga [I” + B2 (|QrAa]| + b || Pr Aay|
+ B211Qus1 Aapya || + B2l AAko] + A ANk 7).
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Multiplying (4.6a) and (4.6b) from the left by Pr41 and hPgyq respectively, using
Pyyara g = O(h), Peyira 1 = 0, we get

h2
(4.13a) Pry1Ayry1 = PrAyr + hPy Az, + > (1 =28)PrAay, + 28Py11Aak41)

+O(h)|Ayell + B2 || Ak || + B2 (| Azell + B3| Aax]| + B[ AAso||
+ 12| Ayg|l? + B[ Ayl + B[ AAko[I” + h?[|AAL %),
(4.13b) hPpyy1Azkq1 = hPy Az + B? (1 — 7) PrAag + vPry1Aagr)
+O(R?(| Aygll + 12 ||Agipr || + P2[|Azg | + 1P[|Aak]| + h*[| AAgol|
+ 12| Ayg|l? + B[ Ayl + B[ AAko[I” + A2 [|AAL ).

Inserting the estimates (4.12) and (4.6¢) into (4.13) we obtain

(4.14a) Ppy1Aypy1 = PrAyy + hP Az + (1/2 — B)h* P Aay,

+O(h|Ayell + h? | Ayrall + P2 | Aze]| + 1 [| Azpya || + BP[| Aag]),
(4.14b)  hPyy1Azpyy = hPyAzy + h2(1 — v) Py Aay,

+O(h?[| Ayl + B[ Aygall + W2 | Az || + B2 (| Azpa || + B2 (| Aag]]).

From (4.7) we have

Qr+1AYk11 = O(|| Aypy1[*).

Thus,

Aykr1=Prp1Ayrir + Qrr1Ayki1 = Prer1 Ayprr + O(|Aypa|[1?)
@15 =Py Aykpr + O(|Per1 Ay [1?) = PryrAygta + O(h||Pegr Ayga |)-

Similarly, from (4.11) we have
(4.16) Ayy, = P Ayy + O(h|| PeAyg|)-
From (4.9) we have

Qr+1A2111 = O([[Aygsall + hl[Azgy1l]) = O(|Pry1 Ayptall + Al Azgyal])-

Therefore,

Azpy1=Prp1Aziyr + QrAziyr = Pry1Azigr + O([Aygqall + hl[Azgya]])
(4.17) =Ppr1A2k1 + O(||Pey1 AYpsa || + bl Prp1 Azgpa|])-

Similarly, from 0 = g¢(tk, k) + 9y (tk, Yk )2k and 0 = g;(tk, Yx) + gy (tk, Ur)Zrx We have
(4.18) Az, = PLAzy, + O(HPkAka + h”PkAzkH)

Taking into account the above estimates (4.15)-(4.16)-(4.17)-(4.18) into (4.14) finally leads
to the desired result. O

Global convergence of the HHT-a method (3.4) can now be proved:

THEOREM 4.5. Consider the overdetermined system of DAEs (3.1) with initial condi-
tions (yo, 20) at to and ag satisfying

9(to,y0) =0,  gi(to,y0) + gy(to,yo)20 =0, ao — a(to + ah) = O(h).
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Then the HHT-a solution Yy, 2, Gy ) to the system of equations (3.4) satisfies for0 < h < hg
and t, — tg = nh < Const

Yn —Y(tn) = 0(h2)7 Zn — 2(tn) = 0(h2)7 an —a(tn + ah) = O(hQ) (n >1),

where (y(t), z(t)) is the exact solution to (3.1) at t passing through (yo, zo) at to and a(t) is
given by (3.1c).
Proof. We consider two neighboring HHT-a@ approximations (y’,z1 2k kl)z: ko

a
k> Ok
(y,’jl_l,zfl_l,azl_l);”:kl with k; = 1,...,n and we denote their difference by Ayy, :=

