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ELECTROSTATICS AND GHOST POLES IN NEAR BEST FIXED POLE
RATIONAL INTERPOLATION

�
JORIS VAN DEUN

�
Abstract. We consider points that are near best for rational interpolation with prescribed poles in the same sense

that Chebyshev points are near best for polynomial interpolation. It is shown that these interpolation points satisfy an
electrostatic equilibrium problem involving the fixed poles and certain ‘ghost’ poles. This problem is closely related
to Lamé equations with residues of mixed sign.
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1. Introduction. Recent years have witnessed a renewed interest in the electrostatic
interpretation of zeros of orthogonal polynomials and related functions, a subject which lay
dormant for almost a century. According to [9], this renewed interest is probably due partly to
its connection with logarithmic potential theory, which provides a very powerful framework
to study asymptotic properties of orthogonal polynomials and their zeros.

In the present article we study the zeros of a rational generalisation of the Chebyshev
polynomials of the first kind and present an electrostatic interpretation in terms of the poles.
These zeros are near best for rational interpolation with prescribed poles, as explained in [16].
Section 2 provides the relevant background. Some of the physics underlying this electrostatic
interpretation is given in Section 3 and the main result is proved in Section 4.

The survey articles [14, 15] contain Stieltjes’ results about the zeros of Jacobi, Laguerre
and Hermite polynomials, as well as several pointers to the literature where consequences of
Stieltjes’ work, newer results and applications can be found. A result for the zeros of more
general orthogonal polynomials was proved in [8] and a special case of Stieltjes polynomials
(solutions to Lamé differential equations) is discussed in [5, 6]. There are many more im-
portant research papers in this field, but we only cite the ones most relevant to the present
article. The connection between the results obtained in these references and our own work is
discussed in Section 5.

Section 4 shows that the electrostatic interpretation involves not only the real poles, but
also certain ‘ghost’ charges which are related to these poles. Some of their properties are
discussed in the last section.

2. Near best fixed pole rational interpolation. When approximating an analytic func-
tion ������� on the interval 	�
������� using a polynomial interpolant, a good choice for the inter-
polation points is often given by the zeros of a Chebyshev polynomial of the first kind. For
functions ������� which are analytic in a large neighbourhood of the interval, this gives rise
to an interpolation error which is very uniform on the interval, as opposed to interpolation
in equidistant points, which leads to the Runge phenomenon (extreme oscillations between
interpolation points).

There are several more or less equivalent ways to explain this attractive behaviour of
Chebyshev points. Let ������������� denote the polynomial interpolant of degree � to � in the�
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points ����� � ��� ��� �"! � , then formula (3.1.8) in [3] says that

(2.1) # ��������
$� � �%���&����#(' )+*�,- �/.102.�� # �43 �"! �&5 ��6&� # # �7
8����#�9 9�9�# �:
8� �"! �;#���:<=�>�/? �
Maximising the right hand side of this expression over � and then minimising over all points��@ in the interval 	A
�;� � � leads to the zeros of a Chebyshev polynomial BC��! � �D��� of the first
kind and degree �E<F� , according to [3, Theorem 3.3.4]. In other words, the monic polynomial
of degree � which best approximates the zero function on the interval 	�
������� according to
the Chebyshev (minimax) norm, is a scaled Chebyshev polynomial. The above argument is
given in more detail in [3, Section 3.3].

Another argument in favour of the Chebyshev points is given by [12, Theorem 5.6] or
[2, Theorem 2.1], which both state that the interpolation error is of order GH��I - � � for�KJML , where I is the sum of the semimajor and semiminor axis lengths of � ’s ellipse
of analyticity (in both references the argument is given for the Chebyshev extrema and not
the Chebyshev zeros, but asymptotically this does not make any difference). Reference [12]
also gives an interpretation in terms of potential theory: the asymptotic distribution of the
interpolation points is exactly the equilibrium measure of the interval 	A
�;� ��� without an ex-
ternal field.

When � is not analytic but merely continuous, the Chebyshev points are still a good
choice, as explained by [2, Theorem 2.1] and the remarks following it: the Chebyshev inter-
polant of a continuous function � is within a factor 10 of the best uniform approximation if�ONK��P�Q , or in the words of the authors, Chebyshev interpolants are near best. Again this re-
lates to the Chebyshev extrema, but we assume that a similar statement can be given in terms
of the Chebyshev zeros. The reason why the extrema are often used, is that they include the
endpoints 
� and � , which is often useful, e.g. in spectral methods to solve boundary value
problems.

