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AN ADDITIVE SCHWARZ METHOD FOR MORTAR MORLEY FINITE
ELEMENT DISCRETIZATIONS OF 4TH ORDER ELLIPTIC PROBLEM IN 2D*
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Abstract. In this paper we introduce and analyze a parallel ASM preconditioner for the system of equations
arising from the finite element discretizations of a fourth order elliptic problem with large jumps in coefficients on
nonconforming meshes. Locally Morley nonconforming element is used. The condition number estimate proved
here is almost optimal, i.e., it grows polylogarithmically as the sizes of the meshes decrease.
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1. Introduction. Domain decomposition methods, which form a group of effective par-
allel solvers for the system of algebraic equations arising from the discretization of partial
differential equations, e.g. by finite element method, have been studied and used for many
years, e.g., cf. [29, 30, 32].

In this paper we introduce and analyze a domain decomposition method based on Ad-
ditive Schwarz Method abstract scheme for solving a system of algebraic equations arising
from Morley mortar element discretization of a fourth order model elliptic problem in two
dimensions.

The mortar technique which was introduced by Bernardi, Maday and Patera [6] allows
us to construct discretization methods on nonconforming grids. The meshes in subdomains
can be nonmatching across interfaces, i.e., the common edges to adjacent subdomains and
thus can be generated independently, e.g. one local subdomain mesh in each processor. The
mortar technique imposes on the finite element functions special weak continuity integral
coupling conditions on the interfaces of adjacent subdomains. The mortar method applied to
many types of problems has been intensively studied recently; see [4, 5, 6] for second order
elliptic problems and [22, 3, 26] for mortar discretization of fourth order problems.

In this paper locally in subdomains we utilize the well known Morley nonconforming
finite element which can be described as one of the simplest finite elements for fourth order
problems such as plate problems. The mortar method which utilizes Morley discretization
was developed and analyzed in [26] and [21]. (There is a slightly different approach in the
latter paper.)

Additive Schwarz Method (ASM) framework is a very powerful tool of constructing
parallel preconditioners, e.g., cf. [32]. It is defined in terms of a decomposition of finite
element space into subspaces and local bilinear forms defined onto these subspaces.

ASM type solvers for Morley finite element discretization built on one conforming trian-
gulation were developed and analyzed, e.g., cf. [10, 9, 13], and references therein.

Many solvers including ASM type methods for problems arising from mortar discretiza-
tions were developed recently (see, e.g., [1, 2, 7, 8, 14, 15, 17, 20, 19, 25, 31, 33, 34, 35] and
the references therein), but there are not many domain decomposition methods for solving
systems of equations arising from the mortar element type discretization of fourth order prob-
lems; see [25] for ASM preconditioners for conforming HCT element and [36] for multigrid
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algorithm. The results of these two papers concern fourth order problems with continuous
coefficients, and if the ideas contained there are followed in order to construct and analyze
analogous algorithms for an elliptic fourth order problem with discontinuous coefficients,
then some constants in the estimates would be dependent on jumps of the coefficients, e.g.,
the coarse grid used in [25] is not suitable for the problems with jumps in coefficients even
for the case of one conforming mesh.

To our knowledge there are no parallel ASM type methods for mortar Morley discretiza-
tion or any other mortar discretization with locally nonconforming elements of a fourth order
elliptic problem and there are also no algorithms for any mortar discretizations with locally
conforming or nonconforming elements for the case of fourth order elliptic problem with
discontinuities of coefficients in literature.

The nonconformity of the Morley element leads to lines of proof that are usually much
more technical. Simultaneously, the Morley finite element has fewer degrees of freedom
than other finite elements. It is important that there is only one degree of freedom related
to a crosspoint, i.e., a common vertex to some substructures. This allows us to construct a
special coarse space in our ASM method which is suitable for problems with discontinuous
coefficients, which is not the case, e.g., in [25] where conforming HCT element is considered.

In this paper our domain decomposition method is presented in terms of ASM abstract
framework, i.e., we introduce space decomposition into a coarse space and two types of local
spaces and bilinear forms defined on these spaces. Then we show an almost optimal condition
number estimate which is independent of the jumps of the coefficients, i.e., the number of
conjugate gradient iterations is proportional only to (1 + log(H/h)), where H and h denote
the subdomain sizes and mesh sizes, respectively.

The paper is organized as follows. We introduce the mortar Morley discretization of
our model problem in Section 2. Section 3 is devoted to definition of our ASM method. In
Section 4 we introduce and analyze a few necessary technical lemmas and finally in Section 5
we prove the condition estimate.

In the paper the following notation is used: w < v, > y and w <X 2z mean that there
exist positive constants ¢ and C independent of the parameter of the fine triangulation of any
substructure, and the number of subdomains such that

cu<wv < Cu, z>cy and w <z, respectively.

2. Discrete problem. Let assume that 2 is a polygonal domain in R? and that there
exists a decomposition of 2 into non-overlapping polygonal subdomains €2 such that

N
0= Uﬁk with Qkﬂﬂl=@, k#I

k=1

The intersection of boundaries of two different subdomains 9Qy N 9Qy, k # [, is either the
empty set, a vertex or a common edge. Thus {2 }47_; forms a coarse triangulation of Q with
a parameter H = maxy, Hy,, where Hy = diam 2. Let assume the shape regularity of that
decomposition in the sense of Section 2, p. 5in [11].

In this paper we consider the following model differential problem:
Find u* € HZ(Q) such that

a(u*,v) = /va dr Vv e H§(Q),
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where f € L*(Q) and

a(u,v) = § / Pk [uw1w1vw1w1 + 2u$1wsz1$2 +u$2$2vw2$2] dz.
Q

Here
H(Q)={ve H*Q): v=20,0=0 on 890},

On isthe normal unit derivative outward to 92, py, are positive coefficients (arbitrarily large),
for¢,j = 1, 2. From the Lax-Milgram theorem, the continuity and ellip-

and Uy, g, 1= Bw f)a:
ticity of the b111near form a(-, -) it follows that there exists a unique solution of the problem;
see, e.g., [12] or [16].

An important role in mortar discretizations is played by the interface, defined by
T = U, 00\ 9.

For each subdomain Q, we introduce T}, (%) a quasiuniform triangulation with parame-
ter hy, = max(diam 1) for 7 € T, (€,) which consists of non-overlapping triangles, cf. [12].
Note that each common edge to two subdomains Q2 and €; called below an interface I'y; in-
herits two independent 1-D triangulations: T (T'y;) - the hy, -one from T}, (Q) and T} (Tk;)
- the h;-one introduced by T ().