y,’jl — y’,jl_l, Az = z,lgl — z,’jl_l, Aay, = a’,zl - a’,zl_l. We assume that Ay, = O(h),
Az, = O(h), Aay = O(h). These assumptions can be justified by induction, see below.
For k = k1, Ay, , Azk,, Aag, are just the local error (4.2) of the HHT-a method (3.4) with
(y,’:; , z,’c“ll) being the exact solution passing through (y,’jll:i, z,’jll:}) and (y,’:; -1 z,’jll -1 azi )
being the HHT-a numerical approximation from the same point. The HHT-a approxima-
tions satisfy the constraints (3.1d)-(3.1e) and we get by application of Theorem 4.4 for

k=k,....n—1
Pi1Aypy1 =Pu Ay + hP Az + (1/2 = B) h? Py Aay,
+O(h|| P Ay || + h?|| P Az || + B® || P Aag || + b®||QrAal)),
Pri1Azpp1 =PrAz, + (1 — ) hPyAayg,
+O (|| P Ayg|| + hl| PeAzi|| + b2 (| PrAa || + B?[|QrAax])),
hPpt1Aagy1 =O(h|| Py Aygl| + hl|PeAzg || + h?|| Py Aag|| + h*(|QrAakl]),
hQr1Aap11 =O(h|| Py Ayg|| + hl|PeAzi || + B?||PrAag|| + h?(|QrAak]]).-

Taking a norm of these expressions leads to the estimates

1 Pkt1 Ayka | 1Pk Ay
IPor1Bziall | o 4p | (IPEA2
A||PerAaga || | = h||PeAax||
h||Qr+1Aak | hl|QrAax|]
with matrix
14+ 0(h) h+O(R*) h|i—pBl+0(*) O(h?)
v=| 0On 1+0(H) [1-+0(R) O(n)
N D) O(n) O(h) O(n)
O(h) O(h) O(h) O(h)
Defining the matrix
10 0 0
|01 —1-9] 0
T:= 00 1 01’
00 0 1

we can first transform the matrix M by a similarity transformation to the form

1+0(h) h+0(*) h(l3—B8l-[1-9])+0(?*) O(h?)

o m—Llagm O(h) 1+0(h) O(h) O(h)
N:=T"MT =\ on) o(h) o(h) o(h)
o(h) o(h) o(h) o(h)
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For the matrix IV there is a first linear invariant subspace V15 C R* associated to the two
eigenvalues 3 = 1 + O(h) and ps = 1 4+ O(h). This subspace Vi5 is of the form Vi, =
span(e; + O(h), ez + O(h)) where e; := (1,0,0,0)7 € R* and e; := (0,1,0,0)” € R*.
For the matrix IV there is also a second linear invariant subspace V34 C R* associated to the
two eigenvalues uz = 0+ O(h) and pa = 0+ O(h). This subspace Va4 is of the form Va4 =
span(ez + O(h),eq + O(h)) where e3 := (0,0,1,0)T € R* and e4 := (0,0,0,1)T € R%.
Therefore, there is a transformation V- = I + O(h) with inverse V= = I + O(h) such that
NV =V B with B block-diagonal, i.e.,

1+ O(h) O(h) 0 0
Y _ O(h) 1+ O(h) 0 0
B:=V NV = 0 0 O O
0 0 O(h) O(h)
For 2 < m < n, from mh < nh < Const we obtain
o) o(1) o) O(n)
m _ my—1p—1 _ | 01) O(1) 0O(1) O(h)
M7 =TVB™V T =1 o) o) O(h) O2) |
O(h) O(h) O(h) O(h?)
giving
| P Ayl o) 0O(1) 0o(1) O(h) | Pr—m AYr—m||
|1PnAzall | | O1) O(1) O(1) O(h) | P m Azp—m|
hl|PrAan|| | = [ O(h) O(h) O(h) O(h?) A Pr—mAan—m|
hl|@nAay|| O(h) O(h) O(h) O(K?) hl|@n-mAan—ml|
By Theorem 4.4 we have