When the singularities of the function ���D��� are close to the interval, polynomial inter-
polation converges slowly (because the constant I above is very small) and a rational inter-
polant with poles at or close to the singularities of ������� might do better. In this case, assume
a real polynomial R�SH�D��� of degree T is given. Then following the same reasoning as [3,
Section 3.1], it is not difficult to find thatUUUU ��������
 � � ���������R S ����� UUUU ' )H*",- �V.�02.�� #A	 R S ��6&������6&�2� 3 �"! �W5 # # �7
8����#�9 9�9�# �:
8� �"! �;#R S �D��� ��D�7<X�Y��? �
analogous to (2.1). Maximising the right hand side of this expression over � and minimising
over all � @ leads to the interpolation points which we study in this article. They are the zeros
of a rational equivalent of a Chebyshev polynomial. This is a rational function with fixed
denominator of degree T and whose numerator of degree �[Z\T is such that the rational
function has minimal Chebyshev norm on 	A
�;� ��� (and, as a consequence, equi-oscillates).

Explicit formulas for this function were already known to Markoff and Bernstein and
are derived by Achieser in Appendix A, Section 5 of his book on approximation theory [1].
They are given below. These functions are closely related to Bernstein–Szegő polynomials
[11, pp. 31–32]. It was recently shown [16] that the zeros (interpolation points) can be ob-
tained efficiently as the eigenvalues of a tridiagonal generalised eigenvalue problem, using a
connection with orthogonal rational functions.

So let there be given a real monic polynomial R S �D��� of strict degree T , whose zeros]Y^ � ��� ����� ^ S`_ are all outside 	A
�;� � � . The Joukowski transformation, which maps the com-
plex unit circle to the interval is denoted by �badce��fg�+ah�Dfi<bf - � �kj"l with # f�#E'm� and
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in everything which follows, � and f are always related by this transformation. The inverse
transformation is denoted by fna[c - � ����� . It is given byfna[c - � �D���oa=�7
qp ��rs
t�"�
where the branch of the square root is such that # f�#g'u� . Now define the numbers vC@ byv @ aKc - � � ^ @ �/�xw+ay����� � � �&Tz�
By definition, they are all inside the complex unit circle. Next we introduce the finite Blaschke
product { � ��fg� as

(2.2) { � �Df(�|a=f � - S f
zv ��}
zv � f 9 9�9 f
zv S�}
zv S f �
The standard definition of a Blaschke product contains complex conjugate v ’s in the denom-
inator, but since they are real or appear in complex conjugate pairs, and only real values off will be considered, we can omit the conjugation. The product { � �Df(� is obviously real for
real f . The Chebyshev rational function under consideration is given by~ ���D���oa �l � {����Df(��< �{�����fg�"� �
It can be shown that

~ ���D��� is of the form~ �������oa � � �����R S �D���
(where ��������� is a polynomial of strict degree � ) and satifies the minimax and equi-oscillation
properties mentioned above. For more information we refer to [16]. Note that in the polyno-
mial case T�a=P , we obtain a well-known formula for the Chebyshev polynomial B � ����� .

It is known that the � zeros of
~ � ����� are all real, simple and on the interval 	A
�;� � � .

These are the near best interpolation points for rational interpolation with fixed poles in]Y^ �>��� � � � ^ S _ which we mentioned above. In Section 4 we derive an electrostatic inter-
pretation for these zeros, analogous to the one for the Chebyshev polynomials discussed in
[11, Section 6.7].

3. The electrostatic model. We give a brief survey of the electrostatics of line charges,
which is needed in the sequel. Although the content of this section is usually taken for
granted by most authors, we believe it might be instructive to people with less background in
electrostatics. The basic definitions were taken from [10, Chapters 13 and 14].

According to Coulomb’s law, the electric field (i.e. the force acting on a unit charge) at a
point � in space, generated by a point charge � at position � , is proportional to��� �# ��
8��# r����"�
where � �"� is the unit vector pointing in the direction from � to � . The constant of propor-
tionality is irrelevant for our discussion.

Now assume electric charge is placed on an infinite straight line perpendicular to the
complex plane and such that it intersects the plane in the point f . The charge has a uniform
linear density of � . We wish to calculate the electric field generated by this line charge in a
point � of the plane. Because of symmetry, this field has no vertical component and points
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from f to � . According to Coulomb’s law, the contribution to the magnitude of the field from
a small segment �(� at height � is proportional to�g� � ���(�# f
8��# r <�� r # f�
8��#p # f�
8��# r�<��1r
where the last factor comes from taking the horizontal component and is the cosine of the
angle between the line connecting � and the point at height � above f , and the complex
plane. Integrating for � from 
�L to L gives� � l"�# f
8��# � �# f
z��# �
For the sake of simplicity, we take the constant of proportionality equal to 1 so we may write
this in vector form as

(3.1)
� a �# f
z��# �7
zf# �7
zf�# a ��7
 f �

This means that, mathematically, the electric field generated by a line charge in three-dimensional
space according to Coulomb’s inverse square law is the same as that generated by a point
charge in a plane according to an inverse first-power law. Only the first interpretation has
physical meaning, of course. Hence, in the sequel, when we speak of point charges in the
complex plane, we actually mean line charges perpendicular to the plane.

