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�
Abstract. Bounds on eigenvalues which are independent of both degrees of high-order elements and mesh sizes

are shown for the system preconditioned by bilinear elements for high-order finite element discretizations applied to
a model uniformly elliptic operator.
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1. Introduction. High-order finite element methods for discretizing a second-order uni-
formly elliptic partial differential equation lead to a linear equation

������	��

�
which re-

quires efficient iterative methods, such as Schwarz-based methods (see [5, 14, 17]), precon-
ditioning methods related to multilevel methods, multigrid methods (see [6, 7, 8]), etc. This
is because such linear systems have large condition numbers which depend on the order of
the elements used and the mesh spacing. In particular, an algebraic multigrid (AMG) method
is useful in the case of irregular grids. However it was reported that a direct application of
AMG to

���� � ��
��
is not so efficient; see [8, 16]. The convergence factor degrades rapidly

as the order of the elements is increased. For the case of Stokes and elasticity equations, the
complexity from the high-order finite element discretizations for AMG is even worse than
that of a simple elliptic partial differential equation.

In [6] and [8], a preconditioner constructed by using the Legendre-Gauss-Lobatto quadra-
ture points in each cell as mesh points for a bilinear discretization. The finite element pre-
conditioning can be approximately inverted by one AMG V-cycle. This approach has several
advantages, including the possibility to avoid assembly of the high-order stiffness matrix. Nu-
merical results show that this preconditioning is very effective, especially when accelerated
by a conjugate gradient method. It also has the advantage of a straightforward matrix-free
implementation for the fine grid high-order element matrix. In this paper, it is proven that
the preconditioning yields a preconditioned system with condition number bounded indepen-
dently of the mesh space and the polynomial order of the spectral elements.

In order to show that such a bilinear preconditioning is effective, we will consider a
uniformly elliptic boundary value problem, like

(1.1)
��������
�������� �"!$#&%('��)�+*-,.�"!$#&%('/�

in 0 
1�2�435#63�'�78�2�435#639'
with boundary conditions

(1.2)
�:
<;

on =?> #A@����B�:
<;
on = �

where = 
 = >DC = � with a nonempty = > . Further, we assume that
�?�"!?#�%('

is a strictly
positive function and

,.�E!$#&%.'
is a nonnegative smooth bounded function on 0 . The piece-

wise bilinear finite element preconditioner will be constructed by another uniformly elliptic
boundary operator F , like

FHG ��
������9� G *-I G in 0 
����43J#	39'�7K���43J#	39'
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with the same boundary (1.2). This operator F yields a matrix MFON � to reduce the condition
number of a matrix

���� �
induced by high-order elements applied to (1.1)

For convenience, we assume throughout this paper that the Dirichlet part of the boundary= is

(1.3) = > 
�P5�43JQR7TSU�43J#636V C SU�43J#	3WVX7YP5�43JQ5Z
The main object of this article is to prove that the eigenvalues of

� MFON �	'\[X] ������ are inde-
pendent of the degrees of high-order elements and the mesh sizes. As a result the condition
numbers of the preconditioned systems are fixed and small, so that the complexity is no
longer a problem when the AMG algorithm is applied. This allow one to employ multigrid
algorithms for solving problems like (1.1) with high-order element discretizations, which
guarantees convergence of the strategy of preconditioning the high-order matrix with a bi-
linear or trilinear matrix based on Legendre-Gauss-Lobatto quadrature nodes well suited to
a solution by multigird methods. For a single spectral element, this kind of preconditioning
was analyzed for Legendre spectral collocation methods in [3, 12, 13, 15], for example.

The goal of this paper can be achieved by extending the results of [12] to high-order
elements and by applying ^ ] , ��_ estimates in [18] of a local interpolation operator ` �bac to
a global interpolation operator ` N��ac . Further, we note that such an ^ ] semi-norm estimate
of the local interpolation operator defined on a space of piecewise linear functions can be
extended to the space of ^ ] by modifying the relevant results in [1]. We also note that the
discussions here can be extended to singular value results for general elliptic operators which
are not positive definite. For this, one should refer to [12].

This paper is organized as follows. In the next Section, we recall some known results
on piecewise polynomial bases, interpolation operators, etc. In Section 3, we extend the
results in [12] and [18] which lead to one and two dimensional preconditioning results for the
constant coefficients case in Section 4. The variable coefficients case is dealt with in Section 5
using the tensor representation that appeared in [4]. In Section 6, we provide some numerical
results which support the theories developed. Finally, we mention some conclusions in the
last Section.