An important role is also played by two types of nodal points, the vertices of triangles
and midpoints of edges of triangles Let A C ; e.g. A may be an edge, the boundary or the
whole Q;, then let AY ik .A be sets of all vertices and midpoints, respectively, of elements
of Th(€2;) which are in .A Of course we drop subscript ¢ whenever it does not cause any
confusion. E.g., we write QV for the set of all vertices of T3 (€;).

We now introduce the mortar method that locally uses the nonconforming Morley el-
ement, cf. [16]. Let the local Morley finite element space X () be defined as follows,
cf. Figure 2.1:

Xn(%) = {v € L2() : v, € Pa(7), v is continuous at vertices of T € Tp,(Q4)
and 0,,v is continuous at midpoints of edges of 7 and
v(p) = Opv(m) = 0 for a vertex p € 0N and a midpoint m € 90}.

Here and below Py (G),k = 0,1,2, ... is the space of polynomials of degree up to k defined
over a domain G.
The degrees of freedom of the Morley element are given by

{U(pl)a U(pZ)a U(p3)a anv(ml)a anv(m2)a anv(m3)} 9

where py, is a vertex of an element and m; is the midpoint of an edge of an element, cf. Fig-
ure 2.1.

Next we can introduce an auxiliary global space X, (Q) = Hszl X1 (Qy) with so called

. N N
broken norms and seminorms: ”u”%ﬁi(ﬂ) = ||u||%{z(9k), |u|%fi(9) = |u|%z(9k),
2 _ 2 2 _ 2

where we have ”u”H,i(Qk) = ETeTh(Qk) ||U||H5(T) and |u|HZ(Qk) = ETeTh(Qk) |U|H5(T),
s=0,1,2.

We now choose an open disjoint side of I'y; C I' N 0€, denoted by 7,  and name it
master (mortar). The side of I'y; C 9€2; is called slave (nonmortar) and is denoted by dyy, ;.
Assumptions For the subdomains 2, and §); related to the master v, », = I'y; and the slave
0,1, it holds that:

A.1 The coefficients satisfy px > p;.
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F1G. 2.1. Morley element.

A.2 The mesh parameters of T, (Q) and T}, () satisfy hy, < hy.

A.3 The two side elements of the slave triangulation 7} (8,m,), i.€., the ones that touch
the ends of d,, j, are longer than the respective elements of the master (mortar)
triangulation T (Y r.)-

Assumption A.2 is necessary for the proofs of some technical results and is due to the fact
that any local finite element function is not sufficiently regular. It is worth noting that a good
practical and meaningful alternative could be (cf. [34]):

A
hi (ﬁ) . 0<A<L.
hj — \pj

See also Remark 4.2, below.

The assumption A.3 is technical. If one considers an interface I';; with the master 7y, ;
and the slave d,,_; then it is easily seen that if a function u € X, (€2) satisfies (2.2), see below,
then the values of normal derivatives of u at the midpoints of 1D elements of T,{ (Orm,;) depend
not only on degrees of freedom (dofs) at nodes of T,’; (Ym,i) but also on some dofs related to
the nodes which are not on %,, ;. It may happen in general that the values of 9,u; at a
midpoint of an end element of J,,, ; are dependent on values of dofs associated with nodal
points on an interface I'y; C 0f2; such that TN Ej = {¢,} a vertex, which is obviously a
bad property. Assumption A.3 yields that it is not possible at all.

We also need two auxiliary spaces on each slave (nonmortar) d,,,;. Let the first one
denoted by M (Om,1), be the space formed by piecewise constant functions on the hy;-
triangulation of 6y, ;.

For simplicity of presentation, we also assume that the both 1-D triangulations of the
interface I'y;, T,’f (Ym, k) - the hy one of its master 7y,  and T,ll (Om,1) - the hy one of its slave

0,1, have even numbers of the elements. Let consider d,,; and let gx,l’h = {po,p1,--- y PNt }
be a set of vertices of the h; triangulation of this slave, (N, ; is even). Then we introduce an
operator Iop, 2 : C°(Tg;) — L2(Try):
DEFINITION 2.1. Let Iop, 2 : C°(Tr) — L2(Txi) and Iop, 2u be defined by the values
of u at all points ofgm,l’h as follows:
1. Iy, 2u is a quadratic polynomial on each [p;, pit2] for even i,
2. Ionu(ps) = u(ps) for i€y
In other words, oy, 2u is the piecewise quadratic interpolant defined over the 2h; tri-
angulation of d,,, ; that is made of elements [p;, pi+2],7 = 0,2,..., Ny — 2. The operator
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Iy, » that corresponds to the hy, mesh of master 77‘2’ k,r, We define in the same way.

We next define an auxiliary space M2 (3,, ;) as follows:

M2M (6m) = {v € C(6my) = v € Po([pi, pita)) for eveni # 0, Ny ; — 2
and v € Py([ps,pit2]) for i = 0, Ny — 2}.

Then a mortar finite element space is introduced:

h = {u € X;(9) : u continuous at the crosspoints and
uon each I'y; = Y,k = O, satisfies mortar conditions :

@ [ ot in = B vy ds =0, ¥ € M (5,,)
Om

(2.2) / (Onug — Opuy)p ds = 0, Yo € MM (6m)-
Om

Next we define our discrete problem: Find u} € V" such that
(2.3) ap(up,v) = f(v), VoeVh,

for ag (u,v) = Eszl ap,k(u,v) and

ah,k(uav) = E /Pk [uw1z1vw1w1 +2 Uz 2o Vzizs T uzzzzvzzzz] dz.
TETH()

This problem has a unique solution and some error estimates are established [26].

3. Additive Schwarz algorithm. In this section we describe the parallel algorithm for
solving the problem (2.3).

3.1. An equivalent formulation. In this section we reformulate the problem (2.3) into
a spectrally equivalent one. Then we will be able to construct a preconditioner for this equiv-
alent problem using ASM abstract scheme, i.e., we replace (2.2) by (3.1), see below.