By definition, the potential drop from a point � to a point � in the electric field
�

is given
by �1� � ab� ��� �}0W�g�
where �s0 is the component of the field tangential to the path from � to � . This potential drop
is independent of the path taken. Since the field (3.1) is radial, it is also independent of the
angle between f
O� and f�
O� . It is then not difficult to show that� ��� a � ���(�e
 � �����|a������;��# f 
¡�"#"
z���¢����# f 
z��#
so we may define the electrostatic potential

� �D��� in a point � by� �D���oay
s�C�¢����# f
z��#
(recall that the potential is only defined up to an additive constant).

Next assume we are given � free positive unit charges at points ��£ of the real line andT fixed charges ��£ at points f>£ such that the f>£ are real or appear in complex conjugate pairs.
The total potential energy of this system, which is the work done against the electric field to
assemble the � free charges one by one in the presence of the T fixed charges, is given by¤ ���C�|a ¤ �D� � � � ��� ���1�¥�oa[
 ¦�/.¥§�¨ @ . � ���;��# � § 
8��@¥#�
 �¦§�©4� S¦@ ©4� �Y@����;��# � § 
zf�@ª#A�
Since the ��£ are real and the f�£ are real or complex conjugate, the total electric field of
this system is everywhere parallel to the real axis, so the free charges cannot move into the
complex plane. The system is in electrostatic equilibrium if

(3.2) « ¤ a[�4¬ ¤¬ ��� � 9�9 9��s¬ ¤¬ � � �W8a�P¥�
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If « ¤ ���C��ayP and
¤ �D�C� is minimal, the equilibrium is stable. It is possible that � is only a

local minimum, but not a global one. In mechanics, this situation is usually referred to as a
“metastable equilibrium”. If

¤ �D�C� is maximal, the equilibrium is obviously unstable. It may
also happen that � is a saddle point for

¤
. It is not difficult to show that

(3.3) ¬ ¤¬ � § ay
 �¦@ ©4�@�®©�§ �� § 
8��@ 
 S¦@ ©4� � @� § 
Of�@
(this would not be the case if the f £ were arbitrary instead of real or complex conjugate). So
in view of (3.1) and the principle of superposition, the condition « ¤ �D�C��abP only states that
the sum of the forces on each particle of the system is equal to zero.

4. Equilibrium. We finally arive at the main purpose of this article, which is to show
that the zeros � £ of

~ ������� satisfy an electrostatic equilibrium condition of the form (3.2),
where the points f £ are related to the poles

^ @ . However, it is not certain whether this equi-
librium is stable, as is discussed below. First we need a simple lemma.

LEMMA 4.1. Let {����Df(� be defined by (2.2). Then it follows that{n¯� �Df(�|a �f { � ��fg�±°���fg�
where the prime means differentiation with respect to f and the function °���fg� is given by°��Df(�ea=�F
8T²
 S¦@ ©4� �}
zv r@l"v�@ 9 ��7
 ^ @ �
Recall that � and f are related by �$a[c|�Df(� .

Proof. This follows from the fact that�Df � - S � ¯ a �f �D��
8T³�Wf � - S
and � f
zv�@�}
zv�@�fC� ¯ a �f 9 f
zv�@�}
zv�@>f 9 �&�}
zv r@ �Wf�Df
zv�@�� �W�s
zv�@"fg� �ay
 �f 9 f
zv @�}
zv�@�f 9 �}
8v r@l�v�@ 9 ��7
 ^ @ �
and the definition of { ���Df(� .