2. Preliminary. With the direction notation d 
D!
or
%

, we assume that e�f and ghfi are
natural numbers. Let

P d&j Qlk ajnmpo be the knots in the interval q 
1Sr�435#63WV
such that�43�
)� d oHs d ] s �	�6� s d k a [X] s d k a ��
�35Z

Let
P	t j Q � acjnmXo and

P	u j Q � acjnmpo be the Legendre-Gauss-Lobatto (=:LGL) points in q arranged by�43�
)�vt oBs t ] s �6�	� s t �bac [p] s t ��ac �w
�3
and its corresponding LGL weights respectively. Here e�f denotes the number of subinter-
vals of q 
xSr�435#636V

and g�fi denotes the number of LGL points on a yzf N subinterval by a
translation of q . By the translation from q to a y f N subinterval q fi ��
{S d i [p] # d i V we denote| ��
}P9~ fi&� j Q k a � � aci m ] � jnmpo as the �zf N � LGL points in each subinterval q�fi for y 
}3J#\I.#	�6�6�p# e�f and
enumerate them as

(2.1)
~ fi&� o ��
 d i [p] s ~ fi&� ] s �6�	� s ~ fi&� ��ac [X] s d i 
)�l~ fi�� �bac

where ~ fi�� j 
�� fiI t j * 3I � d i [p] * d i 'W# � fi 
 d i � d i [p]
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and the corresponding LGL weights
P9� fi&� j Q � acjnmpo are given by

(2.2)
� fi�� j 
 � fiI u j # y 
�35#�I.#	�6�	��# e f Z

With
~ fk a�� ] � o ��
 d k a , note that in (2.1) and (2.2)

(2.3)
~ fi [p] � ��ac 
<~ fi�� o #�� fi [p] � ��ac 
<� fi&� o # y 
DI(#6�	�6�p# e f *D3JZ

Let ��j be the space of all polynomials
� j � d ' defined on q whose degrees are less than

or equal to � and let � N��ac be the subspace of � SU�43J#	3WV consisting of piecewise polynomials

of degree less than or equal to g�fi in q5fi . The basis for � N��ac is given by a piecewise La-

grange polynomial basis
P��?� i [X]2� � ac � j 'nQ k a � � ac [p]i m ] � jnm ] C P�� o Q C P�� k a � ac Q k ai m ] and

P�� i � ac Q k a [X]i m ]
with respect to

|
which satisfy���p�"~9�J'�
��6� � �z# where � 
�� y ��39' g fi * � #���
1�"�?��3�' g fi *�,z#� o �E~6�('�
�� o � ��# � 
�;(#	3J#6�	�6��# g fi #� k a ��ac �E~6�('�
�� k a ��ac � � # � 
1� e f ��3�' g fi #6�	�6�X# e f g fi #

and � i ��ac �E~6�('�
D� i ��ac � � # y 
�35#�I.#	�6�	��# e f ��3J#4� y ��39' g fi)� � � � y *<3�' g fi
where � 
 35#�I.#	�6�	�p# ghfi �13J#(,D
x;(#	3J#	�6�6��# g�fi and

�\# y 
¡3J#6�	�6� e}f and
�

denotes the
Kronecker delta function. Even though this Lagrangian basis is actually rather easy to work
with providing preconditioning results, one may prefer another basis

P�¢��.� d 'nQ . The change
of basis may be accomplished algebraically by use of the matrix £ given by £ �v�B
¤¢¥�¦�"~6�('

.
Then if §^ is any matrix representation of an operator ^ � � N��acO¨ � N�bac given in terms of the

representations via the
P9¢���Q

basis then the matrix representation ©^ of ^ in the Lagrangian
basis

P�����Q
is given by ©^ 
 £ §^h£ [X] . Hence it may be enough for us to use the above

piecewise Lagrangian basis functions in this paper. For two dimensional high-order space, letS � N� V _ ��
 � N��ªc)« � N��¬c #
whose basis functions are given by tensor products of one dimensional piecewise Lagrange
polynomials. Let ­ ��ac be the space of all piecewise Lagrange linear functions §® j �E!�' with

respect to
P9t j Q � acjnmpo on q . Define ­ N��ac as the space of all piecewise Lagrange linear functionsP ® fi�� j � d '\Q k a � � aci m ] � jnmpo with respect to

|
. For two dimensional piecewise linear space, letS ­ N� V _ ��
 ­ N��ªc « ­ N� ¬c #

whose basis functions are given by tensor products of one dimensional piecewise Lagrange
linear functions.

Define two interpolation operators ` ��ac � � SU�43J#	3WV ¨ � ��ac � q ' such that� ` ��ac ��'6�"t j '�
<�¥�"t j 'W#A��¯ � Sr�435#636V
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and ` N��ac � � Sr�435#636V ¨ � N��ac � q ' such that� ` N��ac G 'W�"~ fi&� j '�
 G �"~ fi�� j 'n# G ¯ � SU�43J#	3WV°Z
Define a discrete inner product ± �?# Gz² � on � SU�43J#	3WVX7 � Sr�435#636V as

± � # G.² � ��
 k a³i m ]
� ac [p]³jWmpo �¥�"~ fi�� j ' G �"~ fi&� j '2� fi�� j *T�¥�"~ fk a � ��ac ' G �"~ fk a � ��ac '2� f k a � ��ac

and its corresponding norm is given by´ � ´ � 
 ± � #�� ²5µ�� # for
�h¯ � SU�43J#	3WV°Z