We formulate the new problem because of the nonconformity of Morley finite element
space and (2.2), namely a function u € X} (£2;) which is zero at all vertices and midpoints
of a master Yp,,; = dm,; = Liy; C 0% can have zero values of normal derivatives at all
midpoints of fy%[ ; and can have nonzero trace of the normal derivative onto 7, ;, i.e., in

particular |, 5, ; Wit ds can be nonzero for a test function ¢ € M '(8m,5)- This could yield
many technical problems in the construction and analysis of the ASM algorlthm cf. also [24]
and [28].
DEFINITION 3.1. For each u € V" we define a function @ € X, () as follows:
1. u(x) = u(z) for all vertices x in Uivzl ﬁkv,h.
2. Onti(m) = Onpu(m) for all midpoints m in Ug:1 ﬁfh \ Ués,zcl“ Sifl’h, (05, is a
slave), i.e., midpoints that are not on a slave,
3. on any slave (nonmortar) §s; = Ty C Oy with the associated mortar (master)
Vs, b = L C OQy, the values of normal derivative at the midpoints of 5%,h are
determined by the following condition:

3.1) / (Ot — u(u)dds =0 Vo € M (6,n1)

s
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where 1y (uy,) is piecewise constant function on the hy, triangulation of ys , = 951 =
Ty, ice., TR (vs,k) such that

(3.2) Yk (ug)(m) = Opur(m) = é/anuk ds

for each midpoint m € ’y%c’h of an element e € T (s 1).
From (3.1) it follows that the value @;(m) for a midpoint m € 5%{ 1,n, of an 1-D element
e € T} (0m,) is computed by

(3.3) fa(m) = || /anal(s) ds = |e|~! /¢k(s) ds,

where 1)y, is defined as in (3.2).
Note that the values of respective degrees of freedom of @ and u differ only at the mid-
points on slaves. Then following the lines of proof of Proposition 3.1, p. 7, [27], we get

PROPOSITION 3.2. Forallu € V" and @ € X1,(Q4) from Definition 3.1 it holds that

ag(u,u) < ag(i,a).

We now introduce a new space
Vi={veXyQ):ueVh v=a},

ie., V" is the image of V" of the mapping defined in Definition 3.1.
And we can formulate a new problem:

3.4) ap(a},v) = f(v), YveVh

We now introduce nodal bases for V" and then V.

For each degree of freedom (a vertex or a midpoint) that is not on a slave we associate a
nodal basis function in V. Let ¢¥ the nodal basis function related to a vertex z be defined
as follows

oy (x) =1

—V
oY (y) 0 vy € U, Qk},{/} \ Uascr 6Zh y#z
oY (y) = 0 vm € Uy, Qe \ Us, cr 5£,4h-

The function ¢} related to a midpoint m not on a slave we set by

v
o (y) =0 Vy € Up Qin \ Us,cr ‘SZh
6n¢%[(m) =1
—M
ool (p) = 0 Vp e U, 1975 \ Uascr 5?,411 p#m.

The functions are uniquely defined by these conditions as the values of degrees of freedom
related to both types of nodal points on slaves are determined by (2.1) and (2.2), respectively.
In the same way we can define nodal basis functions of Vh <;~S¥ and é% the nodal basis
functions related to a vertex  and a midpoint m which are not on any slave.
Note that the the values of degrees of freedom related to both types of nodal points on
slaves are determined by (2.1) and (3.1), respectively. Thus, e.g., ¢¥ € V" and ¢V €
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V" which are both elements of X}, (©) may have different values of normal derivatives at
midpoints on a slave.

Note also that v € V" and & € V" defined in Definition 3.1 have the same vector
representation @ € R™ (n is the dimension of V') in the respective nodal bases and if we
introduce the matrix representations of a g (u, v) in the both nodal bases, i.e., let A denote the
one for V" and A the one for Vh, then Proposition 3.2 yields, (cf. [27])

COROLLARY 3.3. The matrices A and A are spectrally equivalent with constants inde-
pendent of the mesh parameters, jumps of the coefficients and the number of subdomains.

Thus further we construct a preconditioner for A instead for A or in other words for the
problem (3.4) instead for (2.3).

3.2. Additive Schwarz method. Now we construct a parallel method for solving (3.4).
The construction and analysis of our method is based on Additive Schwarz Method scheme,
cf. [30], i.e., it is defined in terms of decomposition of V" into subspaces, local bilinear
forms defined over these subspaces and special projections onto these subspaces. Using the
abstract Additive Schwarz Method (ASM) framework we will then get a preconditioner for
the problem (3.4) and then (2.3), cf. Corollary 3.3.

We first introduce a decomposition of any u € Xp(£2;) into u = H;u + P;u where

(3.5) ap,i(Piu,v) = ap,i(u,v) Vv € Xp,0(%),
where

Xh,O(Qi) = {U € Xh(Q,) : u(p) = 0nu(m) =0
for all midpoints m and vertices p on 0); }

Thus H;u = u — P;u and it is easy to see that equivalently we can define H;u as follows

ah,i(HiU,’l}) =0 Vv e Xh’(](Qi)
(3.6) Hiu(p) = u(p) Vp vertex on 9%;
OnHiu(m) = Opu(m) Vm midpoint on 9Q;

which gives us another characterization: H;u is a unique function such that

3.7 api(Hiu, Hiu) = min{ap ;(v,v) : v € Xp(Q;) such that v(p) = u(p) and
Onpv(m) = d,u(m) for all midpoints m and all vertices p on 8Q;}.

Then we can decompose any u = (uy,...,ux) € V? as u = Pu + Hu, with Pu =
(Piu1,...,Pyun) and Hu = (Hiuq, ..., Hyuy). It is worth to note that Pu and Hv are
orthogonal with respect to ag (-, -) which follows directly from the definition of P; and H;.
Hu (and H;u;) is called discrete biharmonic part of u (u; respectively).

We now introduce the space decomposition.

For the simplicity of presentation we assume that all ); are triangles.

We first define a coarse space Vy C Vi, Letu € Vo be a discrete biharmonic func-
tion such that on any master vy,; we have u(p) = I ,,,u(p) at p € yp ;,p and its normal
derivative takes a constant value at all midpoints of this mortar, i.e., d,u(m) = Const for a
m a midpoint on 7y, ;. Here It ,, u € L?(7m,;) is a linear function such that I ., u(ay) =
u(ag), k = 1,2 for ay an end of this interface. Note that as u € Vj is an element of V. Thus
it is continuous at crosspoints and this gives that its values at vertices of any mortar are solely
determined by linear interpolation between the ends of that master. It is obvious that dim Vj
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equals the number of crosspoints plus the number of edges because degrees of freedom are
associated with a constant per edge and values at crosspoints.