Before we proceed, it is convenient to make explicit the possible repetition of poles.
So let us assume that there are only ´ distinct poles among the T poles

]Y^ � ��� � ��� ^ S�_ .
Since the order of the poles does not matter, we may assume that these ´ different poles
are

]Y^ � � � ����� ^�µ _ , with multiplicities
] T � � � ��� ��T µ _ such thatµ¦@ ©4� T�@aXT8�

The function °���fg� of the previous lemma may then be written

(4.1) °���fg�eaX�$
zT¶
 µ¦@ ©4� �}
zv r@l"v�@ 9 T³@�7
 ^ @ �
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The zeros of °��Df(� are important in what follows and we denote them by ·^ @ . In Section 6 it is
shown that they are outside 	�
������� , and that when �¹¸XT and all

^ @ are real, so are the ·^ @ .
Furthermore, for fixed T they converge to the

^ @ as � goes to infinity.
The following theorem gives an electrostatic interpretation to the zeros of

~ ������� .
THEOREM 4.2. Assume �º¸»T and let

] ��@ _ � @ ©�� denote the � zeros of
~ ���D��� and] ·^ @ _ µ@ ©4� the ´ zeros of °���fg� . Then

(4.2) 
 �¦@ ©4�@;®©�§ ��¥§}
z� @ 
 �>j�¼�ª§}
t� 
 ��j>¼�¥§�<X� < µ¦@ ©4� � T�@�
t�>j�l�ª§s
 ^ @ < ��j"l�ª§s
y·^ @�� a�P
for ½iaK�;� � �����&� .

The electrostatic interpretation is as follows. Fix negative charges 
}T¾@<y�>j�l at the
points

^ @ and 
��j"l at ·^ @ , for w$a¿����� � � �k´ , and positive charges �>j>¼ at 
� and � . Assume� positive unit charges can move freely on the interval 	�
������� . Then the zeros of
~ ������� cor-

respond to an electrostatic equilibrium for this system (in the weakest sense of the vanishing
gradient of the total energy).

If �8abT , then there are only ´�
t� zeros ·^ @ of °��Df(� and then the last sum in (4.2), and
hence also the electrostatic interpretation, should be modified appropriately.

Proof. We only give the proof for the case �º¸dT and note that the case �²ahT
requires only minor changes. In what follows, a prime means differentiation with respect to
the variable between brackets and we write f������ to mean c - � ����� . According to the chain
rule it then follows that ~ ¯� ������a �l � {����Df(�C< �{ � ��fg�"� ¯ fg¯D�D�����a �l�f { � �Df(�2°��Df(� � �}
 �{`r� �Df(��� f ¯ �D�����
where the last equality follows from Lemma 4.1. Similarly, some computations yield~ ¯ ¯� �D���oa[
 �f ~ ¯� �D���&f ¯ �����4< �f °��Df(� ~ ¯� �����Wf ¯ �D���k<° ¯ �Df(�°���fg� ~ ¯� �����Wf ¯ ������< �fgr ° r �Df(�{����Df(� ��f ¯ �����&� r < ~ ¯� �D��� f ¯ ¯ �����f ¯ ����� �
Then write f § ahc - � �D� § � for ½taÀ�;� � ��� ��� . It follows from the definition of

~ ������� and
the fact that � § is a zero of

~ ������� that { r� �Df § �a²
� . Substituting this in the previous two
expressions gives ~ ¯� ��� § �|a �f {�����f § �±°���f § �Wf ¯ ��� § �
and ~ ¯ ¯� �D� § �|a ~ ¯� ��� § � � 
 �f § fg¯��D� § �C< f ¯ ¯ ��� § �f ¯ ���¥§>� < ° ¯ �Df § �Wf ¯ �D� § �°��Df §Y� � �
From the definition of c|��fg� it follows thatf ¯ ������a l�f rfgrE
t� and f ¯ ¯ �����oaK
 ¼gf��f;rÁ
t�Y�&r f ¯ �D���
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and also that � r 
t��a �Df r 
t�Y� r¼gf;r �
We then obtain

(4.3)
~ ¯ ¯� ���¥§>�|a ~ ¯� �D�ª§>��Â ° ¯ �Df § �&f ¯ ��� § �°��Df § � 
 � §� r§ 
t�ÄÃ �

It follows from formula (4.1) that we may write°���fg�ea � µ �D���R µ �D���
where � µ �D���oaXÅ µ ���:
y·^ ����9�9 9Y���7
Æ·^ µ �R µ �D���oay���:
 ^ � ��9�9 9��D�7
 ^�µ �
and the constant Å µ is further irrelevant. Combining this with equation (4.3) yields~ ¯ ¯� ���¥§Y�~ ¯� ��� § � a � ¯ µ ���¥§Y�� µ ��� § � 
 R ¯µ �D�ª§Y�R µ �D� § � 
 �¥§� r§ 
t� �
Writing

~ � ������a¡� � �����kj>R�Si�D��� and using the fact that � � ���¥§>�|a�P then finally gives

(4.4) 
 � ¯ ¯� ��� § �� ¯� ��� § � 
 � §� r§ 
t� < � ¯ µ �D� § �� µ �D� § � 
 R ¯µ �D� § �R µ �D� § � <�l R ¯S �D� § �R S �D� § � a�P¥�
Formula (4.2) now easily follows.