Finally, the notation ¶Y·¹¸ for any two real quantities ¶ and ¸ means by that there are
two positive constants which do not depend on mesh sizes and degrees of polynomials such
that

; s»º �½¼¾ s � s»¿ Z
Using this notation, the LGL numerical quadrature rule for a

polynomial of degree
I ghfi (see [1], for example) can be compared as

(2.4) À ][X]pÁ _ � d '.Â d�·
� ac³jnmpo Á

_ �"t j '/Ã j # for all Á ¯ � ��ac Z
The notation

����#�ÄB'
stands for Å ��Æ G Æ for any two vectors

�Ç
{�E� ] #6�	�6�p#��pÈ9'2É and
Ä{
� G ] #6�	�6�p# G È '�É where the superscript Ê denotes the transpose of a vector. The standard spaces^ ] and

� _
will be used.

3. Basic estimates. In this section, we will discuss some estimates of global interpola-
tion operator ` N��ac in terms of ^ ] and

� _
norms. For d ¯}Sr�435#636V

and Ë f ¯}S d i [X] # d i V and a

function
�h¯ ^ ] , let

(3.1) G i � d '��w
D�¥� Ë f '�
Ì��Í�� fiI d * 3I � d i [p] * d i '�Î¥Z
Then for � 
<;¦#635#6�6�	�p# g fi we have

� ` ��ac G i 'W�Et j '�
 G i �"t j '�
Ì� Í � fiI t j * 3I � d i [p] * d i ' Î 
<� �E~ fi&� j '�
�� ` N��ac ��'6�"~ fi�� j 'n#(3.2)

which yields � ` ��ac G i '6� d '�
1� ` N��ac ��'6� Ë f 'nZ
Also, we have

(3.3)
´ � ´ _ ] 
 k³i m ]pÏ � fiI�À ][X]�Ð G i � d ' Ð _ Â d * I� fi À

][p]�Ð GzÑi � d ' Ð _ Â d°Ò
and

(3.4)
´ ` N��ac � ´ _ ] 
 k³i m ]�Ï � fiI�À ][X] Ð � ` ��ac G i 'W� d ' Ð _ Â d * I� fi À

][p] Ð � ` ��ac G i ' Ñ � d ' Ð _ Â d Ò #
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where
´ � ´ ] denotes the standard Sobolev ^ ] norm. From now on, we will use Ð � Ð ] as the

Sobolev ^ ] seminorm and
´ � ´

as the usual
� _

norm. In order to discuss the piecewise linear
finite elements preconditioner, it may be required to analyze the relations between ` �bac §� and §�
in the sense of ^ ]l� and

� _ �
norm. For this purpose, we recall the following lemma (see [1],

[18, Lemma 7.2]) which can be also extended to higher dimensions; see in [18, Theorem 7.3].
We remark that the similar estimates with Chebyshev weight and Chebyshev-Gauss-Lobatto
points are found in [1] and [11].

LEMMA 3.1. It follows that for all G ¯ ­ ��ac
(3.5) Ð G Ð ] · Ð ` �bac G Ð ] # and

´ ` ��ac G ´ · ´ G ´ Z
Note that the result Ð ` ��ac G Ð ] � � Ð G Ð ] in (3.5) can be verified for any function G ¯ ^ ]l� q '

by modifying Theorem 1.7, Corollary 1.9 in Chapter II and Corollary 1.16, Theorem 1.19 in
Chapter III with usages of Theorem 1.15, Lemma 1.18 and Proposition 1.17 in Chapter III
therein in [1] where

´ ` ��ac G ´ ] � � ´ G ´ ] is found. For reader’s convenience, we include the
statement here.

PROPOSITION 3.2. For all G ¯ ^ ] � q ' , there is a positive constant � such that

Ð ` ��ac G Ð ] � � Ð G Ð ] Z
Now the extension of Lemma 3.1 to the global interpolation operator ` N�bac can be done

easily by combining (3.3), (3.4) with Lemma 3.1. Here we state it as theorem.
THEOREM 3.3. For all

��¯ ­ N�bac
Ð ` N��ac � Ð ] · Ð � Ð ] Z

LEMMA 3.4. For Á ¯ � N��ac SU�43J#	3WV , it follows that´ Á ´ · ´ Á ´ � Z
Proof. First note that Á � d ' is a polynomial of degree g fi on

S d i [p] # d i V . Then applying
(2.4) on the interval

S d i [X] # d i V and using (2.3) yield

´ Á ´ _ 
 k a³i m ] À f cf c/Ó µ Ð Á
� d ' Ð _ Â d

· k a³i m ]
� ac³jnmpo Ð Á �E~ fi&� j ' Ð

_ � fi&� j

 k a³i m ]

� ac [X]³jnmpo Ð Á �"~ fi�� j ' Ð _ � fi&� j * Ð Á �E~ fk a � ��ac ' Ð _ � f k a � ��ac * k a [p]³i m ] Ð Á �"~ fi&� ��ac ' Ð _ � fi�� ��ac·�± Á # Á ² � 
 ´ Á ´ _� Z
(3.6)