REMARK 3.1. The values of degrees of freedom u € Vj at nodal points on a slave are
determined by the mortar conditions. However it directly follows that they are determined
in the same way as on the mortar side, i.e., at the vertices the function takes the values of
the same linear function as on the mortar side, and at the midpoints on this slave the normal
derivative takes the same constant value as on the mortar side, which follows from (3.3).

The bilinear form bg (u, v) is defined as equal to the original a(u, v).

The next subspaces are associated with domains, let Vj, C V" be formed by functions
which are in X}, ¢(€2;) and are zero over all other substructures, equivalently we can write
Vi ={u€V":u=(0,...,0,u0,...,0), up € Xpo(%)}. We take by(u,v) =
ar (u|q,, V), ) as the bilinear form corresponding to the subspace V.

Finally we define a family of spaces corresponding to the mortars.

Let 75,5, C OS2 be a master (mortar) and let §,; be its associated slave. ThenletV,, , C
Vh be a space of piecewise discrete biharmonic functions that may have nonzero degrees
of freedom only these which are associated with 7y, ;, i.e., values at vertices and values of
normal derivative at midpoints which are on this open master. The bilinear form associated
with V,_, is defined as the restriction of arr (u,v) to O, i.e.,

bs(u,v) = apr(ur,ve)  Yu,v €V, .

We have

N
VE=Vo+ ) Vit D Vi,
k=1

¥sCT

Next we introduce Py : V* = Vo, P, : V* - Vi, k=1,...,Nand T : V" —
Vies Vs C T defined by

bo(Pou,v) = amg(u,v) Vv €V
ar(Pru,v) = ag(u,v) YweV,, k=1,...,N
bs(Tsu,v) = am(u,v) Vv €V,,, ¥y, CT.

Let an operator T : V* — V" be defined by

N
T=P+) P+ ) T
k=1 7. CI

Then, the main result of this section is the following:
THEOREM 3.4. For any u € V" it holds that

H\\ 2
(14108 (%)) entus) < am(Tu) < anuw)
where H = maxy, Hy and h = miny, hy.

It follows directly that for the matrix representation in the nodal basis presented in § 3.1
of T it holds that T = B~! A, for a parallel preconditioner B = AT~!. (Here T denotes
both the operator and its matrix representation.)
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Thus we can rewrite Theorem 3.4 as, (e.g., cf. [18]),
H\\ ? .
(1 + log (ﬁ)) @'Bi < 4T Ai < @' Bd Vi€ R",

where h = ming hy and H = maxy, Hy.
From this and Corollary 3.3 it follows in a standard way, see, e.g., [18], that
COROLLARY 3.5. It holds that

H -2
(1 + log (ﬁ)) @"Bi < d@T Ad < @"Bii Vi € R",

where h = miny hy and H = maxy Hy. Thus we can use the preconditioner B~!
conjugate gradient method for solving a following problem: find @* € R™ such that:

Ad* = f

which is the matrix form of (2.3). Here @* is a vector representation of u}, a solution of (2.3).

The number of conjugate gradient iterations of the preconditioned problem will grow
only logarithmically with the ratio H/h and is independent of mesh sizes and the jump of
coefficients py,.

4. Technical tools. In this section we define several auxiliary operators and prove some
useful results which are necessary for the proofs of our theorems.

First we introduce the so called mortar projection: 72, mj ° L?(6m
operator corresponding to d,, J, a slave defined as follows, cf. [4].

DEFINITION 4.1. Let n}, ju for w € L*(8y,;) be a continuous function which is a
polynomial of second degree over all elements of the 2h; triangulation of §p, j vanishing at
ends of this slave and satisfying

j) = Hg(6m,j), an

)

(4.1) /6 (- w2 Juds=0 Ve M " (Omy).

(Note that %, ;U = Ian, 271' ;U
The next lemma is a spemal case of Lemma 2.2 in [4], (the L2 stability is given in the
proof of this lemma; see (2.19) in [ D:

LEMMA 4.2. The operator 72, j defined in (4.1) is stable in L? and HO({ norms, i.e., it
holds that

“4.2) ||7r,2n’ju||L2(5m,j) < ||u||L2(6m,j) Yu € LQ((Sm,j)

1/2
I jull s,y = llgaags, ) Vo € Hod® (mg)-

We next introduce a locally continuous finite element space which is a counter-partner of
the Morley local finite element space: X 1 CT(€)y,) - the Hsieh-Clough-Tocher (HCT) macro
finite element local space, cf. [16], and a local equivalence mapping; see Section 3, (3.2) in
[13], Mg : Xp(Qp) > X ,fICT (Q). This will allow us to utilize all technical results known
for HCT spaces to Morley finite element local space.

The local finite element space X 7¢7T (€)y,) for HCT element is defined by, cf. Figure 4.1,

XM Q) = {ve C' () : v, € P3(m;), for triangles 3, i=1,2,3,
formed by connecting the vertices of 7 € Th(2)
to its centroid, v = 8,v =0 on 9N NIN}.
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|

FI1G. 4.1. HCT macro element.

The degrees of freedom of HCT element are given by

{v(p); vz, (D), Var (P), Onv(m) },

cf. Figure 4.1.
In the next definition, we use the fact that for quadratic polynomial ¢ € P»([a,b]) we
have

_a®) =@

¢ ((a+b)/2) = =1

Thus Vu for u € X, (Q) is well defined at all midpoints. Let m, be an adjacent midpoint
of the vertex p if both points belong to the same edge in T (£2;). The choice of the midpoint
is not unique and this fact will be used below.

DEFINITION 4.3. ([13]) We define My, : Xp(Q) — XfOT(Qk) by setting its degrees
of freedom at all vertices and midpoints of Qy, i.e., let p be a vertex and m the midpoint of an
edge of an element of Ty, (), then

Miu (p) = u(p) V vertices p,
OnMpu (m) = Opu(m) V midpoints m,
VMiyu (p) = Vu(m,) V vertices p, where m, is an adjacent midpoint.

Note that the choice of the adjacent midpoint m,, in the above definition may be arbitrary
and it will further be of a great use.

In the following lemma, we state some properties of the local equivalence mapping de-
fined above.