Since °��Df(� is real for real � , the zeros ·^ @ are real or appear in complex conjugate pairs.
We may thus use the results from Section 3 and the electrostatic interpretation of the zeros
follows from formulas (3.2) and (3.3). This concludes the proof.

Note that the previous theorem gives a very precise meaning to the statement “poles
attract zeros” which we made in [17]. The asymptotic zero distribution was already studied
in terms of the asymptotic distribution of the poles using logarithmic potential theory in [4],
but the case of finite � had hitherto been ignored.

Following Marcellán et. al. in [9, p. 10], we choose to call the charges at ·^ @ ‘ghost’
charges, or in this case more appropriately, ghost poles. More information about these ghost
poles is given in the last section and their relation to the more general framework of Ismail
[8] is discussed in the next section.

But before we move on, two important questions remain: Do the � @ correspond to a
stable equilibrium? And is this equilibrium position unique? Of course, since any permuta-
tion of the equilibrium points again yields an equilibrium position, we impose the ordering
�¾N\���ÇNº��� �ÁN\� � Nº� when studying uniqueness. Unfortunately, at present no con-
clusive answer to these questions is available. To study the stability of the system, one can
investigate the Hessian matrix È adÉÊ¬ r ¤¬ �1£ ¬ �ª§ÄË �V.�£�Ì §�. � �
If this matrix is positive definite, the equilibrium corresponds to a minimum of

¤
and is

therefore stable. In the polynomial cases discussed in [7, 8, 14], it turns out that the Hessian
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is not just positive definite in the equilibrium position, but in the entire region �4��Nu� ���¥N�� �
of the hypercube 	�
������� � , although this is not always mentioned explicitly. This implies
that the equilibrium is stable and unique, since

¤
is then a convex function. The positive

definiteness in these cases is deduced from the strict diagonal dominance of

È
. However, as

will be shown momentarily, in our case

È
may not be positive definite in this entire region,

and it need not be strictly diagonally dominant, although several numerical experiments seem
to indicate that the equilibrium is indeed stable and unique. It appears likely that a possible
proof of this property will be considerably more complicated than in the polynomial case, but
in the next section we indicate how stability and uniqueness may be studied in the context of
Lamé differential equations, which might provide an alternative solution.

It can easily be shown that the Hessian may fail to be positive definite in some regions of	�
��� � � � . To see this, consider the � -th diagonal element�1�"�+a � - �¦@ ©4� ��D� @ 
z� � �Wr < �>j>¼�D� � 
t�Y�Wr < ��j>¼��� � <=�>�Wr 
 µ¦@ ©4� � T³@Í
t�>j�l��� � 
 ^ @ �Wr < �>j�l�D� � 
Ê·^ @ �&rÄ� �
It is possible to choose the poles

^ @ and the points � § such that this element is negative, e.g.
when ´�a[� ,

^ � ¸u� is close to � and T � is very large, ��� is close to � and all the other ��@ are
close to 
� . A matrix which has one or more negative diagonal elements cannot be positive
definite.

In [9] the authors mention the possibility of a Nash-type equilibrium, which means that
the total energy, as a function of a single variable ��@ , also attains its minimum at the zeros of~ ������� , and this for each w . This would mean that if the Hessian is evaluated in the equilibrium
position, its diagonal elements are all positive. This is obviously a weaker condition than
requiring the Hessian to be positive definite, but we have not been able to prove that the
equilibrium is a Nash-type equilibrium.

To end this section, we analyse a specific example for which it can be proved that the
equilibrium position is stable, even though the Hessian is not strictly diagonally dominant at
this position. Take �Xa¶Î and TÏa¶l real poles

^
and 
 ^

, symmetric with respect to the
origin. The equation

~ � �D���oaXP leads tof r ��f r 
zv r � r <��W�}
zv r f r � r aXP¥�
Dividing by fgÐ and using the formula B���������ay�Df � <Of - � ��j�l for the Chebyshev polynomial
of the first kind and degree � , some algebra yieldsB Ð �D���4<���vCÑs
Ol"v r �WB � �����oa�P
or, collecting like powers of � , �4�D¼�� r 
zÎÍ<¹v�Ñs
¡l�v r �|a�P
from which it readily follows that