QrAyr, = O(||PrAysl]), QrAzr = O(|| P Ayk|| + || P Az l]).
Hence since Ay, = Pr Ay + QrAyr, and Az, = PpAz, + Qr Az, we get

IAYA 1AYn—mll + [[AZn—ml| + 2l Aan ]
(4.19) 1Azl | <C | [[AYn—mll + |A2n—m| + hl|Aan_m]|| | -
||Aan|| ”Ayn—m” + ”Azn—m” + h”Aan—m“

First, we consider the HHT-a solution using the exact value a(to + ah). We denote it
by (U, Zk,ax)7_o- For k = 0 we have §, = yo, Zo = 29, and ap = a(to + ah). Taking
m := ky in (4.19) leads to

Ayl < eyh®, [|Azll < c:h®, [|Aan|| < cah®.
The assumptions Ay, = O(h), Az, = O(h), Aap = O(h) are thus justified by induction

on k. Summing up these estimates we obtain

n
[ly(n) _yn” < Z ||yﬁ1 _yfbl_:l” < Cynh3 < Cyh27
ki=1

n
2(tn) = Zall < Y llokt = 257" | < enh® < C.12,
ki=1

n
la(tn + ah) =@l < D [laft — ak 7| < canh® < Cuh®.
k1=1
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Now, suppose that ag satisfies ag = a(to + ah) + O(h). We denote the corresponding
HHT-« solution using this approximate value of ag by (yg, 2k, ar)j_q. We want to estimate
llyn = F,ll, |2n — Znll, and ||an, — @y ||. Using (4.19) for m = n, since §, = yo and Zo = 2o,
we simply obtain

lyn — Tl hllao — o] .
lzn = Znll | <C | hllao —ao|| | = O(h?)
”an_an” h||a0—60||

since ag —ao = ag—a(to+ah) = O(h). The assumptions yr—7,, = O(h), zr —Zr = O(h),
ar — ar = O(h) are also justified by induction on k. By combining the above estimates we
finally we get the desired result

Yn = y(En) Il = llyn = Tall + 7, — y(ta)l| = O(h?),
l2n = 2(tn)ll = 120 = Znll + (122 — 2(t2)[| = O(R?),
”an - a(tn + ah)” = ”an - an” + ”an - a(tn + Oéh)” = O(hz)

Remark that the proof of this Theorem remains valid with variable stepsize provided the
values ay, are corrected for example by (2.3). O

error of extended HHT

errorsin y,z, and a
>
T

FIG. 5.1. Global errors |lyn — y(tn)||2 (O), ||zn — 2(tn)|l2 (0), ||an — a(tn + ah)||2 (X) for first test
problem at t, = 1 and the extended HHT-o method (oc = —0.15,b = 0.3). One observes global convergence of
order 2 in h.

5. Numerical experiments.

5.1. A first test problem. We consider the following mathematical test problem
[ 2 ] _ [ Y120 + 2y221 + etyr Ay

)= (2]
Y5 z2 |’ 3Y222 = 2y121y222 + Y2 ] |7
[0]=[wiy2—1], [0]=]2yyez+yiz |
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" error of extended HHT with modification
10 T 3
10°F E
®
5 107 E
107k E
107 :
10 10 107

larn — a(tn + ah)||2 (X) for first test

FIG. 5.2. Global errors |lyn — y(tn)||2 (O), |[2n — 2(tn)l|2 (), |
= 0.3) with modification (3.5). One observes

problem at tn, = 1 and the extended HHT-ce method (a = —0.15,b
global convergence of order 2 in h.

» error of extended HHT with variable stepsizes
10” T T

errors in y,z, and a
3

h/2

FIG. 5.3. Global errors ||yn — y(tn)||2 (O), ||z — 2(tn)|]2 (0), ||an (hn—1) — a(tn + ahp—1)||2 (X)
for first test problem at tn, = 1 and the extended HHT-ow method (o = —0.15,b = 0.3) with variable stepsize and
unmodified ar,. One observes global convergence of order 1 in h.