LEMMA 4.4. For all uw € X, (), it holds that

|Mku|Hs(Qk) = |U|H,SL(Q;¢) s=0,1,2,
llu — Myullr2,) + hilu — Myulm ) 2 hilulm @),
”u - Mku||L2(sz) + hk“aHu - aanu||L2(sz) = hi/2|u|H;‘:(Qk)

Here Ty is an edge of Q.
This is Lemma 10, in § 4.2 of [26], the proof of the first two statements were given earlier
in [13].
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We also have a simple but important remark which follows form the flexibility of choos-
ing the adjacent midpoint in the definition of M:

REMARK 4.1. Consider an edge I'y; C 0y and let u € X} () be a function which
has all degree of freedom associated with nodes that are on 9y, \ I'y; equal to zero. Then we
can choose Myu such that Mpu = 0 and VMju = 0 on 0Qy, \ Ty

The next lemma shows an important property of discrete biharmonic functions:

LEMMA 4.5. Let u € Xp,(§;) be a discrete biharmonic, i.e., Hiu = u, cf. (3.6). Then
we have

[ulm2(:) 2 IVMiulgz00,)-

Proof. Let 4 € XCT(Q;) be a function defined as follows: Tr & = T'r M;u on 9Y;,
here Tr w = (w, Vw) on 952, and

ah,i(ql,v) =0 Yv € X;ZOCT(QZ),

where X}EOCT(Q,») = XHCT(Q,;) N H3(Y), i.e., 4 is a discrete biharmonic in HCT sense
extension of M;u|sq,. Then by the discrete analog of the extension theorem for Sobolev
spaces, cf. Theorem 4.4 in [23], and the fact that discrete biharmonic functions have a minimal
energy property, we have

4|2 () 2V dlg1200,) = [VMiulgizaa;)-

Next we introduce a function w € X (£;) by setting its all degrees of freedom related
to vertices and midpoints of T, (€2;) to the respective ones of @. The next estimate is obtained
by a standard argument following from the fact that all degrees of freedom of w are included
in the set of degrees of freedom of :

lwla2 ) 2 almr2))-
Note that from Definition 4.3 follows that w(p) = 4(p) = u(p) for all vertices p € 9€; and

Opw(m) = 84(m) = Ou(m) for all midpoints m € 99;.
Hence by (3.7) we get

[ulmz ;) 2 wlm2,) 2 |4a200) X [V Mulgi/290;)

what ends the proof of this lemma. [0

The next lemma is Lemma 4.1 in [23].

LEMMA 4.6. Let € be an edge of Q.. If u € HY2(9Q4) is equal to zero on 8Q \ €
and ||8yul| pe gy < Ry, t||ull Lo (g). then it holds that

/2 oy = Tl rasagey + (1 + 108(1E ] 7))l ey

where Oy denotes the tangential derivative on .
We also need to introduce trace spaces defined over an interface I';;:

WhTy;) = {ur,, tuwe XFT(Q)},  WHTy) = Hi(Tiy) N W),

and an auxiliary operator defined on the trace space.
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DEFINITION 4.7. We now deﬁne an auxiliary operator defined on an edge T;;: wt,
H?(Tij) = W§(6m,j). Let w = 72, ju then for any p € 8 j n

s jutp) = 0D
Ot u(p) = w(my) = (w(p) ~w())/Ip — d

where q € Sm,j,h is a neighboring nodal point of p and m, = pT"'q is an adjacent midpoint.
Note that for each p the selection of ¢ can be decided in conformity with the similar choice
in definition of M ;, which is further used in the proofs.

LEMMA 4.8. The operator defined in Definition 4.7 satisfies:

7.j .

17t jull 226 5) =2 Null 225, ;) Y € L2 (6n5)

3/2
It jll g,y = Nullgarags,. ) Vo € Hop* (6mg)s

where Ho® (8 3) = (L8 3), HE (8, s o
Proof. First we prove stabilities in L2 -norm and H 2-seminorm and then the second state-
ment of the lemma is obtained by a standard Hilbert space interpolation argument, cf. [12].
Take any u € L?(8,,,;) and let @ = 7, juandw = 72, ,j, cf. Definitions 4.1 and 4.7.
Then, by a standard scaling argument, Definition 4.7, and (4.2), we get

19112, )= Y by (0@ +f10' 0))

PEOm j.h
2
2 o [w(p) —w(q) 2
=X ( PP + 12 (T) ) <3 hilw(p)
PEIm j,h P
2 wllz2(s, ;) 2 lullz2,. ;-

Here q is a neighboring nodal point of p.
b uand w =72 Lu.

Now consider u € Hg(T;;). Let again 0 = wf, gy
We also need an additional function v € W{(8,,,;) which is defined as follows:

v(p) = u(p)
d
70 ®) = (u@®) —u(@))/lp—dl
where g € gm .j,h 1s a neighboring nodal point of p chosen in exactly same way as in the
definition of 7,
Take an element e=(p1,p) €T} '(8m.;)» and let I be a linear polynomial interpolating

u (and v) at pg, k = 1,2, i.e., such that ll(pk) = u(pr) = v(pr), k = 1,2, then we get by
standard arguments

llw = vl[F2(e) % llu = hll7ae) + lv = lill7ege) = hjlulfze + v =GLll7(-
The second term is estimated as follows:

o= tlZay = 3 B2 (pr) — 112

k=1,2
_ 3 —u(gr)  u(p2) —u(p1) 2
_kz1:2h ( Pr — 4k P2 —p1 )

= > Blu(&) — (&) 2 B3l + cllf e

k=1,2
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where € is a sum of e and its all neighboring elements, &1 € e, & € €, ¢ is any constant, and
g, are the respective nodal points (as in the definition of v).

Then, by a Sobolev embedding C° — H' in 1-D, a quotient space argument, and a
scaling argument we get

(4.3) lle = vl|72¢ey 2 Bjl1ullrzge)-
Now we estimate
(4.4) D] 12 (5,,) 2|0 = V| g2(5,,) + [V|H2(80m)-
For the second term we get
e,y = D, o= Tnulfe,
€T} (8m,5)

where I; 5, is a piecewise linear interpolant defined on T,{ (0m,;)- If we consider an element

e e T,{ (0m,;) then by an inverse inequality, (4.3), and the well known properties of I; 5, we
have

lo—T1 nulie(ey = b5 Hlo—Tonullizy 2 byt (lo—ullfee) +llu—TnullTz) = [uline,

where € is a sum of e and its all neighboring elements. Summing over all e € T,{ (0m,;) ends
the estimate of the second term because every element is counted three times at most.