In the last equivalence in (3.6), the observations (2.3) were used.
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THEOREM 3.5. For all
��¯ ­ N��ac , we have

(3.7)
´ � ´ · ´ ` N� ac � ´ # and

´ � ´ · ´ ` N� ac � ´ � Z
Proof. Since ` N��ac �<¯ � N��ac SU�43J#	3WV , Lemma 3.4 yields

´ ` N��ac � ´ · ´ ` N��ac � ´ � Z Hence for

the proof of (3.7) it is enough to show that for
��¯ ­ N��ac

(3.8)
´ � ´ · ´ ` N�bac � ´ � Z

Using (3.1) and (3.2) for functions G i ¯ ­ �bac and
�h¯ ­ N� c � f , we have

(3.9)
´ � ´ _ 
 k a³i m ] � iI ´ G i ´

_ # k a³i m ] � iI ´ ` ��ac G i ´
_� 
 k a³i m ]

� ac³jnmXo5ÔÔÔ
� ` N��ac �p'W�E~ ij ' ÔÔÔ

_ � i j Z
Since (see [12, Theorem 3.1])´ G i ´ · ´ ` ��ac G i ´ � # for all G i ¯ ­ �bac #
it follows that, using (3.9),

´ � ´ _ · k a³i m ]
� ac³jnmpo ÔÔÔ

� ` N�bac ��'6�"~ ij ' ÔÔÔ
_ � i j Z

Therefore, it is enough to show

(3.10)

k a³i m ]
� ac³jnmpozÔÔÔ

� ` N��ac �p'W�"~ ij ' ÔÔÔ
_ � i j · ´ ` N�bac � ´ _� Z

Actually, because of (2.3) we can rewrite the left term of (3.10) ask a³i m ]
� ac³jnmpozÔÔÔ

� ` N�bac ��'6�"~ ij ' ÔÔÔ
_ � i j 
 k a³i m ]

� ac [X]³jnmpoÕÔÔÔ
� ` N��ac �p'W�E~ ij ' ÔÔÔ

_ � i j * ÔÔÔ
� ` N�bac ��'6�"~ k aj ' ÔÔÔ

_ � k aj
* k a [X]³i m ] ÔÔÔ

� ` N��ac �p'W�E~ i��ac ' ÔÔÔ
_ � i ��ac


 ´ ` N��ac � ´ _�bac * k a [X]³i m ] ÔÔÔ
� ` N��ac �p'W�E~ i��ac ' ÔÔÔ

_ � i ��ac

 ´ ` N��ac � ´ _�bac * k a³i m _ ÔÔÔ

� ` N�bac ��'6�"~ io ' ÔÔÔ
_ � i o Z

Then one may see that (3.10) holds. These arguments complete the proof of (3.8) and conse-
quently (3.7).
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4. Case of constant coefficients:
39Ö

and
IvÖ

. First, we discuss the one dimensional
case. For convenience, let e �w
 e�f and g i �w
 g�fi for the one dimensional case only.
Consider two uniformly positive definite elliptic operators defined in q 
��2�43J#	39'

such that

(4.1)
���×
��H� ¶ ] � Ñ ' Ñ * ¶ _p� # in q #Ø�¥�2�439'�
<� Ñ �23�'�
D;

and

(4.2) FHG 
��H� ¸ ] GzÑ ' Ñ * ¸ _ G # in q # G �2�439'�
 GzÑ ��39'�
�;
where ¶ ] # ¸ ] are positive constants and ¶ _ # ¸ _ are nonnegative constants, leading to two bi-
linear forms on Ù 7 Ù , where Ù ��
�P	��¯ ^ ]l� q 'W#A�¥�2�439'�
D� Ñ �23�'�
<;(Q

,Ú ] �"� # G '�
 À ][p] ¶ ] � Ñ G Ñ * ¶ _ � G Â d and ¸ ] �"� # G '�
 À ][p] ¸ ] � Ñ G Ñ * ¸ _ � G Â d Z
For the high-order and piecewise linear approximations to (4.1) and (4.2), let� N � Û� c ��
�P G ¯ � N� c # G ���439'�
 G Ñ �23�'�
<;(Q5#

­ N � Û� c ��
�P	��¯ ­ N� c #Ø�¥�2�43�'�
<� Ñ ��39'�
D;.Q
whose suitable basis functions