Notice that these equations are nonlinear in A;. Consistent initial conditions at to = 0
are given by

ol [20]=1 %] =
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The exact solution to this system of DAEs is given by

t et 21 (t et
[538]:[6‘”]’ [zlgt”:[—%”]’ L@ ]=Le ]
We have applied the extended HHT-a method (3.4) with parameters « = —0.15 and b = 0.3
for various stepsize h. We observe global convergence of order 2 at ¢ = 1 in Fig. 5.1 as
expected from Theorem 4.5. In Fig. 5.2 we have repeated the same numerical experiment
by simply replacing y1 in R; with (3.5). We still observe global convergence of order 2. In
Fig. 5.3 we have applied the HHT-a: method with variable stepsize alternating between h/3
and 2h /3. We have plotted in Fig. 5.3 the error versus the average stepsize h/2. We observe a
reduction to convergence of order one as expected from the remarks in Section 2. To reestab-

lish second order convergence for variable stepsize we have made use of the modification
(2.3) fora,, i.e.,

i(an(hn—l) - f(tn,yn;zn))'

ap = f(tn;'yn;zn) + A
n—1

We have applied again the HHT-a: method with variable stepsize alternating between h/3
and 2h /3 using this modification. This time we observe second order global convergence in
Fig. 5.4.

error of extended HHT with variable stepsizes
10 T T

errorsiny,z, and a

hr2

FIG. 5.4. Global errors ||lyn — y(tn)||2 (O), [|2n — 2(tn)l|2 (0), ||an(hn=1) — a(tn + ahn—1)||2 (X)
for first test problem at tn, = 1 and the extended HHT-o. method (o« = —0.15,b = 0.3) with variable stepsize and
modified ap, (2.3). One observes global convergence of order 2 in h.

5.2. A pendulum model. The pendulum model in Fig. 5.5 was used to carry out a
second set of numerical experiments. Using the notation z; = y; (i = 1,2, 3), the constrained
equations of motion associated with this model are

mz} 0 1 0 I\

mzé = —mg — 0 1 [ )\1 :| ,
2 .

ml_ 1 —czz — k- (ys — 2F) Lsin(ys) —Lcos(ys) 2
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FIG. 5.5. Pendulum model.

while the constraint equations at the position and velocity levels are

Rl il s B R ) B e

The parameters associated with this model are as follows: mass m = 5, length L = 2, spring
stiffness k& = 3000, damping coefficient ¢ = 100, gravitational acceleration g = 9.81. All
units used herein are SI units. The evolution of the pendulum angle y3 = € on the time
interval [0, 4] is shown in Fig. 5.6.

In the numerical experiments, the pendulum is started from an initial position that cor-
responds to y3 = 37/2, and z3 = 10. A reference solution was generated by applying an
explicit Runge-Kutta method of order 4 (RK4) with a small constant stepsize h = 0.00001.
The explicit integrator RK4 was used in conjunction with an equivalent underlying ODE
problem that provided directly the time evolution of y3

2 3
zh+cz3+ k- (yg — 7”) +mgL cos(yz) = 0.

AmL
3

! __
Ys = 23,

Figs. 5.7 and 5.8 support the convergence results obtained in Theorem 4.5. The global error
in y3 and z3 at time ¢ = 2 is plotted in these figures versus a series of stepsize used for
integration. The plots confirm that the global errors |ys , — ys(tn)| and |23, — 23(tn)|
associated with the extended HHT-a method (3.4) are of order two. Note that Figs. 5.7
and 5.8 report results for & = 0,b = 0 and o = —0.3, b = 0 respectively.