Thus to get the stability of 7}, in H? seminorm it suffices to estimate the first term in
(4.4). By an inverse inequality, and again the fact that u(p) = v(p) and w(p) = w(p) we
have

[0 — v,y 27 lld —vllTa,) < h* Y (@) — o) +hl' (p) — ' ()

pEéy‘,’hM
<h Y ) —u@P =k Y0 Im u(p) = B, u(p)?
peSY peSY

m,j,h m,j,h

< hymh, u = Lng pull72(5,.y5

where Iop; o is a piecewise quadratic interpolant defined over the 2hj-mesh of d,, ;. (Note
that Iop; 2u(p) = u(p)).

Now note that from Definition 4.1 it holds that I, hj,2U = wﬁl, j I hy,2Us and thus by (4.2)
and well-known properties of Ip,; 2 we get

72w = In; 2ullL2(5,0) = 1o j (u = In; 2u)l| 22(60)
== In; pull 25,y =2 R ull a2 (5m)-

The proof of the stability in H? norm is completed.

The Hg({ ? case follows by an interpolation argument, e.g. cf. [12]. O

We also need an auxiliary operator defined on the trace space.

DEFINITION 4.9. We now define an auxiliary operator nf}; = H*(Ti;) — L*(Js,5).
Let w = @, ju for Qs ; the L2 orthogonal projection onto piecewise constant functions on
T,{ (0s,5), then let Ty ju be a piecewise quadratic continuous function defined over the hj-

mesh of 05 ; defined by its values at interior nodal points p and midpoints m.

g ;u(p) = w(mp) Vp — nodal point

g ju(m) = w(m) Vm — midpoint,
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where my, is any midpoint of an element ofT,Z (0s,7) of which p is an end.
The choice of my, for each p is decided in conformity with the similar situation in definition
of M; and *.

LEMMA 4.10. The operator defined in Definition 4.9 satisfies:

75 jullezs, ;) = lullzas, ;) Yu € L (Gm,j)
1/2
72 sull s,y =% il s s, ) Yu € Ho® (3s,5)-

Proof. The lines of the proof basically have the same structure as those of the proof of
Lemma 4.8; see also the proof of Lemma 3.5 in [24]. O

LEMMA 4.11. Let u € V" be a discrete biharmonic function which is zero at all degrees
of freedom on the boundary nodes except on the open mortar vy, ; = I';; and its correspond-
ing slave 0y, ; = I';j. Then we have

Pj|uj|fqg(nj) = Pi|ui|fqg(m)-

Proof. Let Mypu,k = i, j be defined in such a way that Tr VMpu = 0 on 0Q, \ T3
cf. Remark 4.1. Then we get by Lemma 4.5

4.5) |u|§ffl(nj) =2 |Mju|%12(ﬂj) = ||MJ“||Z(%2 ) + ||anMj“||§{ééz(6

(8m.j m,)
We estimate both terms independently.
First we get
@.6) [IMjull3s/ < | Mjuj = 7y j Ml s + |, Ml 3oz 5 -
Hoo"(9m,5) — g Hyo ™ (0m,5) ’J Hoyo™ (0m,5)
The second term can be estimated using Lemma 4.8, the trace theorem and Lemma 4.4 as
follows:

4.7) ||7Tfn,jMiUi”Hgé2(5m’j) = ||Miui||Hgé2(5m’j) 2 Mgl a2y < |wil a2 (q;)-

Note that the tangential (normal) trace of M ju; on each edge is solely defined by the
values of u; at vertices of T,{ (6m,;)- Thus we can properly define M jw for any w € C(6p,, ;)
(or any w € L?(8,,,;) which has uniquely defined values at vertices on this slave). Using this
we see that the tangential trace Mju; on &y, ; equals Mju; = Mjms, iIop, au; by the
mortar condition (2.1) and Definition 4.3.

Letw = Mju; — nt, ;Miu; = M;(n2, iIop, aui — wh, ;Miu;) € L?(6m,5). Now we
recall Definitions 4.3 and 4.7 and have

w(p) = [mh, i (T2h:,2 — Mi)ui](p)

d d

EW(P) = [%W?n,j(Ith,Q — Mi)ug](myp)
where my, is an adjacent midpoint. (Here we have the same choices of this midpoint in the
both definitions!). This yields w = ﬂ'f,w- (I2n; 2—M;)u;. Additionally we have Iop; o M;u; =
Loy, ou;.

Thus by Lemma 4.8 and an inverse inequality we conclude that
t
”w”Hgéz(ém,j) = ||7Tm,j(I2hi72 - M")ui”Hgf(&m,j)

(4.8) =< |[2n;,2us — Miui”HgéZ((;m,j)

= hi_3/2||I2hi,2Mz'Ui — Mui|2ry;) -
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Using standard properties of a piecewise quadratic interpolant, the trace theorem and Lemma 4.4
we conclude that

(Ti5)

< B Miui| 2y = hf/2|ui|Hg(m),

1ony 2 Mt = Miuil| oy % B3 | M|

which together with (4.6), (4.7), and (4.8) gives us the bound of ||Mju||i{3/2(6 )
Now we have to estimate the second term in (4.5). * ?
4.9) HanMjuj”Héf(ém,j) < ||8nMJu] — an,janMiuiHHééz(ém’j) +

n
+ ||7rm’janMiui“Héé2(6m,j)'
By Lemma 4.10, a trace theorem and Lemma 4.4 we get the estimate of the second term:
(4.10) ||7T?n,j6nMiui”Hgéz(5m’j) = ||8an'Ui||Héé2(5m,j) X [ Miuilaz(9,) X uilg2(0,)-

We now estimate the first term in (4.9), i.e., ||, M u; — w2 O Miu;l| 172 . Let
m,J HOO (6m,j)

z = OpMju; —mp, j(‘?n./\/liui. We have by an inverse inequality

11,y 305 Nl < Do @+ Y @

zedd ., peSY

By Definitions 4.3 and 4.9 we have

OnMu;(p) = Opuj(zp) and T, iOnMiti(p) = Qm,j (OnMiu;) (),
v
m,j,h’
Note that 9,,u is linear over e a 1-D element of T,]L (5m, j) with x as the midpoint, hence,
cf. (3.3),

where z,, is an adjacent midpoint for a vertex p € §

B (z) = Je| ! / Bt () ds = Qun 0ty (&) = Qumj¥s(a),

where 1); is a piecewise constant functions on T,’; (Ym,i) as in (3.1). The last equality follows
from the mortar condition (3.1).
Thus we can conclude that

z2(p) = 2(2p) = Qum,i(Wi)(@p) = Qm,jOnMiui(zp),  pELY .1,
2(x) = Qm,j(Wi)(x) — Qm,jOnMiu;(z), TE 67Ar/{,j,h7

where z,, is an adjacent midpoint of a vertex p, and thus

Il % Do 2@P = 3 Qi — 0uMius) (@)