Pl� � Q È� m ] and
P ® � Q È� m ] , respectively, can be given, with

(4.3)
ÂÕ��


dim
� � N � Û� c '�
 dim

� ­ N � Û� c 'nZ
Then the stiffness matrix M� � with high-order elements based on

|
of (4.1) is given byM� � � � #\�('�
 Ú ] �Ü����#\���5'n# � #\�Ý
}3J#\I.#	�6�6�p#�Â¦#

and the stiffness matrix MF N associated with piecewise linear elements based on
|

correspond-
ing to (4.2) is given by MF N � � #��¦'�
 ¸ ] � ® � # ® � 'W# � #��Õ
�3J#\I.#6�	�6��#&Â�Z
Denote Þe �

and Þe N by mass matrices with respect to
P�� � Q È� m ] and

P ® � Q È� m ] , respectively.
That is, � #��Õ
�35#�I(#6�6�	��#&Â�#

Þe � � � #��('�
��Ü����#\���5'n# Þe N � � #\�('�
�� ® ��# ® �J'WZ
Since all the stiffness and mass matrices are symmetric and positive definite, the precon-

ditioned matrix below also has all positive real eigenvalues.
THEOREM 4.1. For every

��
1�"� ] #&��_J#6�	�6�p#�� È ' É , we have� MF N ��#\�4' · � M� � ��#n�4'n# and
� Þe N ��#n�4' · � Þe � ��#\�H'nZ

Hence, the preconditioned matrix MF [p]N M� � has all positive real eigenvalues
P�ß���Q È� m ] inde-

pendent of mesh sizes � i and degrees g i of polynomials. That is, there is absolute positive
constants º and � such that ; s�º � ß¦� � � sD¿ Z
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Proof. Let
� � d ')¯ ­ N � Û� c be represented as

� � d '4
 Å È� m ] � � ® � � d ' . Then its piecewise

polynomial interpolation can be written as
� ` N� c �p'W� d 'R
 Å È� m ] � � � � � d ' . The definitions of

bilinear forms yield that� M� � ��#\�H'¥
 Ú ] � ` N� c � # ` N� c ��' · ´ ` N� c � ´ _ ] #à� MF � ��#n�4'�
 ¸ ] �"� #��p' · ´ � ´ _ ] #
and � Þe � ��#\�4'�
1� ` N� c �?# ` N� c �p'�
 ´ ` N� c � ´ _ # and

� Þe N ��#\�4'�
1�"� #��p'�
 ´ � ´ _ Z
Then using Theorem 3.3 and 3.5 completes the proofs.

For actual computations, the bilinear form
Ú ] � ` N� c �?# ` N� c G ' and

� ` N� c � # ` N� c G ' will be

calculated at LGL points. Define two matrices
�� �

and áe �
as�� � � � #��('�
 Ú ] � � �Ü� � #\� � 'n# áe � � � #\�('�
 ± � � #�� � ² � #

where Ú ] � � �"� # G '�
 ¶ ] ± � Ñ # GzÑâ² � * ¶ _ ± �?# Gz² � Z
Note that áe �

is the diagonal matrix which consists of LGL weights, that is

áe � 

diag

�E� fi�� j '
and employing (2.4) leads to

(4.4)
� M� � ��#\�4' · � �� � ��#n�4'n#

and
� Þe � ��#n�4' · � áe � ��#\�4'

and these matrices
�� �

and áe �
are symmetric and positive definite.

COROLLARY 4.2. The preconditioned matrix MF [p]N �� �
has all positive real eigenvaluesP�ß � Q È� m ] independent of mesh sizes � i and degrees g i of polynomials. That is, there are

absolute positive constants º and � such that; s�º � ß¦� � � sD¿ Z
Proof. Let

�}
��E� ] #&� _ #	�6�	�X#��pÈ	'�É be any nonzero vector. Since� �� � ��#\�4'� MF N ��#n�4' 

� �� � ��#n�4'� M� � ��#n�4'

� M� � ��#\�H'� MF N ��#\�4' #
using the min-max theorem, Theorem 4.1 and (4.4) we have the conclusion. This argument
completes the proof because all involved matrices are symmetric and positive definite.

We now turn to the two dimensional case. For this, we consider the model elliptic oper-
ator

�
such that���×
}�HS ��ã	ã�*���ä6ä6V.*-Iv�?#å�æ
D;

on = > #A@��	�)�æ
<;
on = � #

where = > is the boundary described in (1.3), which leads to the bilinear form

(4.5)
Ú �E�?# G '�
��Ü�)�?#\� G '$*�I(�E�?# G 'W# for

�?# G ¯ ^ ]> � 0 'W#
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where

^ ]> � 0 'b�w
�P	��¯ ^ ] � 0 ' Ð �×
D;
on = > Q5Z

Let S � N � Û� V _ ��
 � N � Û��ªc « � N � Û� ¬c #àS ­ N � Û� V _ ��
 ­ N � Û��ªc « ­ N � Û� ¬c Z
Let us order the LGL points by horizontal lines and we list all LGL points

P9ç�èbQ È �è m ] asç�è8
1�"~6��#&~	�J'W#
where é 
 � *-Â��Ü�+��39'n# � #\�Õ
�35#�I.#	�6�	��#�Â¦#

where
Â

is defined in (4.3). Accordingly, we order the basis vectors ê è��"!?#�%('�¯TS � N � Û� V _
andëRè��"!?#�%('B¯�S ­ N � Û� V _

in the same order. Let M��ì� � and MF ìN � be the stiffness matrices induced
by (4.5) on the space