6. Extension of the HHT-a method to DAEs with index 2 constraints. Consider
semi-explicit index 2 DAEs of the form

(6.1a) Yy =z,
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time variation of pendulum angle

541 -
52H N
-
S 4 ]
46f .
441 .
4.2 1 1 1 1 1 1 1
0 05 1 15 2 25 3 35 4
time [s]
FI1G. 5.6. Time evolution of pendulum angle y3.
(6.1b) Z'=G+T(t,yazaw);
(6.1¢) a:f(tayaz)a
(6.1d) 0=k(t,y, 2),

where we assume k. (t,y, 2)ry (¢, y, 2, ) is invertible in the region of interest. We can con-
sider for example k(t,y, 2) = g+(t,y) + g4 (¢,y)z from (3.1e) and 7(¢,y, 2,9) = r(t,y, 1)
from (3.1b). We propose a generalization of HHT-a methods for the system (6.1) similar to
(3.4),

h? h?
Y1=Y0 + hzo + o) (1 = 2B)ag + 2Ba1) + 5 By,

z1=20 +h((1 —v)ao +ya1) + hRy 2,
ar = (14 a)f(t1,y1,21) — af(to,yo, 20),

where

h h 1
Ryjp=r (to + 5 Y0 + 520> 5(20 +21),‘I’1/2) .

The algebraic variable ¥y /5 is determined by the constraint
0= k(tl, Y1, 21).

Hence, the numerical solution satisfies the constraint (6.1d) at each timestep. By replacing
the expression for z; explicitly in this equation, we obtain equivalently

1
0= Ek(tlaylazo +h ((1 —v)ao + yai) + th/z) .



ETNA

Kent State University
etna@mcs.kent.edu

EXTENSIONS OF THE HHT-a METHOD TO DAES IN MECHANICS 207

error of extended HHT: Pendulum, 0.=0

errors in angle and angular velocity

FIG. 5.7. Global errors |y3,n — y3(tn)| (O), |23,n — 23(tn )| (0) at tn, = 2 for a simple pendulum and the
extended HHT-oe method (o« = 0,b = 0). One observes global convergence of order 2 in h.

Existence and uniqueness of the numerical solution (y1, 21, a1, ¥1/2) is ensured and can be
shown by application of the implicit function theorem. When k(t,y, z) is linear in z and
7(t,y, 2,1) is linear in ¢ we obtain a linear equation for ¥, . However, since generally
k(t,y,z) or f(t,y, z) are nonlinear in y, we generally have a system of nonlinear equations
to solve in terms of y;. If k(¢,y, 2) and f(t,y, z) are linear in y and z, and if r(¢, y, 2, ) is
linear in 1), we obtain a system of linear equations for (y1, 21, a1, ¥y /2). Global second order
convergence of the new extended HHT-a method can be proved in a similar way as for (3.1).

7. Conclusion. In this paper we have presented second order extensions of the HHT-«
method for systems of ODAEs with index 3 and index 2 constraints arising for example in
mechanics. We have given detailed mathematical proofs of convergence of extensions of the
HHT-a method for semi-explicit ODAEs with index 3 constraints and underlying index 2
constraints. We have taken into account the structure of the equations to extend the HHT-
a method to DAEs in order to keep its second order accuracy. We have also proposed an
elementary way to preserve the second order of the HHT-a method when using variable step-
size, a technique which is also relevant for the HHT-a method when applied to ODEs. The
HHT-a method and its extensions to DAE:s is relatively simple to express and to implement.
However, its analysis in the context of DAEs was found to be surprisingly difficult.

After the submission of this manuscript, we learned about a similar extension of the
generalized-a method found independently by Lunk and Simeon [10]. They consider prob-
lems of the form (3.1) with r(¢,y, ) linear in A\, whereas in our paper r(t,y,\) may be
nonlinear. Their extension is slightly different, when r(t,y, \) = r(t,y)A they replace in
(3.4a) the term (1 - b)Ro +bRy = (]. - b)T(to,yo)Ao + bT(t1,y1)A1 by ((1 — b)T(to, yo) +
br(ti,y1))Ao.
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error of extended HHT: Pendulum, 0=-0.3

errors in angle and angular velocity

FIG. 5.8. Global errors |y3,n — y3(tr)| (O),

23,n — 23(tn)| (o) at tn, = 2 for a simple pendulum and the

extended HHT-o method (o = —0.3,b = 0) One observes global convergence of order 2 in h.
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