M M
a:eém,j’h zeém,j’h

< B Q. (Wi = OnMiui)lfas,, ;) < b5 i = OnMiuill 7o
< 5 i = Onuillies,, ) + g H10nui — n MiuillZa(s

m,j)
m,j)

Because 1); is the orthogonal L? projection of d,u; onto the space of piecewise constant

functions on T (ym,;), by a trace theorem, a scaling argument, and a quotient space argument,
: 2 2

we get in a standard way that ||¢; — 6n“i||L2(5m,j) = hi|ui|H§(Qi)‘



ETNA

Kent State University
etna@mcs.kent.edu

ASM METHOD FOR MORTAR MORLEY PLATE ELEMENT 49
Thus, Lemma 4.4 applied to the second term, and h; < h; yields
(41 1) ||6nMjuj - an,janMiuiHHééz(ém’j) j |u,|lel(Qi)

Finally, (4.9), (4.10), and (4.11) yield the proper bound of ||6nMju||Hééz(5m 3
with the assumption on the coefficients on each interface I';; = vp,; = 6,7;7 j» 1€, pi > pj,
ends the proof. [

REMARK 4.2. In the end of proof of Lemma 4.11 Assumptions A.1 and A.2, cf. page 36
in Section 2, are used to bound the factor

, what together

hi p
hj pi’

by a constant. Thus a good practical alternative to A.2 seems (cf. [34]) to be

A
ﬂx(&> . 0<A<1,
h; Pj

in the case when A.2 does not hold.
Here the master side of an edge I';; is ym, ; C 0€; with the slave 6,,, ; C 0.
LEMMA 4.12. Let ug € Vg , then it holds that

H; —
|uo|§{§(gi) = (1 + log (h—’>> Z |'gbpij — OnlHug 1 2,
¢ ITi;CoQ;

where @F” is a constant value taken by the normal derivative of ug at all midpoints of el-
ements of T{(Ti;) and 8, Irug T, IS the trace of the normal derivative of the linear inter-
polant of ug defined by the values of ug at the vertices of 2; (also taking constant value on a
given edge).

Proof. First note that |uo|g2(q,) = [uo — Inuolm2(a;)- Letw = uo — Iguo and we
see that w(z) = 0 for all vertices x € 8QXh and O, w(m) = EFH — Onluug r;; = Const
for midpoints on an edge I';;, what follows from the definition of Vp. Let further ¢;; =
Yr,; — OnlEug r,; = Const.

We can split w as follows w = EFU caq; Wij, where w;; is discrete biharmonic function
defined by the values of respective degrees of freedom on 9€2;:

wz-j(a:) =0 zxz€ OQXh

B _ [ Opw(m) m midpoint on T';;,
Onwij(m) = { 0 m  midpoint on 9; \ T';;.

The interior degrees of freedom are set by (3.6).

We have |U0|H§(Q,-) = |uo — IHUO|H§(Q,—) < Erﬁcaﬂi
term separately. We can now choose M;w;; in such a way that 0, M;w;; € Héf(I‘ij);
cf. Remark 4.1.

Note that 9y Miwi;j(m) = (wij(a) — wi;j(b))/(b — a) = 0 for any midpoint m € Y,
of a 1-D edge element (a, b) € T} (T';;) for any edge T';; C 0. Thus from Definition 4.3 it
follows that w;; (x) = 0;M;w;;(x) = 0 for any & which is a midpoint or a vertex in I';; . As
the trace of M;w;; onto I';; is a C"! continuous piecewise cubic function, we can conclude
that M;w;; is zero on [';;, i.e., in particular 0, M;w;; is also zero on I';;.

wj| H2(Q;)- We estimate each
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By this and Lemma 4.5 we get

iz ) = NOMawil 2o + 100 Mawis Prags o = 100 Miwisl2

o (Tij) (Tsj) 6 (Tig)

Next Lemma 4.6 yields that

H;
||6nMiUJij||§{ééZ(Fij) =<0 M; w”|H1/2 ;) T (1 + log (h

i

) 1o Mas e

By Definition 4.3 and the definition of w;; we see that
OnMiwij(p) = Opw(my) =¢i;  and I Miw;j(m) = pw(m) = c;j

for any p € I‘” pandm € I‘zJ n» Where m,, is an adjacent midpoint of p. Thus 0, M;w;;
is a continuous piecewise quadratic function on the 1-D mesh of I';; which equals zero
at the ends of this edge and takes the constant value ¢;; at all remaining nodal points of
Tfl’ (T4;), in particular it equals the constant ¢;; on all elements except two end elements of
T} (T4;). Hence 8,, M;w;j — ¢;; can be nonzero only on the two end elements of 7} (T;;) and
[|Op M jw;; ||2L°°(F,-J—) = |e;;|%. This together with an inverse inequality gives us that

On Miwij o,y = 0nMiwi; = cijlin s r,;) = hy 0 Miwij = cijllFagr,;y 2 leijl.

Summing all these estimates yields that

H; H;
|wij|§{§(9i) = (1 + log (h )) leij | = (1 + log ( )) |¢F — OpIgug |F1'j|23

which concludes the proof. [0

5. The proof of ASM theorem. The proof is based on the abstract scheme of the ASM
method; cf. [30]. It consists of checking three assumptions. Assumption II is satisfied by
the standard coloring argument. Assumption III is satisfied for Vp and Vi with w = 1 as
local bilinear forms equal to the original one and Lemma 4.11 gives the estimate of w for the
remaining interface subspaces V.