S � N � Û� V _
and

S ­ N � Û� V _
, respectively. From now on, assume that

¶ Æ 
 ¸ Æ 
}3J#Ø�¥
�35#�I
in the operators

� ] and F ] in (4.1) and (4.2). Then using the one dimensional stiffness
matrices M� ��ac , MF N ac and mass matrices Þe ��ac , Þe N ac , we have

M� ì� � 
 Þe �b¬c « M� ��ªc * M� �b¬c « Þe ��ªc #(4.6) MF ìN � 
 Þe N ¬c « MF N ªc * MF N ¬c « Þe N ªc Z(4.7)

LEMMA 4.3. For every vector
�¤
1�"� ] #6�6�	�X#�� È � '2É , we have

(4.8)
Í � Þe � ¬c « M� � ªc '&��#n� Î · Í � Þe N ¬c « MF N ªc '&��#\� Î

and

(4.9)
Í � M� � ¬c « Þe ��ªc '���#\� Î · Í � MF N ¬c « Þe N ªc '&��#\� Î Z

Proof. First note that all the matrices here are symmetric and positive definite. Hence it is
enough to estimate (4.8) and (4.9) in terms of eigenvalues. Now because of Theorem 4.1 the
conclusions (4.8) and (4.9) can be verified by following Lemma 5.4 in [12]. The details are
as follows: Let

�B]O
»�E� ] #�� _ #6�	�6�X#&��È9'2É and
Ä)]O
í� G ] # G _ #	�6�	�p# G È�'2É . Theorem 4.1 implies

that

(4.10)
� M� ��ac � ] #n� ] ' · � MF N ac � ] #n� ] 'W#$� Þe ��ac Ä ] #\Ä ] ' · � Þe N ac Ä ] #\Ä ] 'W# where d 
<!$#&%�Z

Now consider eigenvalue problems

(4.11) M� ��ac � ] 
�î MF N ac � ] # and Þe ��ac Ä ] 
�ß Þe N ac Ä ] Z
From (4.10) we know that

î
and

ß
are uniformly bounded in terms of mesh sizes � ãi # � äi and

degrees g ãi # g äi . Note that each in (4.11) has a complete set of eigenvectors
�B]� and

Ä)]� ,� #��Õ
�3J#	�6�6�p#�Â
. Therefore the vectors and eigenvaluesï��v�4
¤� ]� « Ä ]� #ØðÕ�v�H
�Ä ]� « � ]� #Añb�v�O
¤î��zß��
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are complete set of eigenvectors and eigenvalues of the eigenvalue problem� Þe � ¬c « M� ��ªc '��}
DñR� Þe N ¬ « MF N ª '&��# and
� M� � ¬c « Þe ��ªc '���
�ñR� MF N ¬ « Þe N ª '&��Z

Hence one can see the uniform bounds of eigenvalues
ñ��v�

because of the uniform bounds ofî
and

ß
in terms of mesh sizes � ãi # � äi and degrees g ãi # g äi .

PROPOSITION 4.4. For every
�}
��E� ] #6�	�6�X#&� È � '�É , it follows that� MF ìN � ��#\�4' · � M� ì� � ��#\�H'nZ

Hence the eigenvalues of
� MF ìN � '\[X] M�bì� � are all positive and bounded. The bounds are inde-

pendent of the mesh sizes � ãi # � äi and the degrees g ãi # g äi of polynomials.
Proof. It follows from Lemma 4.3 with (4.6) and (4.7).
For actual computations of (4.5), that is, for computations of M�bì� � , we use LGL quadra-

ture formula. For this, considerÚ � �E�?# G '�
 ± �)� #�� G.² � * ± � # G.² � #
which can be written as, for

� # G ¯8S � N � Û� V _
Ú � �E�?# G '�
¤Ä É � áe � ¬c « �� � ªc * �� � ¬c « áe � ªc '��

where the vectors
�»

�E� ] #6�6�	�X#�� È � '2É and

Ä�

� G ] #	�6�6�p# G È � '2É are vector representations
of

�¥�"!?#�%('�
 È �³è m ] ��è ê è��"!?#�%(' and G �E!$#�%('�
 È �³è m ] G è ê è��"!?#�%('nZ
Now we will use the matrix MF ìN � in (4.7) as the preconditioner for�� ì� � ��
��
where

(4.12)
�� ì� � �w
 áe � ¬c « �� ��ªc * �� � ¬c « áe ��ªc Z

Then we can show that the eigenvalues of
� MF ìN � '\[p] ���ì� � are bounded well in terms of

mesh sizes � ãi # � äi and degrees g ãi # g äi .
LEMMA 4.5. For every vector

��
1�"� ] #	�6�	�p#�� È �6'2É , we have�&� áe � ¬c « �� ��ªc '&��#\�4' · ��� Þe N ¬c « MF N ªc '���#n�4'
and ��� �� ��¬c « áe � ªc '���#n�4' · �&� MF N ¬c « Þe N ªc '&��#\�4'WZ