(4.5) ���say
 p �&��<¡vCr>����Î 
OvCr��l �Ò� r a�P¥�Ó� Ð a p �W�E<¹vCr�� �DÎ
zvCrY�l �
To find the ghost poles, we need to solve the equation�}
 �}
zv rl�v � ��+
 ^ 
 ��i< ^ � a=P
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which shows that they are given by 
F·^ and ·^ with

(4.6) ·^ a p �&��<¡vCr>����Î 
8v4rY�l�v �
The computation of the Hessian matrix is now straightforward using formulas (3.3), (4.5)
and (4.6), but the computations become very unelegant and we only give the final result
(a computer algebra package such as Maple comes in handy at this point). It follows that
È a[�W�Á<¡v r � - � ��Î 
8v r � - � Ô where the matrix Ô is equal toÔ aÖÕ×ÙØ 
}¼ 
�
}¼ Ú 
}¼
�Û
}¼ Ø

ÜÝ �
and the values Ø and Ú are given by

Ø a ��Þ1�DÎ�
8v Ñ ��&�s
8v4r�� Ñ 
t��Úia �l ��ß 
t����v r <¹v Ñ 
zvCà��<¹vCr �
It is easily checked that Ø is increasing and Ú is decreasing with v for PÇNKvXNá� . We find
that )Hâ¢ã Ø aÆ¼(ä and )Hâ�ã}Ú¾aál , so the matrix is certainly not strictly diagonally dominant
for all PHNqv¹NK� . However, a standard criterion for positive definiteness is to verify that the
principal minors of the matrix Ô are all strictly positive. Those areØ � Ø Ú`
��YÞ¥� and � Ø <=�>���DÚ�� Ø 
��>��
¡Î;l����
and since the minimal value of Ø is ¼(ä and that of Ú is l , we can conclude that

È
is positive

definite and hence the equilibrium is stable.
Of course, this direct approach is unfeasible to study stability in the general case, but

at least it shows that the equilibrium may be stable even though

È
is not strictly diagonally

dominant.

5. Orthogonal polynomials and Lamé equations. The equilibrium problem of the pre-
vious section is closely related to a more general theory for the electrostatic interpretation of
zeros of orthogonal polynomials as described in [8], as we show next.

In the abovementioned article, the author considers polynomials � � �D��� orthonormal with
respect to a weight function ån�D��� on 	 ���k�V� . Upon writingån������a=æ -�ç 3�è 5 �Ò�³é¡���1�V���/�
he then defines a function ê � �D��� which is related in a rather complicated way to � � , å and Ú .
The zeros of � � ����� are shown to be the points of electrostatic equilibrium of � movable unit
charges in 	 �1�V�k� in the presence of the external potential1

� �D����a�Ú������4<����;�1�k# ê � ����� # � . The
uniqueness and stability of the equilibrium can be guaranteed if

� ����� is convex and ê � �D���
does not change sign on �D���V��� . To prove this result, he derives the formula

(5.1) 
}Ú ¯ �D�ª§Y��
 ê ¯� ��� § �êÍ�C��� § � < � ¯ ¯� ��� § �� ¯� ��� § � aXP
1We have omitted a multiplicative constant in ë�ì found in [8] which is irrelevant for our discussion.
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which can be interpreted in the same way as formula (4.4).
It is well-known [1, p. 250] that the numerator polynomial � � ����� of

~ � �D��� is orthogonal
to � @ for w+aK�;� ��� � ���$
t� with respect to the weight function

(5.2) ån�����oay	 R rS �D��� p �}
z�1r � - � �
It follows from (5.2) that Ú ¯ ������a�l R ¯S �����R1Si����� < ���r}
��
and comparing (5.1) to (4.4) then givesê ¯� �D���êÍ���D��� ay
 l���1rs
�� < � ¯ µ �D���� µ �D��� 
 R ¯µ �����R µ �����
from which it follows that ê � �����Ea Å�}
z�1r 9 � µ �D���R µ �D���
where Å is an arbitrary (irrelevant) constant. Computing ê � from the general formulas in [8]
seems considerably more complicated than the derivation given in the previous section.

The electric field created by Ú��D��� is referred to as the long range field, while the one
created by ���;�1�k# ê����D����# � is called the short range field. Note how the charges at 
� and � and
at the poles are distributed between these fields, and that the ghost poles are related only to the
short range field. Unfortunately, the convexity of

� �D��� cannot be proved in our case, since
this would show that the Hessian is strictly diagonally dominant [8, p. 360] and we know that
this is not necessarily true.