It remains to check Assumption I which we formulate as a lemma:

LEMMA 5.1. Forany u € VH there exist ug € Vo, ug € Vi, and u, € V,,. such that

5.1 u—u0+2uk+ >

and

N I\ 2
(5.2) bo(ug,u0)+ZaH(uk,uk)+ Z b (U, Um) < (1+10g (E)) ag(u,u).

k=1 Ym CI

Then, Lemma 3, Section 5.2 in [30] ends the proof of Theorem 3.4.
Proof. We define ug € Vj by setting its values at vertices and constant values taken by
the normal derivative of this function on masters:

ug(cr) = u(er) for ¢, a crosspoint
V'ys,,- = Fz'j C F,

Uo|ry, ; = Onlly,
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where Opu,, , = NL Emewi‘/’)i,h hu(m) for Ny ; = #’ysl"/[i’h (the number of midpoints of

elements of T,’; (Vs,i))-

Let w = u — ug and let up, = (0,...,0,Prw,0,...,0) € V, fork = 1,...,N, (e,
ur, = Prw in  and it is extended as zero onto the other subdomains). Note that H(w —
>k uk) = Hw. Finally we define u,; € V,, by setting

us(p) =w(p) pe€ 'y;/:i’h and Opus(m) = dp,w(m) m € 'yfjfi,h.

Note that these functions sum to w, i.e., this decomposition satisfies (5.1).
We now estimate bg(ug, ug). Lemma 4.12 yields

H\\ ' _
(1 +log (h—>> an,i(uo,uo) X pi Y [Pr,, — Onlruol®

T';;CoQ;

2
’

_ ) —
=p; E |6nu,ys’1. = OnIgur,,|” + pi E |6nu%’k — Onlgur,,
Ye,i=L1; COQ; 0r,i =T COQ;

where the first sum is taken over all mortars (masters) vs ; = I';; of 9€2; and the second over
all slaves dy,; = 7y, = L's;. Note also that I HU|r;, is defined uniquely by the values of u at
the ends of this edge.

Let us first consider a master s ; C 0€;. Let 2 = w — Igu. Then by Schwarz inequality
and standard techniques we get

1/2

53 Y @)@ VNG| Y @uz@)? ] 2 NiH; V21002l rar)-

M M
TEY i h TE€Yg i

Here N, ; is the number of h;-elements of T} (vs,;). Finally we have

[Bntty, . — Onlrrul = Bz, .| < H; l10nzlliarsy)
< B2 (1100 Myt — BnTuull 12(rs;) + 10nMat — Bnullpary,)) -
Note that
(5.4) Igu=IgM;u

and thus a trace theorem, Lemma 4.4, a scaling argument and a quotient space argument yield
that

H, 2100 Miu = dnTrull iz, < [Miulms o, < [ulmzo,)-
Using again Lemma 4.4 directly for the second term we get
H; V2100 Miw = Bnullzar.) < lulmzay)-
Thus we conclude that
pilOnty, ; = OnImul® < pilulfp q,)-

Proceeding analogously in the case when I';, = 6,.; is a slave of 92; with associated mortar
Yr,i;, C O we have

pilOntiy, , — OnIrul® < pilulfs ) < prlulfe o)
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We have also used the assumption pr > p;.
Combining these estimates and summing over all mortars and slaves of €2; and then all
domains §2; gives

H
(5.5) bo(ug,u0) = am(ug,ug) = (1 + log ( 3 )) ap(u,u).

Next we estimate the terms associated with ug € Vi. By (3.5) we have

N

ZaH(uk,uk) = Zak,h('Pkw,'Pkw) <ap(w,w) <2ap(u,u) + 2am(uo, uo).
k=1

This and (5.5) yields

(5.6) g i (ug, ug) < <1+log (—Z)>ag(u,u).

Now let consider a mortar vy, ; which geometrically occupies the place of the interface I';;.
We have to estimate b, (us, us) = ap,i(us, us) = pi|us|§1§(9i)' Because u; is discrete bihar-
monic we can utilize Lemma 4.5 and get

bs(usa us) j pilv'/\/liuS'iIl/Q(&Qi) :

Note that the tangential and normal traces of M; are equal zero on 9€); \ 7,,; thus we can
conclude that

2 |12 |12
|Us|H§(Q,-) = ||6thUs||Hééa(%’i) + ||6anUs||H352(%’i)-

We estimate both terms using Lemma 4.6 and get
(5-7) |us|§{}21(9i) j |atMiu5|2H1/2('ys,,-) + |aan'us|§{1/2(%’i)
+(1+ log(Hi/h)) (10 Mitigll3 s, ) + 10nMitss| 2o, ) -

We show the bounds for all these terms successively. Note that the tangential trace of u,
equals to u — I'gu. Thus the trace theorem, Lemma 4.4, (5.4), a quotient space argument, and
a scaling argument yield that

2
58)  [OMitialZsag,, 2 D HIE TP | Mi(u — Inw) g, < lul3r2 (-
k=1
Note that Opus(m) = dpu(m) — nu,, , for a midpoint m € 'ys ., and then from

Definition 4.3 it follows that 0, Mus(z) = 6 hMiu(z) — (9nu , for any nodal point €
Ys,i,n and Op Mius(ag) = 0, k = 1,2, where ay, is an end of v, ;.
Hence we get

8nMius = 8nMiu|'ys,,- - ﬂ'ys’i - Z (aanu(ak) - ab—u’ys,i)'l/}ak on s,

k=1,2

where 1,, is a nodal basis function of the finite element space of continuous piecewise
quadratic functions defined on T}, (7vs,;) associated with a, - one of the ends of v, ;, i.e.,
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ta, 1s equal to one at ay and is equal to zero at all remaining vertices and midpoints of 7, ; .
Note that |44, [f1/2(,, ;) = 1. Thus we get

5.9) |6"Miu5|H1/2(‘ys,i) < |6"Miu|H1/2('ys,i) + ||6anu — m’h,i Loo(Q)-

The second term is estimated together with ||0, M;us||? o (yei)? cf. (5.11) below, and the first
term can be estimated by a trace theorem, and Lemma 4.4 as follows:

(5.10) |6an‘U|H1/2(%,,-) j |MZU|H2(QI) = |'U,|H}2L(Qi).

The last two terms in (5.7) can be estimate using (5.3) and standard arguments like dis-
crete Sobolev like inequality, cf. Lemma 4.15 in [32]:

18 Mits||7 0, ) < IMiu = ) iy, () = (1 +10g(Hi/hi))lulF g,
SAD) [[0nMius|[T ooy, ) < 10nMite = Optiy, Lo,y = (1 +1og(Hi/hi))lulf q,)-
These estimates together with (5.7), (5.8), (5.9), and (5.10) give

by (us, us) < (1 +1og(Hi/hi))?pilulfpa o,y -

Summing by all mortars we get

N
S b(usrtea) 3 3L+ Tog(H/he) il < (1 + og(BL /1)) ().
s CT =1

Finally, (5.5), (5.6) and the last bound yield (5.2) what ends the proof. O
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