Proof. Recall that ò « F is symmetric and positive definite if the matrices ò and F are
symmetric, positive definite. Note that�&� áe ��¬c « �� � ªc '&��#n�4'��� Þe N ¬c « MF N ªc '���#\�H' 
 �&� áe ��¬c « �� � ªc '&��#\�4'�&� Þe � ¬c « M� � ªc '&��#\�4'

��� Þe �b¬c « M� � ªc '&��#\�4'��� Þe N ¬c « MF N ªc '&��#n�4' #
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and �&� �� �b¬c « áe � ªc '&��#\�4'��� MF N ¬c « Þe N ªc '���#n�4' 
 ��� �� ��¬c « áe � ªc '&��#\�4'��� M� � ¬c « Þe � ªc '&��#\�4'
��� M� ��¬c « Þe � ªc '���#\�H'�&� MF N ¬c « Þe N ªc '&��#\�4' Z

Therefore, due to min-max theorem and Lemma 4.3, it is enough to show that��� áe � ¬c « �� ��ªc '���#n�4'��� Þe � ¬c « M� ��ªc '���#n�4' # and

��� �� � ¬c « áe ��ªc '���#\�H'��� M� � ¬c « Þe ��ªc '���#\�H'
are bounded independently of degrees g ãi # g äi and mesh sizes � ãi # � äi . Due to (4.4), this can
be done by following the similar arguments of Lemma 4.3. These arguments complete the
proof.

THEOREM 4.6. For every vector
��
��E� ] #6�	�6�p#&� È �6'�É , it follows that

(4.13)
� MF ìN � ��#\�4' · � �� ì� � ��#n�4'nZ

Hence the eigenvalues of
� §F ìN � 'n[p] ���ì� � are all positive and bounded. The bounds are inde-

pendent of the mesh sizes � ãi # � äi and the degrees g ãi g äi .
Proof. It comes from (4.12) and (4.7) and Lemma 4.5

5. Case of variable coefficients:
IvÖ

. Consider the bilinear form corresponding to (1.1)
and (1.2) as

(5.1)
Úó� �"� # G '�
���� �"!?#�%('��)� #�� G ' *D�Ü,.�"!?#�%('/� # G ' for

�?# G ¯ ^ ]> � 0 'nZ
Let us denote

�Ö ��ac by the differentiation matrix at LGL points (see [4] for example) and
diagonal matrices é and ô by

é ��

diag

����õ:�w
T� �v� 'n# ô ��

diag

�Ü,	õ��w
�, �v� 'W#÷öY
 � *-Â��Ü�+��39'
occurred from the expansions of the

�?�"!?#�%('
and

,.�E!$#&%.'
in terms of

IvÖ
Lagrangian basis

functions such that
� �"!?#�%('�
 Å � �v� � � �E!�'&� � �"%('

and
,.�"!?#�%('ø
 Å , �v� � � �"!�'�� � �E%('

, respec-
tively. Then we will use the tensor representation for the approximations to (5.1) on the spaceS � N � Û� V _

given by (see detailed discussions in [4])������R��
��Eù � ¬c « �Ö É��ªc ' áú è� �Üù � ¬c « �Ö � ªc '$*D� �Ö É� ¬c « ù � ªc ' áú è� � �Ö � ¬c « ù � ªc '$* áú}û�
where

ù ��ac is the identity matrix of order
Â

áú�ü� �w
�ý�� áe � ¬c « áe � ªc 'n# where
ýT
 é or ô Z

Note that the matrix áú ü� is diagonal whose elements are positive because the matricesý��°
 é # ô ' and
� áe ��¬c « áe � ªc ' are diagonal with positive elements. Further, if the ma-

trix é is the identity and the matrix ô is
IJù

, then the matrix
������

is the same as
���ì� � in

(4.12) with �� ��ac 
 �Ö É��ac áe ��ac �Ö ��ac # d 
<!?#�%�Z
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LEMMA 5.1. For any vector
�}
��"� ] #6�6�	�X#�� È � '2É , it follows that�Eù �b¬c « �Ö É��ªc ' áú è� �Üù ��¬c « �Ö ��ªc ' · �Üù ��¬c « �Ö É��ªc 'W� áe ��¬c « áe ��ªc 'W�Üù ��¬c « �Ö ��ªc '(5.2) � �Ö É��¬c « ù � ªc ' áú è� � �Ö � ¬c « ù � ªc ' · � �Ö É��¬c « ù � ªc 'W� áe � ¬c « áe � ªc 'W� �Ö � ¬c « ù � ªc '(5.3) áú}û� · I¦� áe � ¬c « áe ��ªc 'W#(5.4)

where the matrix equivalence ò¤·<F should be understood as� ò ��#n�4' · � F ��#\�4'WZ
Proof. Note that the variable coefficients

� �"!?#�%('
and

,.�"!?#�%('
are positive bounded func-

tions and the matrices áú ü� ¬�þ and
� áe � ¬c « áe � ªc ' are diagonal with positive elements. Hence

for any vector
�

it follows immediately that

(5.5)
Í áú�ü� ��#\� Î · Í � áe �b¬c « áe � ªc '&��#\� Î # where

ýT
 é # ô Z
This argument complete (5.4). Let

Ä�
1�Eù � ¬c « �Ö ��ªc '�� . SinceÍ �Üù ��¬c « �Ö É��ªc ' áú è� �Üù ��¬c « �Ö � ªc '&��#\� Î 
 Í áú è� Ä�#�Ä Î #
we have the conclusion (5.2) with help of (5.5). The similar arguments complete (5.3). The
main goal of this section is to show that the eigenvalues of the preconditioned matrix� MF ìN � ' [X] ���� �
are real and bounded as follows.