Another difference between our case and that of [8] is that our derivation only holds for�\ZíT so for fixed T the � � �D��� do not form a complete set of orthogonal polynomials.
However, as explained in [16, Section 3], it is possible to recursively define � � ����� for �taTX
F����TX
Hl¥� ��� �/� � and although there is no mention of orthogonality in that article, it is easy
to show that the polynomials so defined are also orthogonal with respect to ån����� . Explicit
formulas, however, are unavailable.

To study the stability and uniqueness of the electrostatic equilibrium there is another,
perhaps more important, connection worth pointing out, i.e. that to the theory of Lamé dif-
ferential equations. The article [5] is particularly relevant to our discussion and it contains
many more references concerning this theory. A Lamé equation is a differential equation of
the form ên�D���±îª¯ ¯ª<�l�{:�����±îª¯g<�ïH�����±î7aXPÄ�
where ê`�����`að���³
t�gñY��9�9 9 �D�³
���ò�� and {:�D��� and ïH����� are polynomials of degree � and�+
t� , and {:�D���ê`����� a ò¦§�© ñ ó §�:
z��§ �
Of particular interest is the question of characterising the polynomial solutions of this equa-
tion. It is known that, given ên����� and {$����� , there exist at most ����<z��
X�Y��?ôj¥���e?õ�ö�F
X�Y��? �
polynomials ïH����� such that this equation has a polynomial solution î������ of degree � . The
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polynomial ïH�D��� is called a Van Vleck polynomial and the corresponding solution î��D��� is
called a Stieltjes polynomial.

The case where all the residues ó § are positive has been thoroughly studied and much is
known about the location of the zeros of the Stieltjes polynomials in this case. However, the
case of both positive and negative residues appears to be more complicated and only some
specific cases have been studied.

The relation to electrostatic equilibrium problems is that the residues ó § can be inter-
preted as charges located at the points � § and then the zeros of the Stieltjes polynomials
correspond to equilibrium positions for � free unit charges. More specifically, if the residues
(charges) are positive and the points � § are real, then for each ½Ça²��� ��� ����� there exists ex-
actly one pair ��ï���î¥� of a Van Vleck and Stieltjes polynomial such that the � zeros of î are
in the interval �D�;§ - �"����§Y� . This corresponds to a unique and stable equilibrium of � movable
unit charges on that interval.

In [5] a configuration of two positive and two negative charges is studied and the unicity
of the �%ï��&î¥� pair is established under certain conditions, which then leads to an electrostatic
interpretation of the zeros of Gegenbauer-Laurent polynomials.

To see how all of this is related to our problem, consider equation (4.4). It follows from
this equation that the expression�D� r 
t�Y��� µ �D���WR µ �D����� ¯ ¯� �D���4<ºÉ÷��� µ �����±R µ �����e
¡� ¯µ �D�����D� r 
��>�±R µ ������<� R ¯µ ������
¡l R ¯S �����±R µ �����R S �D��� � �D� r 
t�Y��� µ �D��� Ë � ¯� �����
is a polynomial of degree l;´�<¹� which vanishes in the points � � � ��� � ���1� and thusên�D���÷��¯ ¯� �����4<�l"{$�������1¯� �D���C<�ïH�����÷���������oaXP
for some polynomial ïH�D��� of degree l;´ , where{$�����ên����� a �>j�¼�+
t� < �>j�¼�H<=� 
 µ¦@ ©4� � T³@Í
t�>j�l�7
 ^ @ < �>j�l�7
Ê·^ @�� �
This is a Lamé equation with both positive and negative residues, which clearly has the poly-
nomial solution � � ����� . Following the same reasoning as in [5], it follows that establishing the
unicity of the �%ï��&î¥� pair where î has all its � zeros in 	�
��� � � , is equivalent to establishing
the unicity and stability of the electrostatic equilibrium problem of the previous section.

6. Ghost poles. A great deal can be said about the location of the ghost poles ·^ § , as
shown in the next theorem.

THEOREM 6.1. The ghost poles ·^ § are outside the interval 	�
��� � � and if T is fixed they
converge to the poles

^ @ as �¹JøL . Furthermore, if ��¸uT and if all
^ @ are real, then so

are all ·^ § .
Proof. It follows from the proof of Lemma 4.1 that we may write
 �Á
Ov rl�v 9 ��7
 ^ a �W�}
zv r �Wf�Df
zv4� �W�s
zvCf(� �

where
^ aÊc|��v�� and as usual �ÇaÊc|�Df(� . If �zé�	�
��� � � then # f�#gaÆ� and thus f+aÆ�>j�f . If

^
is real, then so is v and it follows that
 �}
zv rl�v 9 ��7
 ^ a �}
8v r# f�
8v�# r ¸tP¥�Ò�³é¡	A
�;� � �%�
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If
^

is complex, then there must be a term in the sum (4.1) which is complex conjugate to the
one above. Adding these two terms gives�W�Í
8v r �Wf�Df
zv4� �W�s
zvCf(� < �W�}
 v r �&f��f
 v����&�}
 v�fg� a vf
8v < ��}
8v4f < vf�
 v < ��}
 v4fa vf
8v < ��}
 v�f < vf�
 v < ��}
8v4fa �&�}
q# v�# r �&f�Df
zv4���&�s
 vCfg� < �W�}
=# v�# r �Wf�Df�
 v4� �W�s
zvCf(�a �}
q# v�# r# f
zv�# r < �}
q# v�# r# f 
 vE# r ¸tPÄ�
for �¡é=	A
�;� ��� , where the last equality follows from the fact that f:a\��j�f . From the above
formulas and the fact that �zZtT , we conclude that°��Df(�E¸tPÄ�ù�³é¡	�
�������2�
Since ·^ § are the zeros of °��Df(� , they must be outside the interval 	�
������� .

Concerning the convergence of the ghost poles to the actual poles for �bJúL and T
fixed, assume that �z¸�T and write the equation for ·^ § as��< ��F
zT µ¦@ ©�� ås@^ @�
Ê·^ § a�P¥�
where åÍ@nabT�@(�&�s
Ov r@ ��jª�%l�v�@�� . In the case where åÍ@H¸=P , this is called a secular equation
and it arises in the context of divide-and-conquer algorithms to solve eigenvalue problems
[13, Lect. 30]. In our more general case, define the vector ûüa[	Aý å � � 9 9�9��Vý å µ �  where the
branch of the square root does not matter. Then following the same reasoning as in [13] it can
be shown that the values ·^ § are given by the eigenvalues of the matrixÕþ× ^ �

. . . ^ µ ÜAÿÝ < ��$
zT ûHû  �
It is clear that for ��JÀL these eigenvalues converge to the poles

^ � ��� ����� ^�µ .
Finally, if all poles

^ @ are real, then the function ·°������`a\°���fg� has simple poles at the
points

^ @ and it is easily checked that·°�� ^ @(
Í�|ab<LX� ·°�� ^ @;< �|a[
�L if
^ @n¸qP¥�·°�� ^ @(
Í�|a[
�LX� ·°�� ^ @;< �|ab<L if
^ @nNqP¥�

Because of continuity, this means that there must be one ghost pole between any two consec-
utive positive poles and similarly between any two consecutive negative poles. This yields a
total of ´}
Ol ghost poles ( ´Á
�� if all poles are either all positive or all negative). Then since·°�� � L��|aq�+
³T , if �8¸�T there must be one more positive ghost pole which is greater than
the largest positive pole and one more negative ghost pole which is larger (in absolute value)
than the largest negative pole (or either one of these cases if all poles are either all positive or
all negative). This gives a total of ´ real ghost poles.
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The previous theorem shows that for large � and fixed T , the electrostatic equilibrium
problem approximates the situation where each pole

^ @ is given a negative charge equal in
magnitude to the multiplicity of this pole, since the ghost poles will then almost coincide
with the real poles. Asymptotically, however, for � tending to infinity and T fixed, the
equilibrium problem corresponds to the case without poles and the equilibrium distribution
is the equilibrium measure of 	�
������� . More interesting asymptotic behaviour occurs when� and T both tend to infinity such that the limit TÇj>� exists. The study of the asymptotic
behaviour and zero distribution of the

~ � , however, is outside the scope of this article.
Furthermore, the fact that the ghost poles are always outside the interval 	�
������� is quite

fortunate since that way we do not have to give an interpretation to the case where (negative)
ghost charges collide with (positive) unit charges � @ . This case cannot occur.

7. Conclusion. The electrostatic equilibrium problem discussed in this article nicely
compliments some of the existing theory for polynomial problems. As we have shown, it
can be regarded as a special case of a more general theory discussed in [8], and more impor-
tantly, it is closely connected to the theory of Lamé equations with residues of mixed sign.
Establishing the uniqueness and stability of the equilibrium would mean a considerable step
forward in the study of this kind of Lamé equations. However, at present this remains an open
problem and, as the discussion at the end of Section 4 shows, the method of proof used in the
polynomial case cannot simply be adapted to our case.

Acknowledgements. The author would like to thank one of the anonymous referees for
providing him with a simpler argument to prove the positive definiteness of the matrix Ô at
the end of Section 4. It is this argument which is used in the text.
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