THEOREM 5.2. For any vector
�}
��E� ] #6�	�6�X#&� È � '�É , we have� MF ìN � ��#\�4' · � ���� � ��#\�H'nZ

In the sense of eigenvalues, it follows that all eigenvalues of the matrix
� MF ìN � '\[p] ���� � are real

positive and bounded. The bounds are independent of the mesh sizes � ãi # � äi and the degreesg ãi # g äi of piecewise polynomials.
Proof. Note that�Eù �b¬c « �Ö É��ªc 'W� áe �b¬c « áe � ªc 'W�Üù ��¬c « �Ö � ªc '�
 áe �b¬c « �� ��¬c

and � �Ö É��¬c « ù ��ªc '6� áe � ¬c « áe ��ªc '6� �Ö � ¬c « ù ��ªc '�
 �� � ¬c « áe � ¬c Z
Therefore, using Lemma 5.1 one may see that� ����b�9��#\�H' · � �� ì� � ��#n�4'nZ
From Theorem 4.6, � �� ì� � ��#n�4' · � MF ìN � ��#\�H'nZ
These arguments complete the proof.
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FIG. 6.1. Condition numbers of ÿ���������
	 according to �

6. Computational results. Because there are numerical results reported already in [6]
and [8], we discuss a few numerical experiments for one dimensional problems. Consider

(6.1)
���æ
}�H�r�?�E!�'/� Ñ ' Ñ *-,.�"!�'2�?#Ø!�¯K�Ü;(#63�'

with boundary conditions
�¥�E;�'�
<�¥�23�'�
D;

. Let us take the preconditioner operator F as

(6.2) F �×
���� Ñ Ñ *
��� #å!h¯8�E;(#	39'
with the same homogeneous Dirichlet boundary conditions where

�
will be chosen later. In

the following numeric tests, the uniform mesh size � 
 � ãi and uniform degree g 
 g ãi fory 
�3J#	�6�	�p# e ã
are used.

EXAMPLE 6.1. With a chosen
�?�E!�'4
 3�*Ì! _

and
,.�E!�'H
�� ã

in (6.1), we discuss the
optimal preconditioning operator (6.2) by considering several

�
. We will take

�T
 � 7�;(Zó3
where � is an integer between

���
and � . The Fig. 6.1 shows that the condition number of the

preconditioned matrix MF [p]N �� �
becomes small relatively if we choose

�
near

;
among other�

’s. These phenomena were pointed out in [9] if (6.1) is discretized by a finite difference
scheme, that is to say,

�
may be chosen by considering the advection coefficient in (6.1).

Hence one may choose
��
D;

in this case.

EXAMPLE 6.2. Stimulated by the numerical results in Example 6.1, we will take
��
¤;

for the preconditioner operator F while
�?�E!�' 
 ,.�"!�'×
{3

in (6.1) are taken. The condi-
tion numbers of the matrix §� � are shown in Fig. 6.2 for various mesh sizes and degrees of
polynomials. Then we enumerate condition numbers of the preconditioned matrix MF [p]N �� �

in
Fig. 6.2 also, which shows that the condition numbers can be fixed for mesh sizes and degrees
of polynomials. We point out that the condition numbers grow as � [ _ for a fixed degree of
polynomial and � � g�� ' for a fixed mesh size. These also can be proven in a standard finite
element theory and in spectral methods; see [1]. These phenomena are depicted in Fig. 6.3.

7. Conclusion. As we have shown that the condition numbers of the preconditioned
systems are well bounded, it is possible to use AMG algorithms without increasing com-
plexity for solving elliptic boundary value problems with high-order discretizations based on
LGL quadrature nodes. As an immediate application, one may apply the techniques here
to a first-order system of least-squares for an elliptic problem whose systems are found in
[2], combining the results here and in [12] (for example, one may refer to [10]). In order to
avoid the non-nested property of irregular LGL nodes occurring in the multigrid method, one
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may use Chebyshev-Gauss-Lobatto nodes for discretizations which has a nested property in
communications at each level. This case will be dealt in a forthcoming paper.����� @�� �"!$# %'&�# ()#z@
*JZ

The author deeply thanks Professor Manteuffel for his kind guid-
ance in preparing the present topic and also thanks to anonymous referees for pointing out
some corrections.
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